1. The masses, x grams, of 800 apples are summarised in the histogram.

i. On the frequency density axis, 1 cm represents a units. Find the value of a.
ii. Find an estimate of the median mass of the apples.
2. The lengths, in centimetres, of 18 snakes are given below.
$\begin{array}{llllllllllllllllll}24 & 62 & 20 & 65 & 27 & 67 & 69 & 32 & 40 & 53 & 55 & 47 & 33 & 45 & 55 & 56 & 49 & 58\end{array}$
i. Draw an ordered stem-and-leaf diagram for the data.
ii. Find the mean and median of the lengths of the snakes.
iii. It was found that one of the lengths had been measured incorrectly. After this length was corrected, the median increased by 1 cm . Give two possibilities for the incorrect length and give a corrected value in each case.
3. The Gross Domestic Product per Capita (GDP), x dollars, and the Infant Mortality Rate per thousand (IMR), y, of 6 African countries were recorded and summarised as follows.

$$
n=6 \quad \Sigma x=7000 \begin{array}{ll}
\sum x^{2}=8700 \\
000
\end{array} \quad \Sigma y=456 \quad \Sigma y^{2}=36262 \quad \Sigma x y=509900
$$

i. Calculate the equation of the regression line of y on x for these 6 countries.

The original data were plotted on a scatter diagram and the regression line of y on x was drawn, as shown below.

ii. The GDP for another country, Tanzania, is 1300 dollars. Use the regression line in the diagram to estimate the IMR of Tanzania.
iii. The GDP for Nigeria is 2400 dollars. Give two reasons why the regression line is unlikely to give a reliable estimate for the IMR for Nigeria.
[2]
iv. The actual value of the IMR for Tanzania is 96. The data for Tanzania ($x=1300, y=96$) is now included with the original 6 countries. Calculate the value of the product moment correlation coefficient, r, for all 7 countries.
v. The IMR is now redefined as the infant mortality rate per hundred instead of per thousand, and the value of r is recalculated for all 7 countries. Without calculation state what effect, if any, this would have on the value of r found in part (iv).
4. At a stall in a fair, contestants have to estimate the mass of a cake. A group of 10 people made estimates, $m \mathrm{~kg}$, and for each person the value of $(m-5)$ was recorded. The mean and standard deviation of $(m-5)$ were found to be 0.74 and 0.13 respectively.
i. Write down the mean and standard deviation of m.

The mean and standard deviation of the estimates made by another group of 15 people were found to be 5.6 kg and 0.19 kg respectively.
ii. Calculate the mean of all 25 estimates.
iii. Fiona claims that if a group's estimates are more consistent, they are likely to be more accurate. Given that the true mass of the cake is 5.65 kg , comment on this claim.
5. The table shows information about the numbers of people per household in 280900 households in the northwest of England in 2001.

Number of people	1	2	3	4	5 or more
Number of households	86900	92500	45000	37100	19400

i. Taking ' 5 or more' to mean ' 5 or 6 ', calculate estimates of the mean and standard deviation of the number of people per household.
[5]
ii. State the values of the median and upper quartile of the number of people per household.
6. The stem-and-leaf diagram shows the heights, in metres to the nearest 0.1 m , of a random sample of trees of species A.

5								
5	9							
6	1	4						
6	5	5	9					
7	2	3	3	4				
7	5	6	6	6	7	8		Key: $6 \mid 4$ means 6.4 m
8	0	3	4					
8	5							

i. Find the median and interquartile range of the heights.
ii. The heights, in metres to the nearest 0.1 m , of a random sample of trees of species B are given below.
$7.6 \quad 5.2$
$8.5 \quad 5.2$
6.3
6.3
$6.8 \quad 7.2$
$6.7 \quad 7.3$
$5.4 \quad 7.5$
$7.4 \quad 6.0$
6.7

In the answer book, complete the back-to-back stem-and-leaf diagram.
[2]
iii. Make two comparisons between the heights of the two species of tree.
7. The masses, in grams, of 400 plums were recorded. The masses were then collected into class intervals of width 5 g and a cumulative frequency graph was drawn, as shown below.

i. Find the number of plums with masses in the interval 40 g to 45 g .
ii. Find the percentage of plums with masses greater than 70 g .
iii. Give estimates of the highest and lowest masses in the sample, explaining why their exact values cannot be read from the graph.
iv. On the graph paper in the answer book, draw a box-and-whisker plot to illustrate the masses of the plums in the sample.
v. Comment briefly on the shape of the distribution of masses.
8. The masses, m grams, of 52 apples of a certain variety were found and summarised as follows.

$$
n=52 \quad \sum(m-150)=\begin{gathered}
\sum(m-150)^{2} \\
-182
\end{gathered}=
$$

i. Find the mean and variance of the masses of these 52 apples.
ii. Use your answers from part (i) to find the exact value of $\sum m^{2}$.

The masses of the apples are illustrated in the box-and-whisker plot below.

iii. How many apples have masses in the interval $130 \leqslant m<140$?
iv. An 'outlier' is a data item that lies more than 1.5 times the interquartile range above the upper quartile, or more than 1.5 times the interquartile range below the lower quartile. Explain whether any of the masses of these apples are outliers.
9. The scatter diagram below shows data taken from the 2011 UK census for each of the Local Authorities in the North East and North West regions.
The scatter diagram shows the total population of the Local Authority and the proportion of its workforce that travel to work by bus, minibus or coach.

(a) Samuel suggests that, with a few exceptions, the data points in the diagram show that Local Authorities with larger populations generally have higher proportions of workers travelling by bus, minibus or coach. On the diagram above draw a ring around each of the data points that Samuel might regard as an exception.
(b) Jasper suggests that it is possible to separate these Local Authorities into more than one group with different relationships between population and proportion travelling to work by bus, minibus or coach. Discuss Jasper's suggestion, referring to the data and to how differences between the Local Authorities could explain the patterns seen in the [3] diagram.
10. Clara used some data from the 2011 UK census to summarise information on carbon emissions due to travel to work, in two Local Authorities. Her results are shown below.

	Method of travel to work	Individual motorised transport	Shared motorised transport	Public transport	No motorised transport	
	Carbon emissions category	High	Medium	Low	None	Total
Local Authority A	Number of workers	174374	42112	61483	76024	353993
	Percentage of workers	49.3	11.9	17.4	21.5	100
Local Authority B	Number of workers	39433	9944	4614	16232	70223
	Percentage of workers	56.2	14.2	6.6	23.1	100

(a) Clara calculated the values for the column headed "shared motorised transport" by doubling the value in the "passenger in a car or van" column of the original data set. Explain what assumption she has made and what other adjustment would need to be made to the data to take account of this.
(b) Clara suggests that the average carbon emissions per worker due to travelling to work is larger in region B than in region A.
(i) Use data from the table to support Clara's suggestion.
(ii) Use data from the table to argue against Clara's suggestion.
11. The diagram below shows some "Cycle to work" data taken from the 2001 and 2011 UK censuses. The diagram shows the percentages, by age group, of male and female workers in England and Wales, excluding London, who cycled to work in 2001 and 2011.

The following questions refer to the workers represented by the graphs in the diagram.
(a) A researcher is going to take a sample of men and a sample of women and ask them whether or not they cycle to work. Why would it be more important to stratify the sample of men?
(b) A research project followed a randomly chosen large sample of the group of male workers who were aged 30-34 in 2001. Does the diagram suggest that the proportion of this group who cycled to work has increased or decreased from 2001 to 2011? Justify your answer.
(c) Write down one assumption that you have to make about these workers in order to draw this conclusion.
12. The table and the four scatter diagrams below show data taken from the 2011 UK census for four regions.
On the scatter diagrams the names have been replaced by letters.
The table shows, for each region, the mean and standard deviation of the proportion of workers in each Local Authority who travel to work by driving a car or van and the proportion of workers in each Local Authority who travel to work as a passenger in a car or van.
Each scatter diagram shows, for each of the Local Authorities in a particular region, the proportion of workers who travel to work by driving a car or van and the proportion of workers who travel to work as a passenger in a car or van.

	Driving a car or van		Passenger in a car or van	
	Mean	Standard deviation	Mean	Standard deviation
London	0.257	0.133	0.017	0.008
South East	0.578	0.064	0.045	0.010
South West	0.580	0.084	0.049	0.007
Wales	0.644	0.045	0.068	0.015

Region A

Region B

Region C

Region D

(a) Using the values given in the table, match each region to its corresponding scatter diagram, explaining your reasoning.
(b) Steven claims that the outlier in the scatter diagram for Region C consists of a group of small islands.
Explain whether or not the data given above support his claim.
(c) One of the Local Authorities in Region B consists of a single large island.

Explain whether or not you would expect this Local Authority to appear as an outlier in the scatter diagram for Region B.
13. Frances used the pre-release data set to produce the following table which shows information about the residents of Norwich in 2011.

Age	0 to 15	16 to 24	25 to 44	45 to 64	65 and over	Total
Number of residents	21707	22921	40894	27645	19345	132512

(a) State the upper class boundary of the " 25 to 44 " class.

Frances used these data to calculate estimates of the mean and standard deviation of the ages of these residents. She assumed that the oldest resident was aged 105.
(b) Calculate these estimates.
(c) Use these estimates to discuss whether there may be any outliers.
(d) Jacob suggested that more reliable estimates could be obtained by using the value 80 for the last class, instead of the midpoint. Explain, with a reason, whether you think this suggestion is a good one.
14. The scatter diagram shows data taken from the pre-release data set for several Local Authorities in a region of the UK. The diagram shows, for each Local Authority, the proportion of workers driving to work, and the proportion travelling to work by underground, metro, light rail or tram.

(a) On the diagram above, identify the points corresponding to two distinct sections of the population represented in the diagram.
(b) Suggest a reason why there are two distinct sections of the population represented by
b) the points in the diagram.

The data for another local authority in this region can be represented by the point (0.62 , 0.004).
(c) (i) To which of the two distinct sections of the population does this Local Authority belong? Explain your answer.
(ii) What can you deduce about this Local Authority?
(d) A student suggests that the Local Authority represented by the point $(0.55,0.089)$ is a non-metropolitan district. Comment on this suggestion.
15. John used data from the 2011 UK census to produce the following histogram for region A.

Region A

In the Census report, the age classes were given as follows.

0	5	8	10		16	18	20	25	30	45	60	65	75	85	90
to	to	to	to	15	to	and									
4	7	9	14		17	19	24	29	44	59	64	74	84	89	over

John combined classes to give the classes shown in the histogram.
(a) (i) Explain the reason for John's choice of upper class boundary for the first class.
(ii) Suggest a reason for John's choice of upper class boundary for the last class. John also produced similar histograms for two other UK regions, B and C.

Region B

Region C

(b) Which of the three regions had the largest proportion of people aged 85 and over?

The mean ages, in years, of the populations in the three regions were 47.5, 39.5 and 31.5.
(c) For each of these means, state the region to which it corresponds. Justify your answers.

John made the following claim.
"The histograms show that a child living in region B in 2011 could expect to live longer than a child living in region A in 2011."
(d) Is this claim justified? Give a reason for your answer.
16. The marks of some students in an examination were summarised in a grouped frequency distribution, using the following classes: 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-$49,50-54,55-59$, all inclusive. A cumulative frequency diagram was drawn, as shown below.
Cumulative frequency

(i) How many students took the examination?
(ii) 20% of students gained the top grade. Find the minimum mark for the top grade.
(iii) A teacher said
"The cumulative frequency graph shows that the highest mark scored by any student was 54 or $55 . "$

Explain why this statement is incorrect, and give an improved statement about the highest mark.
(iii) State which class is the modal class, explaining how you know.
17. The mean and standard deviation of the weights, w grams, of a sample of 75 stones were found to be 52.3 and 5.8 respectively.
(i) Find the value of Σw^{2}.

The weights, x grams, of another sample of 100 stones were found and were summarised as follows.

$$
n=100 \quad \Sigma x=5760 \quad \Sigma x^{2}=335497
$$

(ii) Calculate the mean and standard deviation of the weights of all 175 stones.
18. The radar diagrams illustrate some population figures from the 2011 census results.

Each radius represents an age group, as follows:

Radius	1	2	3	4	5	6
Age group	$0-17$	$18-29$	$30-44$	$45-59$	$60-74$	$75+$

The distance of each dot from the centre represents the number of people in the relevant age group.

The scales on the two diagrams are different. State an advantage and a
(a) disadvantage of using different scales in order to make comparisons between the ages of people in these two Local Authorities.
(b) Approximately how many people aged 45 to 59 were there in Liverpool?
(c) State the main two differences between the age profiles of the two Local Authorities. [2]
(d) James makes the following claim.
"Assuming that there are no significant movements of population either into or out of the two regions, the 2021 census results are likely to show an increase in the number of children in Liverpool and a decrease in the number of children in Rutland."

Use the radar diagrams to give a justification for this claim.
19. The table shows information, derived from the 2011 UK census, about the percentage of employees n of travel to work in four Local Authorities.

Local Authority	Underground, metro, light rail or tram	Train	Bus	Drive	Walk or cycle
A	0.3%	4.5%	17%	52.8%	11%
B	0.2%	1.7%	1.7%	63.4%	11%
C	35.2%	3.0%	12%	11.7%	16%
D	8.9%	1.4%	9%	54.7%	10%

One of the Local Authorities is a London borough and two are metropolitan boroughs, not in London.
(a) Which one of the Local Authorities is a London borough? Give a reason for your answer.
(b) Which two of the Local Authorities are metropolitan boroughs outside London? In each case give a reason for your answer.
(c) Describe one difference between the public transport available in the two metropolitan boroughs, as suggested by the table.
(d) Comment on the availability of public transport in Local Authority B as suggested by the table.
20. Using the 2001 UK census results and some software, Javid intended to calculate the mean number of people who travelled to work by underground, metro, light rail or tram (UMLT) for all 348 Local Authorities. However, Javid noticed that for one LA the entry in the UMLT column is a dash, rather than a 0 . See the extract below.

Data extract for one LA in 2001			
Work mainly at or from home	UMLT	Train	Bus, minibus or coach
295	-	4	4

Javid felt that it was not clear how this LA was to be treated so he decided to omit it from his calculation.
(a) Explain how the omission of this LA affects Javid's calculation of the mean.

The value of the mean that Javid obtained was 2046.3.
(b) Calculate the value of the mean when this LA is not removed.

Javid finds that the corresponding mean for all Local Authorities for 2011 is 2860.8. In order to compare the means for the two years, Javid also finds the total number of employees in each of these years. His results are given below.

Year	2001	2011
Total number of employees	23627753	26526336

(c) Show that a higher proportion of employees used the metro to travel to work in 2011
than in 2001.
(d) Suggest a reason for this increase.
21. Paul drew a cumulative frequency graph showing information about the numbers of people in various age-groups in a certain region X . He forgot to include the scale on the cumulative frequency axis, as shown below.

Region X

(a) Find an estimate of the median age of the population of region X .
(b) Find an estimate of the proportion of people aged over 60 in region X .

Sonika drew similar cumulative graphs for another two regions, Y and Z, but she included the scales on the cumulative frequency axes, as shown below.
(c) Find an age group, of width 20 years, in which region Z has approximately 3 times as many people as region Y.
(d) State one advantage and one disadvantage of using Sonika's two diagrams to compare the populations in Regions Y and Z .
(e) Without calculation state, with a reason, which of regions Y or Z has the greater proportion of people aged under 40.
22.

The marks of 24 students in a test had mean m and standard deviation $\sqrt{6}$. Two new students took the same test. Their marks were $m-4$ and $m+4$.

Show that the standard deviation of the marks of all 26 students is 2.60 , correct to 3 significant figures.

Mark scheme

							handle the necessary proportion calculation. A few candidates found the mid-point of the range, giving an answer of 60,	
		Total				7		
2	i	2 0 4 3 2 3 4 0 5 5 3 5 6 2 5 2\|4 means 24 or similar	7 7 5 7	$\begin{aligned} & 9 \\ & 6 \\ & 9 \end{aligned}$	8		B1 for stem correct AND (3 branches correct OR 5 branches correct nos but incorrectly ordered) B1 for all correct Examiner's Comments Most candidates answered this part well. A few omitted one or two digits, but the most common error was misalignment. Many candidates did not appear to appreciate that the shape of a stem-andleaf diagram is important. The lengths of the leaves show, at a glance, the general shape of the distribution of the data. Hence the alignment of the figures is important. For example, many candidates showed the 3rd digit in the first row clearly aligned with the 4th digit in one or more of the other rows. Also when candidates made an error and crossed out a digit, this usually resulted in misalignment when the correct digit was inserted. A few omitted the key. A small number drew a box-and-whisker diagram instead of a stem-and-leaf diagram.	Ignore " 0 " and / or " 1 " in stem, without leaves Allow incorrect alignment. Allow space instead of line. Allow left-facing diag If all digits are in correct rows and orders, award this mark unless: $4^{\text {th }}$ row is not the longest OR eg a $3^{\text {rd }}$ digit in one row is clearly aligned with a $4^{\text {th }}$ digit in another

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& ii

ii \& \begin{tabular}{l}
$47.6(3 \mathrm{sf})$ or $\frac{857}{18}$ or $47 \frac{11}{18}(\mathrm{~cm})$ oe

51 (cm)

 \& B1 \&

cao

ft wrong diag

Examiner's Comments

Most candidates answered this part correctly, although arithmetical errors in finding the mean were not uncommon. Also, for the median, a few candidates found the 9th value instead of the mean of the 9th and 10th. Follow-though from an incorrect diagram was allowed for the median.

\end{tabular} \& \[

$$
\begin{aligned}
& \text { eg } 857 \div 18=41.6 \text { Bo but } \\
& \frac{857}{18}=41.6 \text { ISW B1 }
\end{aligned}
$$
\]

\hline \& iii \& | 49 (or 9th no.) becomes 51 |
| :--- |
| or 53 (or $10^{\text {th }} \mathrm{no}$.) becomes 55 | \& B1

B1 \& \begin{tabular}{l}
No marks for identifying 49 \& 53 alone or 51 \& 55 alone

Examiner's Comments

Many candidates correctly identified the 49 and 53 as possibilities for the incorrect value, but some gave incorrect replacements, most commonly 50 and 54. A few gave answers that suggested that they did not understand what a median is.

Some candidates understood the instruction "Give two possibilities for the incorrect length ..." to mean "Give two possible explanations for incorrect measuring". This gave rise to answers such as "The snakes moved while being measured."

 \&

NB NO ft from wrong diag NOT eg '51 or higher'

Allow embedded answer

eg 53 identified as incorrect and state $(55+49) \div 2=52$ scores 2nd B1
\end{tabular}

\hline \& \& Total \& 7 \& \&

\hline
\end{tabular}

3	$\begin{array}{ll} S_{x x}=8700000-\frac{7000^{2}}{6} & (=533333) \\ S_{x y}=509900-\frac{7000 \times 456}{6} & (=-22100) \\ b=-\frac{" 22100 "}{4533333 "} \text { or }-\frac{663}{16000} & (=-0.0414) \\ y-\frac{456}{6}="-0.0414 "\left(x-\frac{7000}{6}\right) \\ y=-0.0414 x+124(3 \mathrm{ss}) & \\ \end{array}$	M1 M1 M1 	Correct subst'n in any correct S formula Correct subst'n in any correct b formula from two correct S formulae ft their b except if using r $\text { or } y=-\frac{663}{16000} x+\frac{3979}{32} \text { rr } y=-0.041 x+124$ Examiner's Comments This part was answered very well on the whole. A few candidates made a sign error when substituting b (which is negative) in order to find a. Some simply lost the minus sign in b. Some found b and stopped. Others found r instead of what was asked. A few found r and then used this as their value of b.	$\stackrel{\text { or }}{a}=\frac{456}{6}-("-0.0414 ") \times \frac{7000}{6}$ oe ft " Allow $y=-0.04 x+124$ if $-0.041 \ldots$ seen
	70 to 72	B1	or 71 per thousand, NOT 71000 Examiner's Comments Many candidates ignored the instruction to "use the regression line in the diagram" and used their equation from (i). A few candidates misinterpreted the situation, giving an answer such as 71000.	No ft from (1) Ignore method
	iii Extrapolation oe	B1	Allow "2400 is beyond graph" "Not shown on the graph" or "Line drops low, or below 0 " "Outlier"	"Line only allows for countries poorer than Nigeria" ${ }^{\text {tt }}$ B1 Allow "Value for Nigeria is -ve ${ }^{18} \mathrm{~B}$ 1

	iii	Corr'n not high or small sample	B1	Poor corr'n oe, or pts not close to line oe $2^{\text {nd }} \mathrm{B} 1$ Examiner's Comments Most candidates gave one correct answer, using the word "extrapolation" or some equivalent wording. However, many either gave no second reason or gave one that was, in effect, equivalent to their first reason (eg "The IMR will become negative"). Some candidates gave the valid second reason, namely that the diagram does not show good linear correlation.	NOT "Other factors may apply" oe Ignore all else
		$\begin{aligned} & S_{x x}=8700000+1300^{2}-\frac{(7000+1300)^{2}}{7} \\ & S_{y y}=36262+96^{2}-\frac{(456+96)^{2}}{7} \\ & S_{x y}=509900+1300 \times 96-\frac{8300 \times 552}{7} \end{aligned}$ $r=\frac{"-19814.3 "}{\sqrt{" 548571 " \times " 1948.86 "}}$ $=-0.606(3 \mathrm{sf})$	M1 A1 d M1 	$\begin{aligned} & \text { or } 10390000-\frac{(8300)^{2}}{7}=\frac{3840000}{7} \\ & \text { or } 45478-\frac{552^{2}}{7}=\frac{13642}{7} \\ & \text { or } 634700-\frac{8300 \times 552}{7}=-\frac{138700}{7} \end{aligned}$ Correct subst' n in any correct r formula from 3 correct subs in 3 correct S formulae, ie all correct method Examiner's Comments This part was answered well by most candidates. A few used the original totals, just changing the value of n from 6 to 7 . Others made the opposite error, finding new totals, but with n $=6$. Sensibly, most wrote down their new totals such as $\sum x y$, but some were incorrect and, without any indication of method, these lost a method mark.	Correct sub in any correct S formula M1 Correct value of any S seen or implied by r A1 SC If $n=6$, but otherwise correct allow M1A0M1A0 (ans $r=-0.574$, must see wking)
	v	No effect oe	B1	Stay the same oe Allow just "No"	Ignore all else

				Examiner's Comments A few candidates thought that r would decrease because the values used in the formula would decrease, but most stated correctly that r would be unchanged.	
		Total	12		
4	i	574 0.13 or 'the same'	B1 B1	NB 0.13 seen within working; B0 Examiner's Comments Many candidates gave the correct mean, but many gave 5.13 for the standard deviation (or even 0.74 for the mean). Some divided 0.74 by 10 before adding it to 5 . Others confused this question with questions involving finding the mean and standard deviation of two groups combined. These candidates tried to find Σx^{2} by working backwards from $\sigma=$ 0.13 and from there they tried to find the new standard deviation.	$\operatorname{eg} \frac{\Sigma x^{2}}{10}-(\text { their mean })^{2}=0.13^{2} \operatorname{sco}$
	ii	$(10 \times$ ' 5.74 ' $+15 \times 5.6) \div 25$ oe all correct $=5.656=5.66(3 \mathrm{sf})$	M1 A1ft	$\operatorname{eg} 5.74 \times \frac{2}{5}+5.6 \times \frac{3}{5}$ ft their 5.74 Examiner's Comments Some candidates found the unweighted mean of the two means or simply added the two means.	$\mathrm{NB}(5.74+5.6) \div 2=5.67 \mathrm{MOAO}$ NB 5.7 with no wking: MOAO even if already penalised elsewhere for over-rounding
	iii	$1^{\text {st }} \mathrm{gp}$ (or one gp) is more consistent (or less spread oe)	B1ft	$2^{\text {nd }} \mathrm{gp}$ (or one gp) more accurate or etc but less consistent or etc	$1^{\text {st }} \mathrm{gp}$ (or one gp) more consistent or etc $2^{\text {nd }} \mathrm{gp}$ (or the other gp) more accurate or etc

	iii ${ }_{\text {ii }}$ iii	but less accurate (or mean further from true mean oe)	B1ft	If neither B1 scored, but state 'consistency does not imply accuracy' or similar: SC B1 Equiv answers accepted, but no others Examiner's Comments There was some confusion here. Some candidates considered only the mean of all 25 people, stating that it was very close to the true mean and was therefore "consistent" in some sense. Some gave general answers such as "It is untrue because they are just guessing." Others only compared the means of the two groups, correctly noting that one was nearer to the true mass than the other. A few appreciated that the standard deviation represents the consistency of a group's guesses, then compared the standard deviations of the groups and gave a fully correct answer, although a few thought that a higher standard deviation means greater consistency.	Ignore all other, eg ignore 'Claim false' or 'Claim true’ etc even if it contradicts other statements Reference to mean of all 25 does not score Follow through their values for $1^{\text {st }} \mathrm{gp}$: eg if $1^{\text {st }} \mathrm{gp} \mathrm{sd}=5.13$: $1^{\text {st }} \mathrm{gp}$ less accurate and less consistent oe B1B1 Similar for other ft .
		Total	6		
5	i	$\frac{\Sigma f x}{\Sigma f} \text { attempted } \quad\left(=\frac{662000}{280900}\right)$	M1	3 terms of $\Sigma f x$ correct.. and $\div \Sigma f$ Allow incorrect Σf NOT Σx	Use of 5 or 6 instead of 5.5 for last value of x : all M-marks can be scored,but no A-marks. (ans: 5 gives 2.32 and 1.23; 6 gives 2.39 and 1.40) Use of 5 and 6 instead of 5.5 (probably with freqs 19400/2) could lead to correct mean M1A1, but possibly M1M1A0 for sd. $\div 5 \text { or } \div 6 \text { MOAO }$

				candidates' working, is to complete a table showing the values of $x, f, f x$ and $f x^{2}$, and the totals for the last three columns.	
	ii ii		B1 B1	allow $I Q R=3-1=2$, ie $U Q=3$ implied Examiner's Comments Some candidates gave values taken from the second row of the table instead of the top row. Others tried to interpolate, giving answers such as 2.3 and 3.6.	Ignore working for both, even if Incorrect NB 3, 2 BOBO unless labelled correctly
		Total	7		
6	i	$\text { Median }=7.45(\mathrm{~m})$ $\text { IQR }=7.75-6.7$	B1 M1	cao allow 7.775 - 6.6 or $77.5-67$ or 77.75-66 or 7.8 - 6.5 even though this is an incorrect method or 78-65	These pairs of values only, and subtract, for M1 eg

		A is nearer to normal A is negatively skewed A has a (unique) mode, or modal class or peak; (B doesn't)		Not other comment about skew Ignore any other reference to mode or most common Ignore all else even if incorrect Examiner's Comments To be sure of gaining both marks in questions of this type, candidates should follow the following guidelines: 1 Always refer to the context. 2. Give answers that refer to the groups as a whole, rather than to individual values. 3. Give one answer about size and one about spread. Many candidates fell down on one or more of these criteria. While it is not absolutely impossible to gain the marks without adhering to these guidelines, it is extremely difficult to give a convincing answer that does not do so.	NOT two comments on spread eg highest on both is 8.5 BO
		Total	7		
7	i	35	B1	Allow 30 to 40 inclusive Examiner's Comments A generous range was allowed here (30 to 40), but a few candidates made errors in reading the graph and gave answers outside this range. The fact that the scales on the two axes are different may have confused some candidates, A few candidates just read off the cumulative frequency for a mass of 45 g . Others found the average of the two cumulative frequencies for 40 g and 45 g .	
	ii	$\frac{50 \pm 2}{400} \times 100$ $=12 \% \text { to } 13 \%$	M1 A1	NOT $\frac{50 \pm 2}{450} \times 100$ Examiner's Comments Almost all candidates answered this question correctly. A few	NOT $\frac{100 \pm 2}{4000 \mathrm{or} 450} \times 100$ NOT $\frac{350 \pm 2}{400} \times 100$ (unless sub from

				candidates thought that the median was above 40, perhaps because they assumed that the total was 450 . Some candidates reduced their chances of marks by drawing freehand, thus making it unclear at which values their lines were drawn. A few drew the maximum line at 100, even though the value for the highest mass, given in their answer to part (ii), was, e.g., 90 g or 88 g .	
	\checkmark	Stretched out at top end oe Not symmetrical More concentrated towards lower end More values (or data) in lower half of range Median closer to lowest value Average towards lower end More plums have lower masses Majority of distribution towards lower end More below 50 (or 45) Upper whisker longer than lower whisker	B1	Positive skew, Skewed to right (or to higher values) Larger skewness at top Larger plums more spread than smaller ones Ignore all else No need for context Examiner's Comments The requirement here was to note either the longer whisker at the top or the fact that there were more masses in the lower half of the range than in the upper part. Many candidates gave inadequate answers such as 'The spread is fairly even' or 'There is wide spread of masses' or 'The IQR is nearer the lower end' or 'The majority are between 25 and 55 '. The concept of 'skew' is not in the specification, but candidates could gain the mark by stating that the data had positive skew. Many stated (wrongly) that there was negative skew. 'Positive correlation' was not infrequently seen.	NOT any of below: more large extremes than small extremes IQR is towards the lower end skewed to the left (or to lower values) majority below 39 distribution towards lower end
		Total	10		
8	i	$\frac{-182}{52}_{\text {or }-3.5 \text { seen or }}$ implied	B1	NB in (i) and (ii) $1768+150^{2} \times 52=1171768$ is incorrect and scores no marks in either part, except possible ft in (ii).	$\sum m=150 \times 52-182$ or 7618 B1

9	a		B1 (AO2.2b) [1]	At least the three with solid rings. No extras other than those in the dashed ring.		
	b	 e.g. the dotted ringed group are "metropolitan districts" which have good infrastructure, so they have high proportions of travelling by bus. The solid ringed group are probably large "unitary authorities" which are not urban, so they don't have good bus services. The unringed points are a mix of small "unitary authorities" and "nonmetropolitan districts" which are difficult to tell apart with these data.	B1 (AO2.2b) E1 (AO1.2) E1 (AO2.3)	For identifying (not necessarily using the diagram) the two subpopulation s shown as being one in which there is a positive correlation between the two variables, and one in which larger populations do not appear to lead to increases in the proportion	Identifying some points of those ringed as being in different subpopulations	

			[1]	from data		
	b	ii) The proportion using no motorised transport in region B (23.1) is greater than region A (21.5)	$\mathrm{B} 1 \text { (AO2.3) }$ [1]	Or other valid reason taken from data		
		Total	4			
1 1	a	e.g. From the data given, the proportions of men who cycle to work show much more variability than women, with greater proportions of younger men cycling than older men.	$\mathrm{E} 1(\mathrm{AO} 2.4)$ [1]			
	b	The proportion decreased e.g. These workers were in the 40-44 group in 2011, which is a smaller proportion of the population than the 30-34 group in 2001.	B1 (AO2.2a) B1(AO2.2b)			
	c	e.g. The age group is still approximately the same size in 2011 Very few (or no) males in this age group join the workforce between 2001 and 2011 Very few (or no) males in this age group leave the workforce between 2001 and 2011 The overall size of the workforce in this age group has not changed much The sample is representative of the whole population	$\mathrm{B} 1(\mathrm{AO} 2.2 \mathrm{~b})$ [1]	For any relevant assumption		
		Total	4			

1	a	E.g. The only region with very low location on both variables is Region D which is therefore London. E.g. The region with the lowest standard deviation is Region B , so this is Wales E.g. The only value where the other two differ much is sd of driving, the wider spread on Region C including the outlier suggests that this is the Southwest, so Region A is the South East.	E1(AO2.2a) E1(AO2.2a) E1(AO2.2b) [3]	Or any other valid reason to connect Region D with London Or any other valid reason to connect Region B with Wales Careful argument involving mean and / or standard deviation	OR E1 for one region correct with good reasoning OR E2 for two regions correct with good reasoning	
	b	E.g. No the data only shows that this LA has low proportions of car use for travelling to work. E.g. No, many LAs in Region D (London) have similar proportions and they are not small islands.	E1(AO2.2b) [1]	Or any other valid explanation of why the data given is insufficient to draw this conclusion	Identifying the LA as the Scilly Isles is not relevant; this requires information that is not in the supplied data.	
	c	E.g. On a large island, methods of travel to work are unikely to be different to any other LA; people will still be traveling to work on the roads, and provision of public transport will be similiar to any other LA.	E1(AO2.2b) [1]	Or any other valid explanation of how large islands are likely to have similar patterns of method of travel to other LAs	Candidates may, but need not, identify the LA as Anglesey, but this is not sufficient to award the mark	

		Total	5			
1	a	45	${ }^{\mathrm{B}}(\mathrm{AOO} .1 \mathrm{~b})$ [1]	Allow 44 years 364 days or similar		
	b	$\bar{x}=39.6(3 \mathrm{sf})$ $s=24.3(3 \mathrm{sf})$	B1(A01.1) M1(AO1.1) A1(AO1.1) [3]	$(U C B=106$ because oldest is 105) (If seen) sub in correct formula using any x 's within classes Allow 24.2 (3 sf)	If use 105 as UCB: $\begin{aligned} & \text { mean }=39.5 \\ & (3 \mathrm{sf}) \text { B0 } \\ & \text { sd }=24.2(3 \mathrm{sf}) \\ & \text { M1A1 } \end{aligned}$	
	c	$39.6+2 \times 24.3=88.2$ $39.6-2 \times 24.3=-9$ Hence may be outliers at top, but not at bottom	M1(AO1.1a) A1f(AO2.2b) [2]	Allow just 39.6 $+2 \times 24.3=88.2$ for M1 A1 for both limits and full conclusion	ft their \bar{x} and s ft their \bar{x} and s	
	d	No, most in $65+$ class will be nearer the lower end oe	E1(AO3.2b) [1]	or imply class is weighted towards left		

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& [2] \& \begin{tabular}{l}
marks are independent \\
Examiner's Comments \\
Most students gave the correct answer of \(25-29\), generally with a correct reason such as that the graph is steepest here or that the increase in cumulative frequency is greatest here. \\
A few gave an incorrect reason, such as "The cumulative frequency is greatest in this class". Some candidates thought that the mode was where the mark (rather than the frequency) was highest, and so gave the answer \(55-59\). \\
A few candidates found the class which contained the median, rather than finding the modal class.
\end{tabular} \& \\
\hline \& \& Total \& 8 \& \& \\
\hline \& i \& \[
5.8^{2}=\frac{\Sigma w^{2}}{75}-52.3^{2}
\]
\[
\Sigma w^{2}=207669.75 \quad \text { or } \frac{830679}{4} \text { oe }
\] \& M1
A1

[2] \& \begin{tabular}{l}

or	
$5.8=\sqrt{ }\left(\frac{\Sigma w^{2}}{75}-52.3^{2}\right)$	NOT other ans Allow 208000 with correct working, no errors seen that rounds to 20800 0

Examiner's Comments

A common error was to omit to square 5.8 or 52.3 or both. A
\end{tabular} \&

\hline
\end{tabular}

				Examiner's Comments Many candidates found the the second sample of stones unweighted mean of the two	that although candidate wrote "55.3" she used more sig figs in the calc'n and standard deviation of Some found the eans.		
		Total	6				
	a	In all parts, once mark gained, ignore all else Advantage: Type 1 answers: State or imply compare proportions (or distributions or structure or profile or pattern) Examples: Can comp proportions (or distributions or structure or profile) Allow can see props Can compare areas' age groups relative to size of area Easier to see age groupp distributions Disadvantage: Type 1 answers: State or imply pop sizes not easy to compare Examples: Diag does not show relative sizes of the authorities	E1 (AO1.1) E1 (AO1.1)	Allow eg "Group 1" for 0-17s etc. Advantage: Type 2 answers: State or imply with same scale, sizes of diags wd be very different Examples: Prevents diag from becoming too big or too small to use effectively	Allow "children" for 0-17s NOT e.g: Easy to compare large area with small Easier to see results Easy to compare populations Because L is		

(

(2

				results and conclusion		
	d	More metros built.	$\begin{gathered} \mathrm{E} 1 \text { (AO } \\ \text { 2.2b) } \\ {[1]} \end{gathered}$	or sensible alternative		
		Total	6			
2 1	a	38 to 39	$\begin{gathered} \mathrm{B} 1 \text { (AO } \\ 3.1 \mathrm{a}) \\ {[1]} \end{gathered}$			
	b	$\begin{aligned} & \text { eg } \frac{1.25}{5.75} \text { or } \frac{7}{29} \\ & =0.2 \text { to } 0.24 \end{aligned}$	M1 (AO 3.1a) A1 (AO 1.1) [2]	Use heights, any units, eg cm or squares		
	c	eg 40 to 60	$\begin{gathered} \mathrm{B} 1(\mathrm{AO} \\ {[1.1)} \\ {[1]} \end{gathered}$	Any correct range		
	d	Can easily compare proportions or age profile Cannot easily compare numbers in age groups	$\begin{gathered} \mathrm{E} 1 \text { (AO } \\ \text { 2.2b) } \\ \mathrm{E} 1 \text { (AO } \\ \text { 2.2b) } \end{gathered}$ [2]			
	e	Z. Graph steeper for below 40	$\begin{gathered} \mathrm{E} 1 \text { (AO } \\ \text { 2.2b) } \\ {[1]} \end{gathered}$			
		Total	7			

