A particle *P* of mass 3 kg moves under the action of a force and is at the point with position vector $\binom{2}{3}$ m. At time t seconds later, P has velocity **v** ms⁻¹.

1.

- (a) Express v in terms of t. [2]
- (b) Find the value of t when the speed of P reaches 5 ms⁻¹. [3]
- (c) Find the position vector of P when t = 2. [2]
- 2. A particle P moves with constant acceleration (3i - 5j)ms⁻². At time t = 0 seconds P is at the origin. At time t = 4 seconds P has velocity (2i + 4j)ms⁻¹. (a) Find the displacement vector of P at time t = 4 seconds. [2]
 - **(b)** Find the speed of P at time t = 0 seconds. [4]

END OF QUESTION paper

© OCR 2017. Page 1 of 3

Mark scheme

Question		า	Answer/Indicative content	Marks	Guidance	
1		а	Use $\mathbf{F} = m\mathbf{a}$ to obtain $\mathbf{a} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$ $\mathbf{v} = \begin{pmatrix} 1+3t \\ -2-t \end{pmatrix}$	B1(AO3.3) B1ft(AO3.4)	For use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ with their a (allow ft for this mark even if \mathbf{F} used for \mathbf{a})	Or integrate and use initial conditions
		b	$(1 + 3t)^2 + (-2 - t)^2 = 25$ $t^2 + t - 2 = 0 \Rightarrow t =$ As t cannot be negative, $t = 1$ only	M1(AO1.1) M1(AO1.1) A1(AO2.3)	Use of Pythagoras using their vector for v Forming and attempting solution of 3- term quadratic for t BC; must explicitly reject t = - 2	
		С	$\mathbf{s} = \begin{pmatrix} 2+t+\frac{3}{2}t^2 \\ 3-2t-\frac{1}{2}t^2 \end{pmatrix}$ When $t = 2$, $\mathbf{s} = \begin{pmatrix} 10 \\ -3 \end{pmatrix}$ m	M1(AO3.4) M1(AO1.1) [2]	For use of $\mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ with their \mathbf{a}	Or integration of their v and use of initial conditions
			Total	7		
2		а	$\mathbf{s} = 4(2\mathbf{i} + 4\mathbf{j}) - \frac{1}{2}(4)^2(3\mathbf{i} - 5\mathbf{j})$ $\mathbf{s} = (-16\mathbf{i} + 56\mathbf{j})\mathbf{m}$	M1 (AO 3.3) A1 (AO 1.1)	Attempt use of $\mathbf{s} = \mathbf{v}t - \frac{1}{2}\mathbf{a}t^2$	Accept equivalent full methods using suvat equations e.g. first using v = u + at to find u and then

© OCR 2017. Page 2 of 3

				using $\mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$
b	$2i + 4j = u + 4(3i - 5j)$ $u = -10i + 24j$ $ u = \sqrt{(-10)^2 + 24^2}$ $= 26 \text{ ms}^{-1}$	M1* (AO 3.3) A1 (AO 1.1) M1dep* (AO 1.1) A1 (AO 2.2a)	Attempt use of $v = u + at$ Attempt magnitude of their u	
	Total	6		

© OCR 2017. Page 3 of 3