1.

The diagram shows the (t, η) graph of a car moving along a straight road, where $v \mathrm{~m} \mathrm{~s}^{-1}$ is the velocity of the car at time t s after it passes through the point A. The car passes through A with velocity $18 \mathrm{~m} \mathrm{~s}^{-1}$, and moves with constant acceleration $2.4 \mathrm{~m} \mathrm{~s}^{-2}$ until $t=5$. The car subsequently moves with constant velocity until it is 300 m from A. When the car is more than 300 m from A, it has constant deceleration $6 \mathrm{~m} \mathrm{~s}^{-2}$, until it comes to rest.
i. Find the greatest speed of the car.
ii. Calculate the value of t for the instant when the car begins to decelerate.
iii. Calculate the distance from A of the car when it is at rest.
2. $\quad x(\mathrm{~m})$

A particle P can move in a straight line on a horizontal surface. At time t seconds the displacement of P from a fixed point A on the line is $x \mathrm{~m}$. The diagram shows the (t, x) graph for P. In the interval $0 \leqslant t$ $\leqslant 10$, either the speed of P is $4 \mathrm{~ms}^{-1}$, or P is at rest.
i. \quad Show by calculation that $T=1.75$.
ii. State the velocity of P when
a. $\quad t=2$,
b. $\quad t=8$,
c. $\quad t=9$.
iii. Calculate the distance travelled by P in the interval $0 \leqslant t \leqslant 10$.

For $t>10$, the displacement of P from A is given by $x=20 t-t-96$.
iv. Calculate the value of t, where $t>10$, for which the speed of P is $4 \mathrm{~ms}^{-1}$.
3. A particle P is projected vertically downwards with initial speed $3.5 \mathrm{~ms}^{-1}$ from a point A which is 5 m above horizontal ground.
i. Find the speed of P immediately before it strikes the ground.

After striking the ground, Prebounds and moves vertically upwards and 0.87 s after leaving the ground P passes through A.
ii. Calculate the speed of Pimmediately after it leaves the ground.

It is given that the mass of P is 0.2 kg .
iii. Calculate the change in the momentum of P as a result of its collision with the ground.
4. A small ball is projected vertically upwards with speed $18 \mathrm{~m} \mathrm{~s}^{-1}$ from a point O on the ground. At the same instant a small object is released from rest at a point 27 m vertically above O.
(i) Verify that the ball and the object collide 1.5 s after they are set in motion.
(ii) Find the velocities of the ball and the object immediately before they collide.

The ball and the object have equal mass. When the ball and the object collide, they coalesce.
(iii) Find the time after their collision when they strike the ground at O.

Mark scheme

	ii ii ii ii	$\begin{aligned} & \text { Distance }=18 t \\ & \text { Distance }=(t+[t-5]) \times(30-18) / 2 \\ & 18 t+(t+[t-5]) \times(30-18) / 2=300 \\ & t=11 \end{aligned}$	B1 B1 M1A1 A1	Lower portion of area Upper portion of area $30 t-30=300$	
		$\begin{aligned} & S=30^{2} /(2 \times(\pm 6)) \\ & S=75 \\ & \text { Distance }=375 \mathrm{~m} \\ & O R \\ & T=30 / 6 \text { and } S=30 \mathrm{~T} / 2 \\ & S=75 \end{aligned}$	M1 A1 A1ft M1 A1 A1ft	$0^{2}=30^{2} \pm 2 \times 6 S \text {, with candidate's } \text { U(i) }$ $300+\operatorname{cv}(75)$ Accept $T=5$ if no working or from 30/-6, with candidate's 久i) $300+\operatorname{cv}(75)$ Examiner's Comments Many fully correct solutions were seen. The most frequent error was not realising in part (ii) that 300 m was the entire journey distance while both accelerating and moving with constant speed. Thus $" 300 / 30=10,10+5=15$ seconds" was the most common mistake seen. Very many candidates expressed their work in a very informal way, their solutions consisting predominantly of numbers ($120,180,6,11$) without much explanation of what they meant. Candidates could directly find in part (iii) the distance while decelerating (from $0^{2}=30^{2}-2 \times 6 s$), and so those who first calculated a time while decelerating needed to use that time to find a distance before becoming eligible for any mark.	
		Total	10		
2	i	$5 /(T-3)=-4 O R 5 /(3-T)=4$ $T=1.75$	M1 A1	Accept verification, $4 \times(3-1.75)$ M1 $=5 \mathrm{~A} 1 O R 5 /(3-1.75) \mathrm{M} 1=4 \mathrm{~A} 1$	
	i1 ii ii	(a) $-4 \mathrm{~ms}^{-1}$ (b) $4 \mathrm{~ms}^{-1}$ (c) $4 \mathrm{~ms}^{-1}$	B1 B1 B1		
	iii	$2 \times(-) 4,2 \times 4,(1 \times) 4$	M1*	Calculates any one unknown distance	Allow if only one

© OCR 2017.
Page 5 of 9

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& iii \& \[
d=(-) 5+(-) 8+8+4
\]
\[
d=25 \mathrm{~m}
\] \& \begin{tabular}{l}
D*M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Adds 5 and " 3 other" distances or -5 and " 3 other" displacements \\
Correctly comes from \(4 \times(1.25+4+1) \quad 3 / 3\)
\end{tabular} \& \begin{tabular}{l}
calc. \\
correct \\
Note \(\mathrm{t}=5\) \\
to \(t=9, t\) \\
\(=5\) to \(t=\) \\
10 etc, \\
may be \\
one term
\end{tabular} \\
\hline \& iv
iv
iv

iv

iv \& \begin{tabular}{l}
$$
v=\mathrm{d}\left(20 t-t^{2}-96\right) / \mathrm{d} t
$$
$$
v=20-2 t
$$
$$
20-2 t=-4
$$

$t=12$ (ignore any solutions less than 10)

 \&

M1*

A1

D*M1

A1

 \&

Differentiates x, accept 20 - tas "differentiation"

$$
20-2 t+c=-4 \text { is } \mathrm{DMO}
$$

Only from $20-2 t=-4$. This answer can arise fortuitously from solving $20 t-t^{2}-96=0$.

Examiner's Comments

In recent examinations, a (t, ウ) graph has been presented to candidates. It was clear that a minority of candidates used methods inappropriate to a (t, x) diagram. Others wrongly used constant acceleration formulae, in a problem where changes of velocity are instantaneous. Only the best candidates were able to solve fully, as only they realised that a speed of $4 \mathrm{~m} \mathrm{~s}^{-1}$ was consistent with $v=-4$.

 \&

SC

Verifying

that $\mathrm{t}=12$

gives $v=$

-4 can

gain final

M1A1 (A

special

case of

trial and

refinement)
\end{tabular}

\hline \& \& Total \& 12 \& \&

\hline 3 \& i \& $$
v^{2}=3.5^{2}+2 g \times 5
$$

\[
v=10.5 \mathrm{~ms}^{-1}

\] \& | M1 |
| :--- |
| A1 | \& | Uses $V^{2}=3.5^{2}+/-2 g 5$ |
| :--- |
| Examiner's Comments |
| Was almost always answered correctly. | \& | Accept |
| :--- |
| -3.5^{2} for |
| $(-3.5)^{2}$ etc |

\hline \& ii
ii

ii \& $$
5=0.87 u-g \times 0.87^{2} / 2
$$

\[
u=10.0 \mathrm{~ms}^{-1}

\] \& | M1 |
| :--- |
| A1 |
| A1 | \& | $+/-5=0.87 u+/-g 0.87^{2} / 2$ |
| :--- |
| Examiner's Comments |
| This part was almost always answered correctly, save for a significant minority of candidates who | \& May come from $s=v t$ - $g t^{2} / 2$

\hline
\end{tabular}

				up and solved and equation in t containing two squared terms (which subsequently cancelled) and so showed that $\mathrm{t}=1.5$.		
	ii	Object vel $(=9.8 \times 1.5)=14.7 \mathrm{~m} \mathrm{~s}^{-1}$ (down) Ball vel $=+/-(18-9.8 \times 1.5)$ Ball vel $=3.3$ (upwards)	B1 M1 A1 [3]	Accept $-14.7 \mathrm{~m} \mathrm{~s}^{-1}$ Must be a difference expression 3.3 if $v=18$ or -3.3 if $v=$ -18 Examiner's Comments Part (ii) was done well.	Candidates may find object velocity and ball velocity in (i). These answers must be quoted here for 3 marks to be given.	
	iii	$\begin{aligned} & 14.7 m-3.3 m=2 m u \\ & u=5.7 \\ & 15.975=5.7 t+9.8 \mathrm{f} / 2 \end{aligned}$ Solve $4.9 t+5.7 t-15.975=0$ $t=1.32 \mathrm{~s}$	M1 A1 M1* D*M1 A1 [5]	Momentum conservation; after mass = 2xbefore mass Must use coalesced velocity and S<27 3 term QE and evidence of method of solution if answer incorrect. Part (iii) was often accom showed a horizontal coll equation proved awkwa the direction of motion s coalescence, or not hav doubled.	Disregard signs $\begin{aligned} & v^{2}=5.7^{2}+ \\ & 2 \times 9.8 \times 15.975 \end{aligned}$ $\text { and } v=5.7+$ 9.8t Create both M1* Find v (=18.537..), solve for t D*M1 Answer t = 1.32 s anied by diagrams which on. The momentum with uncertainty about s, both before and after the "after" mass	

		Total	12	

