1. A circle with centre $C$ has equation $x^{2}+y^{2}-2 x+10 y-19=0$.
i. Find the coordinates of $C$ and the radius of the circle.
ii. Verify that the point $(7,-2)$ lies on the circumference of the circle.
iii. Find the equation of the tangent to the circle at the point (7, -2 ), giving your answer in the form $a x+b y+c=0$, where $a, b$ and $c$ are integers.
2. A circle $C$ has equation $x^{2}+y^{2}+8 y-24=0$.
i. Find the centre and radius of the circle.
ii. The point $A(2,2)$ lies on the circumference of $C$. Given that $A B$ is a diameter of the circle, find the coordinates of $B$.
3. A circle with centre $C$ has equation $(x-2)^{2}+(y+5)^{2}=25$.
(i) Show that no part of the circle lies above the $x$-axis.
(ii) The point $P$ has coordinates $(6, K)$ and lies inside the circle. Find the set of possible values of $k$.
(iii) Prove that the line $2 y=x$ does not meet the circle.
4. A circle with centre $C$ has equation $x^{2}+y^{2}-10 x+4 y+4=0$.
i. Find the coordinates of $C$ and the radius of the circle.
ii. Show that the tangent to the circle at the point $P(8,2)$ has equation $3 x+4 y=32$.
iii. The circle meets the $y$-axis at $Q$ and the tangent meets the $y$-axis at $R$. Find the area of triangle $P Q R$.
5. 



The diagram shows the circle with equation $x^{2}+y^{2}-8 x-6 y-20=0$.
i. Find the centre and radius of the circle.

The circle crosses the positive $x$-axis at the point $A$.
ii. Find the equation of the tangent to the circle at $A$.
iii. A second tangent to the circle is parallel to the tangent at $A$. Find the equation of this second tangent.
iv. Another circle has centre at the origin $O$ and radius $r$. This circle lies wholly inside the first circle. Find the set of possible values of $r$.
6. Points $A$ and $B$ have coordinates $(3,0)$ and $(9,8)$ respectively. The line $A B$ is a diameter of a circle.
(a) Find the coordinates of the centre of the circle.
(b) Find the equation of the tangent to the circle at the point $B$.
7.


A circle with centre $C$ has equation $x^{2}+y^{2}+8 x-4 y+7=0$, as shown in the diagram. The circle meets the $x$-axis at $A$ and $B$.
(a) Find

- the coordinates of $C$,
- the radius of the circle.
(b) Find the coordinates of the points $A$ and $B$.

The chord $D E$ passes through the point $\left(-\frac{3}{2}, 3\right)$ and is perpendicular to $O C$, where $O$ is the origin.
(c) Find the coordinates of the points $D$ and $E$.
(d) Hence find the area of the quadrilateral $B E A D$.
8. In this question you must show detailed reasoning.

A circle touches the lines $y=\frac{1}{2} x$ and $y=2 x$ at $(6,3)$ and $(3,6)$ respectively.


Find the equation of the circle.
9. The circle $x^{2}+y^{2}-8 x+2 y=0$ passes through the origin O . Line OA is a diameter to this circle.
(i)

Find the equation of the line OA, giving your answer in the form $a x+b y=0$, where $a$ and $b$ are integers.
(ii) The tangent to the circle at point $A$ meets the $x$-axis at the point $B$. Find the area of triangle $O A B$.
10. A circle with equation $x^{2}+y^{2}+6 x-4 y=k$ has a radius of 4 .
(a) Find the coordinates of the centre of the circle.
(b) Find the value of the constant $k$.
11. The equation of a circle is $x^{2}+y^{2}+6 x-2 y-10=0$.
(a) Find the centre and radius of the circle.
(b) Find the coordinates of any points where the line $y=2 x-3$ meets the circle $x^{2}+y^{2}+$ $6 x-2 y-10=0$.
(c) State what can be deduced from the answer to part (b) about the line $y=2 x-3$ and the circle $x^{2}+y^{2}+6 x-2 y-10=0$.
12. A circle with centre C has equation $x^{2}+y^{2}+8 x-2 y-7=0$.

Find
(a) the coordinates of $C$,
(b) the radius of the circle.
13. In this question you must show detailed reasoning.

The lines $y=\frac{1}{2} x$ and $y=-\frac{1}{2} x$ are tangents to a circle at $(2,1)$ and $(-2,1)$ respectively.
Find the equation of the circle in the form $x^{2}+y^{2}+a x+b y+c=0$, where $a, b$ and $c$ are constants.
14. A line has equation $y=2 x$ and a circle has equation $x^{2}+y^{2}+2 x-16 y+56=0$.
(a) Show that the line does not meet the circle.
(b) (i) Find the equation of the line through the centre of the circle that is perpendicular to the line $y=2 x$.
(ii) Hence find the shortest distance between the line $y=2 x$ and the circle, giving your answer in an exact form.
15.


The diagram shows a circle with centre $(a,-a)$ that passes through the origin.
(a) Write down an equation for the circle in terms of $a$.
(b) Given that the point $(1,-5)$ lies on the circle, find the exact area of the circle.

## Mark scheme

| Question |  | Answer/Indicative content | Marks <br> B1 | Part marks and guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | i | Centre (1, -5 ) $\begin{aligned} & (x-1)^{2}+(y+5)^{2}-19-1-25=0 \\ & (x-1)^{2}+(y+5)^{2}=45 \end{aligned}$ $\text { Radius }=\sqrt{45}$ | B1 <br> M1 <br> A1 | Correct centre <br> Correct method to find $r^{2}$ <br> Correct radius. Do not allow if wrong centre used in calculation of radius. <br> Examiner's Comments <br> This standard piece of bookwork was generally done very well, with around three-quarters of candidates scoring all three marks. Only occasionally was the centre seen as $(2,-10)$. The most common cause of errors was again dealing with negative numbers, particularly when squaring to find the radius, or not subtracting appropriately after completing the square. | $r^{2}=( \pm 5)^{2}+( \pm 1)^{2}+19$ for the M mark $\text { A0 if } \pm \sqrt{45}$ |
|  | ii | $\begin{aligned} & 7^{2}+(-2)^{2}-14-20-19 \\ & =0 \end{aligned}$ | B1 | Substitution of coordinates into equation of circle in any form or use of Pythagoras' theorem to calculate the distance of $(7,-2)$ from $C$ <br> Examiner's Comments <br> This was managed well by most candidates, with substitution of the point into the original equation generally a more successful approach than using Pythagoras' theorem. | No follow through for this part as AG. Must be consistent do not allow finding the distance as $\sqrt{\mathbf{4 5}}$ if no / wrong radius found in 9 (i). |
|  | iii | gradient of radius $=\frac{-5-(-2)}{1-7}$ or $\frac{-2-(-5)}{7-1}$ | M1 | $\frac{y_{2}-y_{1}}{x_{2}-x_{1} \text { with their C }}$ <br> (3/4 correct) | Follow through from 9(i) until final mark. |


|  | iii ${ }^{\text {iii }}$ iii | $\begin{aligned} & =\frac{1}{2} \\ & \text { gradient of tangent }=-2 \\ & y+2=-2(x-7) \end{aligned}$ $2 x+y-12=0$ | A1 $\sqrt{ }$ <br> B1/ <br> M1 <br> A1 | Follow through from their C allow unsimplified single fraction e.g. -6 <br> Follow through from their gradient, even if MO scored. Allow <br> their fraction <br> correct equation of straight line through (7, -2), any non-zero numerical gradient <br> oe 3 term equation in correct form i.e. $k(2 x+y-12)=0$ where $k$ is an integer cao <br> Examiner's Comments <br> A large number of candidates secured full marks on this question and almost all managed to secure partial credit. Some candidates simplified $\frac{-3}{-6}$ to $-\frac{1}{2}$. The incorrect simplification of $\frac{3}{6}$ to $\frac{1}{3}$ was <br> also common. The majority remembered to find the negative reciprocal of their gradient and then substituted this correctly to find an equation of a straight line. Some candidates still miss the detail of the question and do not give the correct answer in the required form, needlessly losing the final mark. Another not uncommon error was to attempt to differentiate implicitly when candidates clearly had either not yet met this technique or did not understand the process; successful solutions using this approach were extremely rare. | If $(-1,5)$ is used for $C$, then expect <br> Gradient of radius $=\frac{5-(-2)}{-1-7}=-\frac{7}{8}$ <br> Gradient of tangent $=\frac{8}{7}$ <br> Alternative markscheme for implicit differentiation: <br> M1 Attempt at implicit diff as evidenced by $2 y \frac{d y}{d x}$ term $2 x+2 y \frac{d y}{d x}-2+10 \frac{d y}{d x}=0$ <br> A1 Substitution of $(7,-2)$ to obtain gradient of tangent $=$ -2 <br> Then M1 A1 as main scheme |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 9 |  |  |
| 2 | \|i | Centre ( $0,-4$ ) $x^{2}+(y+4)^{2}-16-24=0$ $\text { Radius }=\sqrt{40}$ | B1 <br> M1 <br> A1 | $(y \pm 4)^{2}-4^{2}$ seen (or implied by correct answer) <br> Do not allow A mark from $(y-4)^{2}$ <br> Examiner's Comments | Or attempt at $r^{2}=f+g^{2}-c$ $\text { A0 for } \pm \sqrt{40}$ |


|  |  |  |  | Over two-thirds of candidates secured all three marks interpreting the given equation of a circle correctly. Marks were lost mainly due to sign errors, both in attempting to find the centre and in attempts to complete the square. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $(-2,-10)$ | B1FT <br> B1FT | FT through centre given in (i) <br> FT through centre given in (i) <br> Examiner's Comments <br> Candidates who drew a diagram usually recognised that the coordinates of B could be found by simple addition or subtraction and were then usually successful in scoring both marks, especially as there was a follow-through from part (i). Those who tried to apply standard techniques involving Pythagoras' theorem and resulting quadratics were very rarely successful in finding either value. | i.e. (their $2 x-2$, their $2 y-2$ ) <br> Apply same scheme if equation of diameter found and attempt to solve simultaneously; no marks until a correct value of $x / y$ found. |
|  | ii | 2) If the candidate attempts to solve by using the formula <br> a. If the formula is quoted incorrectly then MO. <br> b. If the formula is quoted correctly then one sign slip is permitted. Substituting the wrong numerical value for $a$ or $b$ or c scores M0 | c. |  |  |
|  |  | Total | 5 |  |  |
| 3 |  | $y$ coordinate of the centre is -5 <br> Radius $=5$ <br> Centre is five units below $x$ axis and radius is five, so just touches the $x$-axis | B1 <br> B1 <br> B1 | Correct $y$ value <br> Correct radius <br> Correct explanation based on the above - allow clear diagram www <br> Examiner's Comments <br> The simplest, and most common, approach to show that the circle did not go above the x axis was to identify the centre and radius from | Alt <br> Shows only meets $x$ axis at one point B1 <br> Correct $y$ value for the centre B1 Correct explanation B1 www |


|  |  |  | the equation and state/show on a diagram that the circle just touched the axis at a single point. The majority of candidates showed clear solutions to this effect. Some, however, tested just a single point (usually $y=1$ ) and showed this was not a point on the circle, which was of course insufficient. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $C P^{2}=(6-2)^{2}+(k+5)^{2}$ $C P^{2}<25 \Rightarrow 16+k^{2}+10 k+25<25$ $k^{2}+10 k+16<0$ $(k+2)(k+8)<0$ $-8<k<-2$ | M1 <br> A1 <br> A1 <br> M1 <br> A1 | Attempt to find $C P$ or $C P^{2}$ <br> Correct three term quadratic expression* <br> $k=-2$ and $k=-8$ found <br> Chooses "inside region" for their roots of their quadratic <br> Must be strict inequalities for the A mark <br> * $\operatorname{Or}(k+5)^{2}<9$ <br> Examiner's Comments <br> Most candidates took the correct approach to this, substituting $x=6$ and then solving the quadratic and finding the values of $k$ that corresponded to the points on the circumference. A large number of candidates then stopped and failed to identify the correct range of values being any value between these. Those who carried on were usually correct, but it was fairly common to not give the answer as the strict inequalities required for the point to be inside the circle. There were some neat alternative solutions using Pythagoras' theorem to find the values of $k$ from a good sketch. | Alternative <br> Puts $x=6$ to into equation of circle M1 <br> Correct three term quadratic equation ${ }^{*}$, could be in terms of $y \mathbf{A} 1$ <br> $k=-2$ and $k=-8$ found (allow $\downarrow$ ) A1 <br> Then as main scheme <br> * $\operatorname{Or}(k+5)^{2}=9$ <br> SC <br> Trial and improvement <br> B2 if final answer correct <br> (B1 if inequalities are not strict) <br> Can only get $5 / 5$ if fully explained |
|  | $\text { iii } \left\lvert\, \begin{aligned} & (2 y-2)^{2}+(y+5)^{2}=25 \\ & 5 y^{2}+2 y+4=0 \\ & b^{2}-4 a c=4-4 \times 5 \times 4 \end{aligned}\right.$ | M1* | Attempts to eliminate $x$ or $y$ from equation of circle | If $y$ eliminated: $5 x^{2}+4 x+16=0$ |


|  | iii | $=-76$ <br> $<0$, so line and circle do not meet | M1dep* | Correct three term quadratic obtained <br> Correct method to establish quadratic has no roots e.g. considers value of $b^{2}-4 a c$, tries to find roots from quadratic formula <br> Correct clear conclusion www AG <br> Examiner's Comments <br> There were a large number of fully correct solutions to the request to prove that the line and circle do not meet. Most performed the easier substitution for $x$, but $(2 y)^{2}=2 y^{2}$ was a fairly common error. Many were able to use the discriminant, or the quadratic formula, to explain their reasoning clearly. Only a few claimed that the line and circle did not meet because the quadratic could not be factorised. Some of the weaker candidates again resorted to testing a single point (sometimes the centre) or drawing a poor diagram. | $\begin{aligned} b^{2}-4 a c & =16-4 \times 5 \times 16 \\ & =-304 \end{aligned}$ <br> No marks for purely graphical attempts |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 12 |  |  |
| 4 | i | $\begin{aligned} & C=(5,-2) \\ & (x-5)^{2}+(y+2)^{2}-25=0 \end{aligned}$ <br> Radius $=5$ | B1 <br> M1 <br> A1 | Correct centre <br> $(x \pm 5)^{2}-5^{2}$ and $(y \pm 2)^{2}-2^{2}$ seen (or implied by correct answer) <br> Correct radius - do not allow A mark from $(x+5)^{2}$ and / or $(y-2)^{2}$ <br> Examiner's Comments <br> Apart from the usual sign error, most candidates were able to identify the centre and calculate the radius of the circle with little apparently difficulty. | Or attempt at $\ell^{2}=\ell^{\ell}+\mathrm{g}^{2}-c$ $\pm 5 \text { or } \sqrt{25} \mathrm{~A} 0 \text {. }$ |



\begin{tabular}{|c|c|c|c|c|c|}
\hline \& iii \& 40 \& A1 \& \begin{tabular}{l}
Examiner's Comments \\
Most candidates were able to find both points on the \(y\)-axis and the best solutions to this included a sketch diagram to aid candidates on their way. Some chose to find the lengths of all the sides of the triangle and multiply together sides that were not perpendicular before halving. Although full marks to this part were comparatively rare, it was noticeable that some lower attaining candidates who did use a good sketch were able to outscore many of the higher attaining students on this particular part.
\end{tabular} \& \\
\hline \& \& Total \& 12 \& \& \\
\hline 5 \& i \({ }^{\text {i }}\) \& \[
\begin{aligned}
\& \text { Centre of circle }(4,3) \\
\& (x-4)^{2}-16+(y-3)^{2}-9-20=0 \\
\& r^{2}=45 \\
\& r=\sqrt{45}
\end{aligned}
\] \& B1
M1

A1 \& \begin{tabular}{l}
Correct centre <br>
$(x \pm 4)^{2}-4^{2}$ and $(y \pm 3)^{2}-3^{2}$ seen (or implied by correct answer) <br>
$\sqrt{45}$ or beter $m w n$

 \& 

Or $r^{2}=4^{2}+3^{2}+20$ soi <br>
isw after $^{45}$ <br>
Examiner's Comments <br>
This proved to be a very successfully answered question, with around nine in ten candidates securing all three marks.
\end{tabular} <br>

\hline \& ii \& $$
\begin{aligned}
& \text { At A, } y=0 \text { so } x^{2}-8 x-20=0 \\
& (x-10)(x+2)=0 \\
& \text { A }=(10,0) \\
& \text { Gradient of radius }=\frac{3-0}{4-10}=-\frac{1}{2}
\end{aligned}
$$ \& M1

A1

M1 \& | Valid method to find A e.g. put $y=0$ and attempt to solve quadratic (allow slips) or Pythagoras' theorem |
| :--- |
| Correct answer found |
| Attempts to find gradient of radius (3 out of 4 terms correct for their centre, their A) | \& Alterative for finding gradient: M1 Attempt at implicit

$$
2 y \frac{d y}{d x}
$$ <br>

\hline
\end{tabular}






(1)



|  | b | $13+k=16$ $k=3$ | M1(AO1.1a) <br> A1(AO1.1) | Attempt to link 9, 4, 16 and $k$ <br> Obtain $k=3$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 4 |  |  |
| 11 | a | centre is $(-3,1)$ $\begin{aligned} & (x+3)^{2}-9+(y-1)^{2}-1-10=0 \\ & (x+3)^{2}+(y-1)^{2}=20 \end{aligned}$ $\begin{array}{\|l\|l\|l} \hline \text { radius }=2 \sqrt{5} & \text { or } & \sqrt{20} \\ \hline \end{array}$ | B1 (AO 1.1) <br> M1 (AO 1.1a) <br> A1 (AO 1.1) <br> [3] | Correct centre of <br> circle Allow $x=-3, y=1$ <br> Attempt to <br> complete the <br> square twice <br>  Allow for $(x \pm 3)^{2}$ <br> $\pm 9+(y \pm 1)^{2} \pm 1$ <br> seen $(x \pm 3)^{2}+$ <br> $(y \pm 1)^{2}-10=0$ is <br> MO as no evidence <br> of subtracting the <br> constant terms to <br> complete the <br> squares <br> Or attempt to use <br> $r^{2}=g^{2}+f^{2}-c$ <br> Correct radius From correct <br> working only, <br> including correct <br> factorisation <br> Allow $r=4.47$, or <br> better <br> Examiner's Comments |  |


|  |  |  |  | candidates choosing to write the equation in factorised form. There were a few sign errors when stating the centre of the circle, and also a few errors when subtracting the constant term when completing the square each time. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | b | $x^{2}+(2 x-3)^{2}+6 x-2(2 x-3)-10=0$ <br> OR $(x+3)^{2}+(2 x-4)^{2}=20$ $x^{2}-2 x+1=0$ $x=1$ $(1,-1)$ |  | Substitute the linear equation into the quadratic equation <br> Correct three term quadratic <br> $B C$, or from any valid method <br> A0 if additional points also given <br> Examiner's Comments <br> All candidates attempted to solve using the expanded equation of the As this question did not specify 'd that candidates would solve the en but instead most still showed the | Either substitute for $y$, or an attempt at $x$ Either use the given expanded equation or their attempt at a factorised equation <br> Must be three terms, but not necessarily on same side of equation <br> AO if additional incorrect $x$ value <br> Allow $x=1, y=-1$ <br> e equations simultaneously, either circle or the factorised equation. ailed reasoning', it was expected uing quadratic on their calculator torisation. |  |





|  |  |  |  | substituting coordinates and various other devices. Not surprisingly, these generally failed to gain any marks. (Although one candidate did actually succeed by this method, taking several pages to do so, and gained full credit.) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 6 |  |  |  |
| 14 | a | $x^{2}+4 x^{2}+2 x-32 x+56=0$ $5 x^{2}-30 x+56=0$ $30^{2}-4 \times 5 \times 56=-220$ <br> $b^{2}-4 a c<0$ hence no real roots so the circle and line do not intersect | M1 (AO <br> 2.1) <br> M1 (AO <br> 2.4) <br> A1 (AO <br> 2.2a) <br> [3] | Substitute $y=2 x$ into equation of circle <br> and rearrange to three term quadratic <br> Consider discriminant <br> Conclude with no real roots |  |  |
|  | b | Centre of circle is $(-1,8)$ <br> Gradient of perpendicular is -0.5 <br> (i) $\left\{\begin{array}{l}y-8=-0.5(x+1) \\ \\ x+2 y=15\end{array}\right.$ | $\begin{gathered} \text { B1 (AO 1.1) } \\ \text { B1 (AO } \\ 2.2 \mathrm{a}) \\ \text { M1 (AO } \\ 1.1) \end{gathered}$ <br> A1 (AO 1.1) | Seen or used <br> For gradient of perpendicular <br> Attempt equation of line through their circle centre with gradient of -0.5 <br> Obtain correct equation | Allow any 3 term |  |




