1. Find the first three terms in the expansion of $(9-16 x)^{\frac{3}{2}}$ in ascending powers of x, and state the set of values for which this expansion is valid.
2.

i. Show that $\frac{x}{(1-x)^{3}} \approx x+3 x^{2}+6 x^{3}$ for small values of x.
ii. Use this result, together with a suitable value of x, to obtain a decimal estimate of the value 100 of 729 .
iii. Show that $\frac{x}{(1-x)^{3}}=-\frac{1}{x^{2}}\left(1-\frac{1}{x}\right)^{-3}$. Hence find the first three terms of the binomial expansion of
$\frac{x}{(1-x)^{3}}$ in powers of $\frac{1}{x}$.
iv. Comment on the suitability of substituting the same value of x as used in part (ii) in the expansion in part (iii) to estimate the value of $\frac{100}{729}$.
3. i. Find the first three terms in the expansion of $(1-2 x)^{-\frac{1}{2}}$ in ascending powers of x, where $|x|<\frac{1}{2}$.
ii. Hence find the coefficient of x^{2} in the expansion of $\frac{x+3}{\sqrt{1-2 x}}$.
i. Find the first three terms in the binomial expansion of $(8-9 x)^{\frac{2}{3}}$ in ascending powers of x.
ii. State the set of values of x for which this expansion is valid.
5. (a) Find the first three terms in the expansion of $(1+p x)^{\frac{1}{3}}$ in ascending powers of x.
(b) Given that the expansion of $(1+q x)(1+p x)^{\frac{1}{3}}$ is

$$
1+x-\frac{2}{9} x^{2}+\ldots
$$

find the possible values of p and q.
6. (a) Find the first three terms in the expansion of $(1+2 x)^{\frac{1}{2} \text { in }}$ ascending powers of x.
(b) Obtain an estimate of $\sqrt{3}$ by substituting $x=0.04$ into your answer to part (a).
(c) Explain why using $x=1$ in the expansion would not give a valid estimate of $\sqrt{3}$.
7. Find the first three terms in ascending powers of x in the binomial expansion of
(i) $\sqrt[4]{1+8 x}$.
(ii)

State the range of values for which this expansion is valid.
8. (a) Find the first three terms in the expansion of $(4-x)^{-\frac{1}{2}}$ in ascending powers of x.
(b)

The expansion of $\frac{a+b x}{\sqrt{4-x}}$ is $16-x \ldots$. Find the values of the constants a and b.
9. (a) Find the coefficient of x^{4} in the expansion of $(3 x-2)^{10}$.
(b) In the expansion of $(1+2 x)^{n}$, where n is a positive integer, the coefficients of x^{7} and x^{8} are equal.
Find the value of n.
(c) Find the coefficient of x^{3} in the expansion of $\frac{1}{\sqrt{4+x}}$.
10.
(a) Expand $\sqrt{1+2 x}$ in ascending powers of x, up to and including the term in x^{3}.
(b)

Hence expand $\frac{\sqrt{1+2 x}}{1+9 x^{2}}$ in ascending powers of x, up to and including the term in
x^{3}.
(c) Determine the range of values of x for which the expansion in part (b) is valid.

Mark scheme

					expansion and were able to change $(9-16 x)^{\frac{3}{2}}$ into a suitable form for expansion. Common errors in the expansion included careless simplification of the x^{2} term (often because of cramped writing) and multiplication of this expansion by 9 instead of by 27 . A significant number of candidates completely ignored the request for the validity.	
			Total	5		
2			$\begin{aligned} & (1-x)^{-3}=1+-3 \cdot-x+\frac{-3 \cdot-4}{2}(-x)^{2}+\ldots \\ & \text { accept } 3 x \text { for }-3 .-x \& / \text { or }-x^{2} \text { or }(x)^{2} \text { for }(-x)^{2} \end{aligned}$ multiplication by x to produce AG (Answer Given)	M1 A1	As result is given, this expansion must be shown and then simplified. It must not just be stated as $1+3 x+6 x^{2}$ $+\ldots$ Examiner's Comments The required relationship had been given so, as with all such similar questions, the solutions were examined closely to see, firstly, if the method of expansion was known and, secondly, how accurately it was carried out. Any slight error in accuracy was penalised.	For alternative methods such as expanding $(1-x)^{3}$ and multiplying by $x+3 x^{2}+6 x^{3}$ or using long division, consult TL
		ii	Clear indication that $x=0.1$ is to be substituted (estimated value is) $0.1+3(0.1)^{2}+6(0.1)^{3}=0.136$	M1 A1	e.g. $0.1+3(0.1)^{2}+6(0.1)^{3}$ stated Examiner's Comments It was not immediately obvious just what the suitable value of x was, but a fair number obtained $x=0.1$ and substituted into the given expansion.	Calculator value $\rightarrow \mathrm{MO}$ (0.13717 \ldots is calculator value of $\frac{100}{729}$

(

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& ii \& \begin{tabular}{l}
use of \((x+3) \times\) their \(\left(1+x+\frac{3}{2} x^{2}\right)\) \\
coefficient is 5.5 oe
\end{tabular} \& M1

A1 \& | or B2 www in either part |
| :--- |
| Examiner's Comments |
| This was very well done by nearly all candidates. A few candidates made a sign error with the first term, and some omitted " 2 " in part (i). Most gained at least the method mark in part (ii), although a few tried division instead of multiplication. | \& may be embedded (eg $5.5 x^{2}$ alone or in expansion)

\hline \& \& Total \& 5 \& \&

\hline 4 \& i \& | $\begin{aligned} & 8^{2 / 3}=4 \\ & \left(1-\frac{9 x}{8}\right)^{2 / 3} \text { seen } \\ & 1+\left(\frac{2}{3}\right)\left(\frac{ \pm 9 x}{k}\right)+\frac{1}{2!}\left(\frac{2}{3}\right)\left(\frac{2}{3}-1\right)\left(\frac{ \pm 9 x}{k}\right)^{2} \end{aligned}$ |
| :--- |
| where k is an integer greater than 1 $4-3 x-\frac{9}{16} x^{2} \text { or } 4\left(1-\frac{3}{4} x-\frac{9}{64} x^{2}\right)_{\text {cao }}$ | \& \& | $\begin{aligned} & 8^{2 / 3}+(2 / 3) 8^{-1 / 3}(\pm 9 x) \\ & +\frac{2 / 3 \times(2 / 3-1)}{2!} 8^{-4 / 3}(\pm 9 x)^{2} \\ & 4+(2 / 3)\left(\frac{1}{2}\right)(\pm 9 x) \\ & +\frac{2 / 3 \times(2 / 3-1)}{2!}\left(\frac{1}{16}\right)(\pm 9 x)^{2} \end{aligned}$ |
| :--- |
| Examiner's Comments |
| This was very well-done, with most candidates scoring at least three out of four marks. A few had difficulty dealing with $82 / 3$ and some made sign errors. | \& may be embedded ignore extra terms or better

\hline
\end{tabular}

