Find the first three terms in the expansion of $(9 - 16x)^{\frac{3}{2}}$ in ascending powers of x, and state the set of values for which this expansion is valid.

2.
$$\frac{x}{(1-x)^3} \approx x + 3x^2 + 6x^3$$
 for small values of x.

[2]

[5]

- ii. Use this result, together with a suitable value of *x*, to obtain a decimal estimate of the value of $\frac{100}{729}$.
 - [4]
- iii. Show that $\frac{x}{(1-x)^3} = -\frac{1}{x^2} \left(1 \frac{1}{x}\right)^{-3}$. Hence find the first three terms of the binomial expansion of

$$\frac{x}{(1-x)^3}$$
 in powers of $\frac{1}{x}$

- iv. Comment on the suitability of substituting the same value of x as used in part (ii) in the expansion in part (iii) to estimate the value of $\frac{100}{729}$.
- [1]
- ^{3.} i. Find the first three terms in the expansion of $(1-2x)^{-\frac{1}{2}}$ n ascending powers of *x*, where $|x| < \frac{1}{2}$.

[3]

[2]

- ii. Hence find the coefficient of x^2 in the expansion of $\frac{x+3}{\sqrt{1-2x}}$.
- 4. i. Find the first three terms in the binomial expansion of $(8-9x)^{\frac{2}{3}}$ in ascending powers of *x*.

1.

ii. State the set of values of *x* for which this expansion is valid.

[4]

[1]

- 5. Find the first three terms in the expansion of $(1 + px)^{\frac{1}{3}}$ in ascending powers of x. (a) [3]
 - Given that the expansion of $(1+qx)(1+px)^{\frac{1}{3}}$ is (b)

$$1 + x - \frac{2}{9}x^2 + \dots$$

find the possible values of p and q.

- 6. (a) Find the first three terms in the expansion of $(1+2x)^{\frac{1}{2}}$ in ascending powers of x. [3]
 - (b) Obtain an estimate of $\sqrt{3}$ by substituting x = 0.04 into your answer to part (a). [3]
 - (c) Explain why using x = 1 in the expansion would not give a valid estimate of $\sqrt{3}$. [1]
- 7. Find the first three terms in ascending powers of x in the binomial expansion of [3] (i) $\sqrt[4]{1+8x}$. State the range of values for which this expansion is valid. [1]

8.

(a) Find the first three terms in the expansion of
$$(4-x)^{-\frac{1}{2}}$$
 in ascending powers of *x*. [4]

(ii)

[5]

(b) $\frac{a+bx}{\sqrt{4-x}}$ is $16 - x \dots$. Find the values of the constants *a* and *b*.

[3]

- (a) Find the coefficient of x^4 in the expansion of $(3x-2)^{10}$. [2]
 - (b) In the expansion of (1 + 2x)ⁿ, where *n* is a positive integer, the coefficients of x⁷ and x⁸ are equal.
 Find the value of *n*.
 - (c) Find the coefficient of x^3 in the expansion of $\sqrt{4+x}$. [4]

10.

9.

- (a) Expand $\sqrt{1+2x}$ in ascending powers of *x*, up to and including the term in x^3 . [4]
- (b) $\frac{\sqrt{1+2x}}{1+9x^2}$ in ascending powers of *x*, up to and including the term in x^3 . [3]
- (c) Determine the range of values of x for which the expansion in part (b) is valid. [2]

END OF QUESTION paper

Mark scheme

	Questio	n	Answer/Indicative content	Marks	Part marks and	l guidance
1			The first 3 marks refer to the expansion		$\underline{of}\left(1-\frac{16x}{9}\right)^{\frac{3}{2}}$ and to no other expansion	
			First 2 terms = $1 - \frac{8}{3}x$	B1	Allow any equiv fraction for the $-\frac{8}{3}$ and ISW	$\frac{3}{2} \cdot -\frac{16}{9}$ is not an equiv
			$3^{\rm rd} {\rm term} = \frac{\frac{3}{2} \cdot \frac{1}{2}}{1.2} \left(-\frac{16x}{9} \right)^2$	M1	Allow clear evidence of intention, e.g. $\frac{\frac{3}{2} \cdot \frac{1}{2}}{1.2} \frac{-16x^2}{9}$	
			$=\frac{32}{27}x^2$	A1	Allow any equiv fraction for the $\frac{32}{27}$ and ISW	
			Complete expansions $\approx 27 - 72x + 32x^2$	A1	cao No equivalents. Ignore any further terms	If expansion $(a + b)^n$ used, award B1, B1, B1 for 27, - 72 <i>x</i> , 32 <i>x</i> ²
			$\frac{-9}{16} < x < \frac{9}{16}$ or $ x < \frac{9}{16}$	B1	$x < \left \frac{9}{16}\right $ oe Beware, e.g. Examiner's Comments Most candidates were confident with the binomial	condone ≤ instead of <

				expansion and were able to change $(9-16x)^{\frac{3}{2}}$ into a suitable form for expansion. Common errors in the expansion included careless simplification of the x^2 term (often because of cramped writing) and multiplication of this expansion by 9 instead of by 27. A significant number of candidates completely ignored the request for the validity.	
		Total	5		
2	i	$(1-x)^{-3} = 1 + -3 - x + \frac{-3 - 4}{2}(-x)^2 + \dots$ accept 3x for -3 x & / or - x ² or (x) ² for (-x) ²	M1	As result is given, this expansion must be shown and then simplified. It must not just be stated as $1+3x+6x^2$ +	For alternative methods such as expanding $(1 - x)^3$ and multiplying by $x + 3x^2 + 6x^3$ or using long division, consult TL
	i	multiplication by <i>x</i> to produce AG (A nswer G iven)	A1		
				Examiner's Comments	
	i			The required relationship had been given so, as with all such similar questions, the solutions were examined closely to see, firstly, if the method of expansion was known and, secondly, how accurately it was carried out. Any slight error in accuracy was penalised.	
	ii	Clear indication that $x = 0.1$ is to be substituted	M1	e.g. 0.1+ 3(0.1) ² + 6(0.1) ³ stated	Calculator value \rightarrow M0
	ii	(estimated value is) $0.1 + 3(0.1)^2 + 6(0.1)^3 = 0.136$	A1		(0.13717 is calculator value of 729
				Examiner's Comments	
	ii			It was not immediately obvious just what the suitable value of x was, but a fair number obtained $x = 0.1$ and substituted into the given expansion.	

	Sight $1 - x = x \left(\frac{1}{x} - 1\right) \text{ or } 1 - x = -x \left(1 - \frac{1}{x}\right) \text{ or } 1 + x \left(1 - \frac{1}{x}\right) \text{ or } 1 + x \left(1 - \frac{1}{x}\right) \text{ or } 1 + x \left(1 - \frac{1}{x}\right) \text{ or } 1 + x \left(1 - \frac{1}{x}\right) \text{ or } 1 + x \left(1 - \frac{1}{x}\right) \text{ or } 1 + x \left(1 - \frac{1}{x}\right) \text{ or } 1 + x \left(1 - \frac{1}{x}\right) \text{ or } 1 + x \left(1 - \frac{1}{x}\right) \text{ or } 1 + x \left(1 - \frac$			
iii	$\left(\frac{1}{x} - 1\right)^3 = -\left(1 - \frac{1}{x}\right)^3$	B1		
	or $\left(\frac{1}{x} - 1\right)^{-3} = -\left(1 - \frac{1}{x}\right)^{-3}$ or			
	$\left(\frac{1}{x}-1\right)^{-3} = -\left(1-\frac{1}{x}\right)^{-3}$ or equivalent			
iii	Complete satisfactory explanation (no reference to style) www	B1	(Answer Given)	
iii	$[1+(-3)(-\frac{1}{x})+\frac{(-3)(-4)}{2}\left(-\frac{1}{x}\right)^2+\dots]$	M1	Simplified expansion may be quoted - it may have come from result in part (i). Answer for this expansion is not AG .	
iii	$\rightarrow -\frac{1}{x^2} - \frac{3}{x^3} - \frac{6}{x^4}$	A1		
			Examiner's Comments	
iii			The required given identity was not difficult to prove, but most made heavy weather of it; simple stages, showing $\underline{1}$ how \underline{x} and the	
			negative sign were produced, were needed. Whether	

				the identity had or had not been proved, it could then be used to produce the required expansion.	
	iv	Must say "Not suitable" and one of following: $\left \frac{1}{x}\right < 1$ Either: requires $\left \frac{1}{x}\right < 1$, which is not true if $x = 0.1$	B1	This B1 is dep on $x = 0.1$ used in (ii). "because $\frac{1}{x} > 1$ " Or	Realistic reason
	i∨	Or: substitution of positive / small value of x in the expansion gives a negative / large value (which cannot be an approximation to 100/729).		Or "it gives - 63100"	If choice given, do not ignore incorrect comments, but ignore irrelevant / unhelpful ones
				Examiner's Comments	
	iv			A simple explanation was required indicating why the value of <i>x</i> used in part (ii) would be unsuitable if used with the expansion in part (iii). Accepted reasons included the fact that –63100 would be the result or that the substitution of a positive/small value of <i>x</i> would give a negative/large value, which could not be an $\frac{100}{729}$.	
		Total	9		
3	i	$1 + (-\frac{1}{2})(-2x) + (-\frac{1}{2})(\frac{-3}{2})\frac{(\pm 2x)^2}{2!}[+]$ $1 + x + \frac{3}{2}x^2 \text{ oe}$	B1 B1	first two terms third term	allow recovery from omission of brackets do not allow $2x^2$ unless fully recovered in answer
	i		B1		

	ii	use of $(x + 3) \times \text{their}(1 + x + \frac{3}{2}x^2)$	M1		
	ii	coefficient is 5.5 oe	A1	or B2 www in either part Examiner's Comments This was very well done by nearly all candidates. A few candidates made a sign error with the first term, and some omitted "2" in part (i). Most gained at least the method mark in part (ii), although a few tried division instead of multiplication.	may be embedded (eg 5.5 <i>x</i> ² alone or in expansion)
		Total	5		
4	i	$8^{2/3} = 4$	B1		may be embedded
	i	$(1-\frac{9x}{8})^{\frac{2}{3}}$ seen	M1	$8^{\frac{2}{3}} + (\frac{2}{3})8^{\frac{-1}{3}}(\pm 9x) + \frac{\frac{2}{3} \times (\frac{2}{3} - 1)}{2!} 8^{\frac{-4}{3}}(\pm 9x)^{2}$	ignore extra terms
	i	$1 + \left(\frac{2}{3}\right) \left(\frac{\pm 9x}{k}\right) + \frac{1}{2!} \left(\frac{2}{3}\right) \left(\frac{2}{3} - 1\right) \left(\frac{\pm 9x}{k}\right)^2$ where <i>k</i> is an integer greater than 1	М1	$4 + (\frac{2}{3})(\frac{1}{2})(\pm 9x) + \frac{\frac{2}{3} \times (\frac{2}{3} - 1)}{2!}(\frac{1}{16})(\pm 9x)^2$	or better
	i	$4-3x-\frac{9}{16}x^2$ or $4(1-\frac{3}{4}x-\frac{9}{64}x^2)_{cao}$	A1	Examiner's Comments This was very well-done, with most candidates scoring at least three out of four marks. A few had difficulty dealing with 8% and some made sign errors.	

	ii	$-\frac{8}{9} < x < \frac{8}{9}$ or $ x < \frac{8}{9}$ isw cao	B1	Examiner's Comments Many careless slips were seen, such as $x < \frac{8}{9}$ and $ x < -\frac{8}{9}$ but the correct answer was seen in the full range of scripts.		
		Total	5			
5	а	Obtain $1 + \frac{1}{3} px$ $\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)\left(\frac{-2}{3}\right)\left(px\right)^2$ Obtain $1 + \frac{1}{3} px - \frac{1}{9} p^2 x^2$	B1(AO 1.1) M1(AO1.1) A1(AO1.1) [3]	Attem term a the for ${}^6C_2kx^2$	pt the <i>x</i> ² at least in rm	
		$(1+qx)\left(1+\frac{1}{3}px-\frac{1}{9}p^{2}x^{2}\right)$ =1+ $\left(\frac{1}{3}p+q\right)x+\left(\frac{1}{3}pq-\frac{1}{9}p^{2}\right)x^{2}$ $\frac{1}{3}p+q=1$ (*)	M1(AO 3.1a) M1(AO3.1a)	Expand (1 and their $1 + \frac{1}{3} px$ - and comp coefficient	$1 + qx)$ $-\frac{1}{9}p^{2}x^{2}$ bare ts	
	b	$\frac{1}{3}pq - \frac{1}{9}p^2 = -\frac{2}{9}$ $2p^2 - 3p - 2 = 0$	M1(AO1.1) A1(AO1.1)	Obtain two equations in p and q and show evidence of substitution for p or q to obtain an Or $18q^2$ –	- 27 <i>q</i> + 7	
			A1FT(AO1.1)	all		

		$p = 2 \text{ or } -\frac{1}{2}$ $q = \frac{1}{3} \text{ or } \frac{7}{6}$	[5]	equation in one variable Solve a 3 term quadratic equation in a single variable. Obtain any two values Obtain all 4 values, or FT their <i>p</i> and (*)	= 0 Solve their quadratic with indication of correct pairings	
		Total	8			
6	а	$1 + x - \frac{1}{2}x^2$	B1(AO1.1) M1(AO1.1a) A1(AO1.1) [3]	Obtain 1 + <i>x</i> Attempt third term Obtain correct third term	Terms must be simplified for B / A marks	
	b	$\sqrt{1.08} \approx 1 + 0.04 - 0.5 \times 0.04^2$ $\sqrt{0.36 \times 3} \approx 1.0392$	M1(AO2.1) M1(AO3.1a)	Substitute 0.0 throughout	Need $\sqrt{1.08}$ as well	

		$0.6\sqrt{3} \approx 1.0392$ $\sqrt{3} \approx 1.73$	A1(AO1.1) [3]	Rearrange $\sqrt{1.08}$ to $k\sqrt{3}$ Obtain 1.73 or betterMust see method
	С	Expansion is only valid for $ x < \frac{1}{2}$	E1(AO2.3) [1]	Explanation must be specific
		Total	7	
7	i	$\frac{1+2x}{\left(\frac{1}{4}\right)\times\left(-\frac{3}{4}\right)\times\frac{\left(8x\right)^{2}}{2!}}{\text{oe soi}}$	B1 M1	allow bracket error ignore extra terms
		$1 + 2x - 6x^2 \operatorname{cao}$	[3]	Examiner's Comments
				This proved accessible to nearly all candidates, with most scoring full marks. A few made arithmetical slips, and a few used the wrong index: -4 and ½ were the usual errors.

	ii	valid for $ x < \frac{1}{8}_{oe}$	B1 [1]	Examiner's Comments Although largely well done, the problems. Common mistake the inequality or to write Occasionally $ x < 8$ was s	this did cause some es were to omit one tail of $< \left \frac{1}{8} \right $. seen.	
		Total	4			
8	а	$(1 - \frac{1}{4}x)^{-\frac{1}{2}} = 1 + (-\frac{1}{2})(-\frac{1}{4}x) + (\frac{1}{2})(-\frac{1}{2})(-\frac{3}{2})(-\frac{1}{4}x)^{2}$ $= 1 + \frac{1}{8}x + \frac{3}{128}x^{2}$	B1 (AO 1.1) M1 (AO 1.1a) A1 (AO 1.1) B1ft	Obtain correct first two terms Attempt third term in expansion of $(1-\frac{1}{4}x)^{-\frac{1}{2}}$	Allow unsimplified coeffs Product of attempt at binomial coefficient and $(-\frac{1}{4}x)^2$ Allow BOD on missing brackets Allow BOD on missing negative sign in third term	
		$(4-x)^{-2} = 4^{-2} (1 - \frac{1}{4}x)^{-2} = \frac{1}{2} (1 - \frac{1}{4}x)^{-2}$ $(4-x)^{-\frac{1}{2}} = \frac{1}{2} + \frac{1}{16}x + \frac{3}{256}x^{2}$	(AO 1.1)	Correct	Allow unsimplified	

		[4]	expansion of $(4-x)^{-\frac{1}{2}}$ Examiner's Comments This question was well answ solutions seen. The most su effective use of brackets to indices were applied to the coefficient of x. Showing cleared it to be credited for atternance.	coeffs ft as $\frac{1}{2}$ (their three term expansion) No ISW if expression subsequently spoiled by attempt to simplify eg × 256 vered with many fully correct accessful solutions made ensure that the relevant entire term including the ar working allowed partial empting a valid method	
b	$\frac{1}{2} a = 16 \text{ and hence } a = 32$ 2+ $\frac{1}{2}b = -1$ OR $\frac{1}{16}a + \frac{1}{2}b = -1$	B1ft (AO 3.1a) M1 (AO 2.2a)	Correct value of <i>a</i> Attempt equation involving <i>b</i> and <i>a</i> , or their numerical <i>a</i>	ft their first term from (a) Must be using two relevant products (and no others) equated to -1 Allow for	

		b=-6	A1 (AO 1.1) [3]	attempting equation – do not need to actually attempt solution for M1 Allow BOD if 	
		Total	7		
9	а	$^{10}C_4 \times 3^4 \times (-2)^6$ oe = 1088640	M1 (AO1.1a) A1 (AO1.1) [2]	BC	

	b	$\frac{n!}{(n-7)!7!}2^7 = \frac{n!}{(n-8)!8!}2^8$ $= (n-7) \times 2$	M1 (AO3.1a) M1 (AO1.1a) A1 (AO1.1) [3]	Correctly obtaining at least two of 8, $(n-7)$ and	
		$\frac{1}{2}\left(1+\frac{x}{4}\right)^{-0.5}$	M1 (AO1.1a) M1 (AO1.1)	$ \begin{array}{c} \text{M1 for} \\ k(1 + \frac{x}{4})^{-0.5} \\ \frac{1}{2} \\ \text{M1 for } 2 \end{array} $	
	С	$\frac{1}{2} \times \frac{(-0.5)(-1.5)(-2.5)}{3!} \times \left(\frac{1}{4}\right)^3$	A1FT (AO1.1) A1 (AO1.1)	follow through their ' <i>K</i> '	
		= 2048 _{ce or -0.00244 (3 sf)}	[4] 9	cao BC	
10	a	$(1+2x)^{\frac{1}{2}} = 1+x$ + $\frac{(\frac{1}{2})(-\frac{1}{2})(2x)^2}{2} + \frac{(\frac{1}{2})(-\frac{1}{2})(-\frac{3}{2})(2x)^3}{6}$	B1 (AO 1.1) M1 (AO 1.1a) A1(AO 1.1) A1 (AO 1.1) [4]	Obtain correct first two termsMust be simplifiedAttempt at least one more term	

		$= 1 + x - \frac{1}{2}x^2 + \frac{1}{2}x^3$		Obtain correct third term Obtain correct fourth term	Must be simplified Must be simplified	
	b	$(1+9x^{2})^{-1} = 1-9x^{2}$ $(1-9x^{2})(1+x-\frac{1}{2}x^{2}+\frac{1}{2}x^{3})$ $= 1+x-\frac{19}{2}x^{2}-\frac{17}{2}x^{3}$	B1 (AO 3.1a) M1 (AO 1.1a) A1FT (AO 1.1) [3]	Correct expansion soi Attempt expansion Obtain correct expansion	FT their (i) – must be 4 terms	
		$(1+2x)^{\frac{1}{2}} \Longrightarrow \left x\right < \frac{1}{2}$	M1 (AO 1.1)	At least one correct condition seen	oe	
	С	$(1+9x^2)^{-1} \Longrightarrow x < \frac{1}{3}$ hence $ x < \frac{1}{3}$	A1 (AO 2.3) [2]	Correct conclusion, from both correct conditions	oe	
		Total	9			·