1. In a factory, an inspector checks a random sample of 30 mugs from a large batch and notes the number, X, which are defective. He then deals with the batch as follows.

- If $X<2$, the batch is accepted.
- If $X>2$, the batch is rejected.
- If $X=2$, the inspector selects another random sample of only 15 mugs from the batch. If this second sample contains 1 or more defective mugs, the batch is rejected. Otherwise the batch is accepted.

It is given that 5\% of mugs are defective.
i.
a. Find the probability that the batch is rejected after just the first sample is checked.
b. Show that the probability that the batch is rejected is 0.327 , correct to 3 significant figures.
ii. Batches are checked one after another. Find the probability that the first batch to be rejected is either the 4th or the 5th batch that is checked.
2. Froox sweets are packed into tubes of 10 sweets, chosen at random. 25% of Froox sweets are yellow.
i. Find the probability that in a randomly selected tube of Froox sweets there are
a. exactly 3 yellow sweets,
b. at least 3 yellow sweets.
ii. Find the probability that in a box containing 6 tubes of Froox sweets, there is at least 1 tube that contains at least 3 yellow sweets.
3. (a) Write down and simplify the first four terms in the expansion of $(x+y)^{7}$. Give your answer in ascending powers of x.

(b)

Given that the terms in $x^{2} y^{5}$ and $x^{3} y^{4}$ in this expansion are equal, find the value of y.
(c) A hospital consultant has seven appointments every day. The number of these appointments which start late on a randomly chosen day is denoted by L. The variable L is modelled by the distribution $B\left(7, \frac{3}{8}\right)$. Show that, in this model, the hospital consultant is equally likely to have two appointments start late or three appointments start late.
4. On average, 40% of candidates pass a certain test on the first attempt.

Three candidates take the test. The number who pass on the first attempt is denoted by X.
(a) State an appropriate model for X, including the values of any parameters.
(b) State an appropriate model for X, including the values of any parameters.
(c) Suggest a reason why one of these assumptions might not be true in practice.

You should now assume that both these assumptions are true.
(d) Find the probability that exactly 2 of the 3 candidates pass the test.

All candidates who fail the test take a re-test and, on average, 60% of these candidates pass. Assume that the same two assumptions are satisfied as for the original test.
(e) Find the probability that all three candidates pass, either on the test or on the re-test.
5. A bag contains 100 black discs and 200 white discs. Paula takes five discs at random, without replacement. She notes the number X of these discs that are black.
(a) Find $\mathrm{P}(X=3)$.

Paula decides to use the binomial distribution as a model for the distribution of X.
(b) Explain why this model will give probabilities that are approximately, but not exactly, correct.
(c) Paula uses the binomial model to find an approximate value for $\mathrm{P}(X=3)$. Calculate the percentage by which her answer will differ from the answer in part (b).

Paula now assumes that the binomial distribution is a good model for X. She uses a computer simulation to generate 1000 values of X. The number of times that $X=3$ occurs is denoted by Y.
(d) Calculate estimates of the limits between which two thirds of the values of Y will lie.
6. The probability that Janice sees a kingfisher on any particular day is 0.3 . She notes the number, X, of days in a week on which she sees a kingfisher.
(a) State one necessary condition for X to have a binomial distribution.

Assume now that X has a binomial distribution.
(b) Find the probability that, in a week, Janice sees a kingfisher on exactly 2 days.

Each week Janice notes the number of days on which she sees a kingfisher.
(c) Find the probability that Janice sees a kingfisher on exactly 2 days in a week during at least 4 of 6 randomly chosen weeks.

Mark scheme

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& \begin{tabular}{l}
A few misread the question, using \(n=15\) throughout, instead of both \(n=30\) and \(n=15\). \\
Few candidates were able to work their way through this part correctly. Some candidates found \(\mathrm{P}(Y \geq 1)=1-\mathrm{P}(Y=\) 0 or 1) or \(\mathrm{P}(Y \geq 1)=1-\mathrm{P}(Y=1)\). Some candidates were close to being correct, but found \(\mathrm{P}(X>2)+\mathrm{P}(X=2) \times \mathrm{P}(Y=\) \(0)\) instead of \(P(X>2)+P(X=2) \times(1-P(Y=0))\). Many complicated matters by using the same letter (\(X\)) for the number of defective mugs in the second sample as well as in the first.
\end{tabular} \& \\
\hline \& ii
ii

ii \& \begin{tabular}{l}
Any use of 0.327 or their (i)(b) for $1^{\text {st }} \mathrm{M} 1$
$$
(1-0.327)^{3} \times 0.327+(1-0.327)^{4} \times 0.327
$$

Allow "correct" use of their (i)(a) or

(i)(b) for $2^{\text {nd }} \mathrm{M} 1$
$$
=0.167(3 \mathrm{sf})
$$

 \&

M1

M1

A1

 \&

$$
\begin{aligned}
& (0.5535+0.2586 \times 0.4633)^{3} \times 0.327+ \\
& (0.5535+0.2586 \times 0.4633)^{4} \times 0.327
\end{aligned}
$$

Examiner's Comments

A few misread the question, using $n=15$ throughout, instead of both $n=30$ and $n=15$.

This is an example of a common, "two-layered" type of question, requiring the use of a previously obtained figure as the value of p in a geometric (or binomial) calculation. Candidates would benefit from being taught to look out for such questions. Many candidates used the correct geometric structure but with $p=0.05$ or with a probability equal to their answer to part (i)(a) instead of (i)(b). Others attempted to use a binomial distribution instead of a geometric.

 \&

$$
1-0.673^{5}-\left(1-0.673^{3}\right) \text { oe }
$$

Allow any use of their (i)(b) for $1^{\text {st }} \mathrm{M} 1$ then if "correct" use, also $2^{\text {nd }}$ M1

Allow use of their (i)(a) in "correct" method for
MOM1AO

No marks for use of $0.95 \& 0.05$
\end{tabular}

\hline \& \& Total \& 11 \& \&

\hline
\end{tabular}

(2)

\square

