- 1. i. The first three terms of an arithmetic progression are 2x, x + 4 and 2x 7 respectively. Find the value of x.
 - ii. The first three terms of another sequence are also 2x, x + 4 and 2x 7 respectively.
 - a. Verify that when x = 8 the terms form a geometric progression and find the sum to infinity in this case.
 - [4]

[3]

- b. Find the other possible value of *x* that also gives a geometric progression.
- [4]
- 2. An arithmetic progression u_1, u_2, u_3, \dots is defined by $u_1 = 5$ and $u_{n+1} = u_n + 1.5$ for $n \ge 1$.
 - i. Given that $u_k = 140$, find the value of k.

[3]

A geometric progression W_1 , W_2 , W_3 , ... is defined by $W_n = 120 \times (0.9) n-1$ for $n \ge 1$.

ii. Find the sum of the first 16 terms of this geometric progression, giving your answer correct to 3 significant figures.

[2]

- iii. Use an algebraic method to find the smallest value of *N* such that $\sum_{n=1}^{N} u_n > \sum_{n=1}^{\infty} w_n$.
- [6]
- ^{3.} The first term in an arithmetic series is (5t + 3), where *t* is a positive integer. The last term is (17t + 11) and the common difference is 4. Show that the sum of the series is divisible by [7] 12 when, and only when, *t* is odd.

- An ice cream seller expects that the number of sales will increase by the same amount every week from May onwards. 150 ice creams are sold in Week 1 and 166 ice creams are sold in Week 2. The ice cream seller makes a profit of £1.25 for each ice cream sold.
 (a) Find the expected profit in Week 10. [3]
 (b) In which week will the total expected profits first exceed £5000? [5]
 (c) Give two reasons why this model may not be appropriate. [2]
- 5. (a) Ben saves his pocket money as follows. Each week he puts money into his piggy bank (which pays no interest). In the first week he puts in 10p. In the second week he puts in 12p. In the third week he puts in 14p, and so on.
 How much money does Ben have in his piggy bank after 25 weeks? [4]
 - (b) On January 1st Shirley invests £500 in a savings account that pays compound interest at 3% per annum. She makes no further payments into this account. The interest is added on 31st December each year.
 - (i) Find the number of years after which her investment will first be worth more than [4] £600.
 - (ii) State an assumption that you have made in answering part (b)(i). [1]
- 6. The first three terms of an arithmetic series are 9p, 8p 3, 5p respectively, where p is a constant.

Given that the sum of the first *n* terms of this series is –1512, find the value of *n*. [6]

END OF QUESTION paper

Mark scheme

	Question		Answer/Indicative content	Marks	Part marks and guidance		
1		i	(x + 4) - 2x = (2x - 7) - (x + 4)	M1	Attempt to eliminate d to obtain equation in x only	Equate two expressions for <i>d</i> , both in terms of <i>x</i> Could use $a + (n - 1)d$ twice, and then eliminate <i>d</i> Could use $u_1 + u_2 + u_3 = S_3$ or $u_2 = \frac{1}{2} (u_1 + u_3)$	
		i	OR				
		i	2x + d = x + 4 $2x + 2d = 2x - 7$	A1	Obtain correct equation in just <i>x</i>	Allow unsimplified equation A0 if brackets missing unless implied by subsequent working or final answer	
		i	2 <i>x</i> = 15 <i>x</i> = 7.5	A1	Obtain $x = 7.5$	Any equivalent form Allow from no working or T&I	
		i				Alt method: B1 – state, or imply, $2x + 2d = 2x - 7$, to obtain $d = -3.5$ M1 – attempt to find x from second equation in x and d A1 – obtain $x = 7.5$	
						Examiner's Comments	
						the question, with the most popular approach being to first find $d = -3.5$ and then use a second	
		i				equation to find <i>x</i> . This was usually successful, although sign errors proved a pitfall for some. However, a number of candidates made no further progress beyond finding <i>d</i> often because they did	
						not consider a third equation. The other common method was to find two expressions for <i>d</i> by considering the difference of consecutive terms	

					which could then be equated and solved. This was an elegant and concise method, but a lack of brackets resulted in errors being made. Other, more creative, solutions were also seen including adding the sum of the three terms and equating this to an expression for S_3 .
	ii	terms are 16, 12, 9 $^{12}/_{16} = 0.75$, $^{9}/_{12} = 0.75$	B1	List 3 terms	Ignore any additional terms given
	ii	common ratio of 0.75 so GP	B1	Convincing explanation of why it is a GP	Must show two values of 0.75, or unsimplified fractions Must state, or imply, that ratio has been checked twice, using both pairs of consecutive terms No need to show actual division of terms to justify 0.75, so allow eg arrows from one term to the next with 'x0.75'
					but are soi in a convincing method for $r = 0.75$ twice
	ii	$S_{m} = {}^{16}/_{1-0.75} = 64$	M1	Attempt use of #/1- /	Must be correct formula Could be implied by method Allow if used with their incorrect <i>a</i> and / or <i>r</i> Allow if using $a = 8$, even if 16 given correctly in list
	ii		A1	Obtain 64	A0 if given as 'approximately 64'
					Examiner's Comments
	ii				Virtually all of the candidates gained the first mark for stating the three relevant terms, and most also gained the final two marks for finding the sum to infinity, though a few used $\frac{4}{3}$ as their ratio. It was the second mark that proved to be the most challenging. Candidates had been asked to verify that the terms did form a geometric progression, and were expected to provide a convincing proof

					that considered the ratio between two pairs of terms, or an equivalent justification. Whilst some candidates did provide this explanation, far too many assumed that it was a geometric progression and simply found the ratio from a single pair of terms.
	iii	(2x-7)/(x+4) = (x+4)/2x $4x^2 - 14x = x^2 + 8x + 16$	M1*	Attempt to eliminate <i>r</i> to obtain equation in <i>x</i> only	Equate two expressions for <i>r</i> , both in terms of <i>x</i> Could use ar^{n-1} twice, and then eliminate <i>r</i> from simultaneous eqns
	iii	OR			
	ш	$2xr = x + 4 \ 2xr^{2} = 2x - 7$ $3x^{2} - 22x - 16 = 0$ (3x + 2)(x - 8) = 0 $x = \frac{-2}{3}, x = 8$	A1	Obtain $3x^2 - 22x - 16 = 0$	Allow $6x^2 - 44x - 32 = 0$ Allow $3x^3 - 22x^2 - 16x = 0$, or a multiple of this Allow any equivalent form, as long as no brackets and like terms have been combined Condone no = 0, as long as implied by subsequent work
	iii		M1d*	Attempt to solve quadratic	Dependent on first M1 for valid method to eliminate <i>r</i> See guidance sheet for acceptable methods
	iii		A1	Obtain $x = -2/3$	Allow recurring decimal, but not rounded or truncated Condone <i>x</i> = 8 also given Allow from no working or T&I
					Examiner's Comments
	iii				This proved to be a challenging question for many candidates. Whilst most were able to make some attempt at it, it was often not enough to gain even the first mark. The most efficient solution was to equate two algebraic expressions for the ratio, and then rearrange them to get a quadratic which

					to provide a concise and elegant solution in this way. Some candidates did embark on this method, but then attempted to first simplify their fractions which invariably went wrong. Others started with the generic equations for the <i>n</i> th term of a geometric progression so that when they eliminated <i>r</i> their equation involved the square or square root of a rational expression.
		Total	11		
2	i	$u_k = 5 + 1.5(k - 1)$	M1*	Attempt <i>n</i> th term of an AP, using $a = 5$ and $d = 1.5$	Must be using correct formula, so M0 for $5 + 1.5k$ Allow if in terms of <i>n</i> not <i>k</i> Could attempt an <i>n</i> th term definition, giving $1.5k + 3.5$
	i	5 + 1.5(k - 1) = 140 k = 91	M1d*	Equate to 140 and attempt to solve for <i>k</i>	Must be valid solution attempt, and go as far as an attempt at <i>k</i> Allow equiv informal methods
	i		A1	Obtain 91	Answer only gains full credit Examiner's Comments This proved to be a straightforward question for many candidates, and the majority gained full credit. Most candidates used the formula for the <i>r</i> th term of an arithmetic progression and another effective method was to generate an <i>r</i> th term expression for the sequence. Informal methods were rarely correct, and the other common error was to use the <i>r</i> th term as $5 + 1.5n$ or even $n + 1.5$.
	ii	$S_{16} = \frac{120(1-0.9^{16})}{1-0.9}$	M1	Attempt to find the sum of 16 terms of GP, with a = 120, r = 0.9	Must be using correct formula

	ï		A1	Obtain 978, or better	If > 3sf, allow answer rounding to 977.6 with no errors seen Answer only, or listing and summing 16 terms, gains full credit Examiner's Comments The majority of candidates were equally successful here, with solutions being mostly fully correct. Despite being told that it was a geometric progression, many candidates did not recognise w_n as being of the form a $\times r^{n-1}$ and instead generated the first few terms of the sequence to find the values of the first term and the common ratio, not always correctly.
	iii	$\frac{1}{2}N(10 + (N-1) \ge \frac{120}{1-0.9}$	B1	Correct sum to infinity stated	Could be 1200 or unsimplified expression
	iii	N(1.5N + 8.5) > 2400 $3N^{2} + 17N - 4800 > 0$ N = 38	B1	Correct S_{W} stated	Any correct expression, including unsimplified
	iii		M1*	Link \mathcal{S}_{W} of AP to $\mathcal{S}_{\!\!\!\infty}$ of GP and attempt to rearrange	Must be recognisable attempt at S_N of AP and S_∞ of GP, though not necessarily fully correct Allow any (in)equality sign, including < Must rearrange to a three term quadratic, not involving brackets
	iii		A1	Obtain correct 3 term quadratic	aef - not necessary to have all algebraic terms on the same side of the (in)equation Allow any (in)equality sign
	iii		M1d*	Attempt to solve quadratic	See additional guidance for acceptable methods May never consider the negative root M1 could be implied by sight of 37.3, as long as from correct quadratic

1 1	1			1
				A0 for $N \ge 38$ or equiv in words eg 'N is at least 38'
				Allow A1 if 38 follows =. > or \geq being used but A0
				if 38 follows < or ≤ being used
				A0 if second value of N given in final answer
				Must be from an algebraic method - at least as far
				as obtaining the correct quadratic
				Examiner's Comments
				The majority of candidates could identify that the
				sum to infinity was required, and correctly state
				this. There was then some uncertainty as to what
				was required on the left-hand side, with both the
				sum of the geometric progression and the <i>n</i> th
				term of the arithmetic progression being common
				errors. However many candidates could make a
	iii	A1	Obtain $N = 38$ (must be equality)	reasonable attempt at both of the summations,
				but there were a surprising number of errors when
				attempting to simplify their inequality. The most
				common errors included only multiplying one side
				by 2 in an attempt to remove the fraction or
				incorrect expansion of brackets. Candidates then
				had to solve the quadratic with both completing
				the square and use of the quadratic formula being
				seen, though the latter was by far the most
				common. A few candidates clearly anticipated that
				the quadratic would factorise and gave up when
				they realised that this was not the case. Some
				candidates, with an incorrect quadratic equation,
				simply wrote down two solutions with no method
				shown. In these circumstances, Examiners cannot
				speculate as to what method may have been used
				in this question, candidates had to appreciate that
				Whad to be a positive integer and honce discard
				what to be a positive integer and hence discard

					their negative root and round up their positive root. Some candidates spoilt an otherwise correct solution by failing to do so.
	Total	11			
3	$(5t+3) + 4(n-1) = (17t+11)$ $n=3t+3$ $S_{N} = \frac{1}{2} (3t+3) \{ (5t+3) + (17t+11) \}$ $S_{N} = \frac{1}{2} (3t+3)(22t+14) = 3(t+1)(11t+7)$ When t is odd, $t=2k+1$ so $\boxed{S_{N} = 3(2k+2)(22t+18)} = 12(k+1)(11k+9) \text{ hence multiple of } 12$ When t is even, $t=2k$ so $S_{N} = 3(2k+1)(22k+7) \text{ hence always odd}$	M1(AO3.1a) A1(AO2.1) M1(AO2.1) A1(AO2.1) E1(AO2.2a) E1(AO2.4) [7]	Attempt to use a + (n - 1)d = 1 Obtain $n = 3t$ + 3 Attempt to find sum of AP Obtain $S_N =$ 3(t + 1)(11t + 7) oe Consider S_N when t is odd Fully correct and convincing proof	Allow consideration of odd and even factors	

				Allow worded eg 3 × odd × odd		
		Total	7			
4	а	$ \begin{array}{r} \mathcal{U}_{10} = 150 + 9 \times 16 \\ = 294 \text{ ice creams} \end{array} $	B1(AO3.1b) M1(AO1.1) A1FT(AO3.2a)	Identify AP, with $a = 150$ and $d = 16$ Correct u_{10}		
		profit = $294 \times \pounds 1.25 = \pounds 367.50$	[3]	Correct profit for their u_{10}	Units required	
		£5000 ÷ £1.25 = 4000	B1(AO3.1b)	Identify that	Or use <i>d</i> =	
		$S_N = 0.5N(300 + (N - 1)16)$	M1(AO3.4)	4000 sales are reqd	£20	
	b	150 <i>N</i> + 8 <i>M</i> (<i>N</i> −1) > 4000 8 <i>№</i> + 142 <i>N</i> − 4000 > 0	A1(AO3.1a) M1(AO1.1)	Attempt S _N of AP, with a = 150 and d = 16	Or $d = 20$ Or link to 5000 (any	
		N = 15.18 (and possibly – 32.9) Week 16	A1(AO3.2a)	(any sign) and rearrange to 3 term quadratic	sign) and rearrange to 3 term quadratic	

				Attempt to solve quadratic Conclude with Week 16 only	BC Allow 'during Week 16'	
	С	Sales cannot continue to increase for ever Weekly sales could fluctuate depending on the Weather	E1(AO3.5b) E1(AO3.5b) [2]	Refer to trend not continuing Refer to changes week by week	Any two different reasons	
		Total	10			
5	а	a = 10, d = 2 $S_n = \frac{25}{2} (2 \times 10 + 24 \times 2)$ = 850 After 25 weeks he has £8.50	B1 (AO1.1a) B1 (AO1.1) A1 (AO1.1) A1 (AO3.2a) [4]	soi Subst their <i>a</i> and <i>d</i> into correct formula Correct money		

				notation, 2 dp only
	Ь	(i) E.g. Assume interest rate does not change.	M1 (AO3.1b) M1 (AO1.1) A1 (AO1.1) A1 (AO3.2a) [4] E1 (AO3.5b) [1]	Allow "=" throughoutOr attempt log both sides to same base $so n > \frac{log_a 1.2}{log_a 1.03}$ BC
		Total	9	
		(8p - 3) - 9p = 5p - (8p - 3) p = 3	M1 (AO 3.1a) A1 (AO 1.1) A1FT (AO 1.1)	Setting up an equation to find ρ Allow a single sign error
6		$\frac{n}{2} \Big[2(27) + (n-1)(-6) \Big] = -1512$	M1 (AO 2.1) M1 (AO 1.1)	Using their value of <i>p</i> to calculate <i>a</i> and <i>d</i>

	$n^{2} - 10n - 504 = 0 \Rightarrow (n - 28)(n + 18) = 0$ n = 28 only	A1 (AO 2.2a) [6]	Setting up an equation using the correct formula for the sum of an AP equated to -1512 Expand and attempt to solve 3-term quadratic equation in <i>n</i> This mark should be withheld if <i>n</i> = -18 appears as part of the final answer	Solving of 3- term quadratic may be done BC	
	Total	6			