Vectors Questions

7 The quadrilateral *ABCD* has vertices A(2, 1, 3), B(6, 5, 3), C(6, 1, -1) and D(2, -3, -1).

The line l_1 has vector equation $\mathbf{r} = \begin{bmatrix} 6\\1\\-1 \end{bmatrix} + \lambda \begin{bmatrix} 1\\1\\0 \end{bmatrix}$.						
(a)	(i)	Find the vector \overrightarrow{AB} .	(2 marks)			
	(ii)	Show that the line AB is parallel to l_1 .	(1 mark)			
	(iii)	Verify that D lies on l_1 .	(2 marks)			
(b)	b) The line l_2 passes through $D(2,-3,-1)$ and $M(4,1,1)$.					
	(i)	Find the vector equation of l_2 .	(2 marks)			
	(ii)	Find the angle between l_2 and AC .	(3 marks)			

- 6 The points A and B have coordinates (2, 4, 1) and (3, 2, -1) respectively. The point C is such that $\overrightarrow{OC} = 2\overrightarrow{OB}$, where O is the origin.
 - (a) Find the vectors:
 - (i) \overrightarrow{OC} ; (1 mark)

(ii)
$$\overrightarrow{AB}$$
. (2 marks)

- (b) (i) Show that the distance between the points A and C is 5. (2 marks)
 - (ii) Find the size of angle BAC, giving your answer to the nearest degree. (4 marks)
- (c) The point $P(\alpha, \beta, \gamma)$ is such that *BP* is perpendicular to *AC*.

Show that
$$4\alpha - 3\gamma = 15$$
. (3 marks)

- 6 The points A, B and C have coordinates (3, -2, 4), (5, 4, 0) and (11, 6, -4) respectively.
 - (a) (i) Find the vector \overrightarrow{BA} . (2 marks)
 - (ii) Show that the size of angle *ABC* is $\cos^{-1}\left(-\frac{5}{7}\right)$. (5 marks)

(b) The line *l* has equation
$$\mathbf{r} = \begin{bmatrix} 8 \\ -3 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$$
.

- (i) Verify that C lies on l. (2 marks)
- (ii) Show that AB is parallel to l. (1 mark)

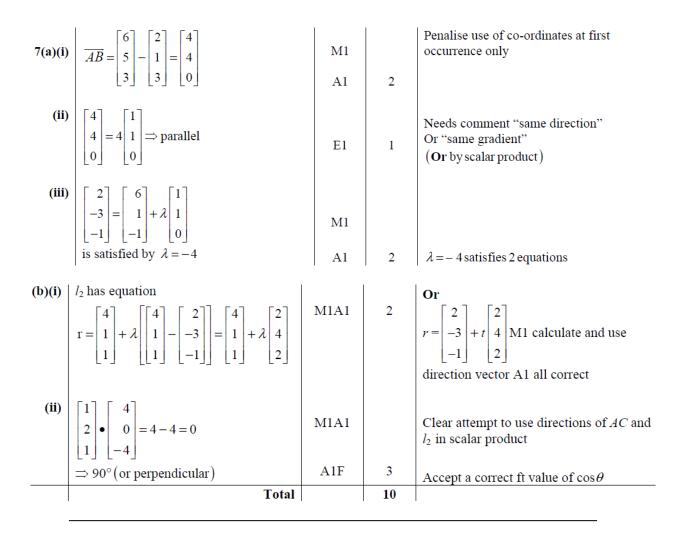
(c) The quadrilateral ABCD is a parallelogram. Find the coordinates of D. (3 marks)

- 7 The lines l_1 and l_2 have equations $\mathbf{r} = \begin{bmatrix} 8 \\ 6 \\ -9 \end{bmatrix} + \lambda \begin{bmatrix} 3 \\ -3 \\ -1 \end{bmatrix}$ and $\mathbf{r} = \begin{bmatrix} -4 \\ 0 \\ 11 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$ respectively.
 - (a) Show that l_1 and l_2 are perpendicular.
 - (b) Show that l_1 and l_2 intersect and find the coordinates of the point of intersection, *P*. (5 marks)

(2 marks)

(c) The point A(-4, 0, 11) lies on l_2 . The point B on l_1 is such that AP = BP. Find the length of AB. (4 marks)

Vectors Answers



6(a)(i)	$\overrightarrow{OC} = 2 \begin{bmatrix} 3\\2\\-1 \end{bmatrix} = \begin{bmatrix} 6\\4\\-2 \end{bmatrix}$	B1	1	(Penalise coordinates once only)
(ii)	$\overline{AB} = \begin{bmatrix} 3\\2\\-1 \end{bmatrix} - \begin{bmatrix} 2\\4\\1 \end{bmatrix} = \begin{bmatrix} 1\\-2\\-2 \end{bmatrix}$	M1 A1	2	$\overrightarrow{OA} - \overrightarrow{OB}$ or $\overrightarrow{OB} - \overrightarrow{OA}$ or 2/3 correct cpts. A0 for line <i>AB</i>
(b)(i)	$AC^{2} = (6-2)^{2} + (4-4)^{2} + (-1-2)^{2} = 25$	M1		Components of AC
(ii)	$AC = 5$ $\overrightarrow{AB} \bullet \overrightarrow{AC} = \begin{bmatrix} 1\\ -2\\ -2 \end{bmatrix} \bullet \begin{bmatrix} 4\\ 0\\ -3 \end{bmatrix} = 4 + 6 = 10$	A1 M1 A1F	2	AG Clear attempt to use \overline{AB} and \overline{AC} ft \overline{AB} from a(ii) and/or \overline{AC} from b(i)
	$\begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix}$ 3×5×cos θ = 10	M1		Use of $ a b \cos \theta = \mathbf{a}.\mathbf{b}$ with one correct $ $ and $\mathbf{a}.\mathbf{b}$ evaluated
	$\theta = 48.189 \approx 48^{\circ}$	A1	4	CAO (AWRT)
	Alternative: use of cos rule Find 3 rd side + use cos rule	(M2) (A1F) (A1)		ft on previously found vectors CAO (AWRT)
(c)	$\overrightarrow{BP} = \begin{bmatrix} \alpha - 3\\ \beta - 2\\ \gamma1 \end{bmatrix}$	B1		
	$\begin{bmatrix} \gamma1 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix} \bullet \overline{BP} = 0$	M1		Their \overline{BP}
	$4\alpha - 3\gamma - 15 = 0$	A1	3	AG convincingly obtained
	Total		12	

$$\begin{aligned} \mathbf{6(a)(0)} & \overline{Bd} = \begin{bmatrix} 3\\ -2\\ 4 \end{bmatrix} = \begin{bmatrix} -2\\ -6\\ 4 \end{bmatrix}, & \text{M1A1} \end{bmatrix} 2 & \text{Attempt } \pm \overline{Ed} \quad (OA - OB \text{ or } OB - OA) \\ \mathbf{(0)} & \overline{BC} = \begin{bmatrix} 6\\ 2\\ -4 \end{bmatrix}, & \text{B1} & \text{Allow } \overline{CB} : \text{or } \begin{bmatrix} -6\\ -2\\ 4 \end{bmatrix} = \overline{BC} \text{ or } \overline{CB} = \begin{bmatrix} 6\\ 2\\ -4 \end{bmatrix}, & \text{May not see explicitly} \\ \overline{Bd} = \sqrt{C} = \begin{bmatrix} -2\\ -6\\ 4 \end{bmatrix}, & \overline{CB} = \begin{bmatrix} -2\\ -4\\ -4 \end{bmatrix} = -12 - 12 - 16 & \text{B1F} & \text{Calculate modulus of } \overline{Bd} \text{ or } \overline{BC} : \text{ for finding modulus of one of vectors they have used} \\ \overline{Bd} \cdot \overline{BC} = \begin{bmatrix} -2\\ -6\\ 4 \end{bmatrix}, & \overline{CB} = \begin{bmatrix} -2\\ -6\\ 4 \end{bmatrix} = -12 - 12 - 16 & \text{M1} & \text{A1} & \overline{CB} = \overline{C} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; \overline{CB} & \text{with numerical answer; or } \overline{AB} \cdot \overline{CB} & \text{with numerical answer; \overline{CB} & \text{with numerical answer;$$

(C)	$\overrightarrow{OD} = \overrightarrow{OC} + \overrightarrow{BA}$	B1		PI; \overrightarrow{OD} = correct vector expression which may involve \overrightarrow{AD}		
	$= \begin{bmatrix} 11\\6\\-4 \end{bmatrix} + \begin{bmatrix} -2\\-6\\4 \end{bmatrix} = \begin{bmatrix} 9\\0\\0 \end{bmatrix} D \text{ is } (9,0,0)$	M1A1	3	M1 for substituting into vector expression for \overrightarrow{OD} NMS 3/3		
	Total 13					
7(a)	$\begin{bmatrix} 3 \\ -3 \\ -1 \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} = 3 - 6 + 3 = 0$	M1		attempt at sp, 3 terms, added		
	= 0 ⇒ perpendicular	A1	2	$= 0 \Rightarrow \text{perpendicular seen}$ (or $\cos \theta = 0 \Rightarrow \theta = 90^{\circ}$) 3 Allow $\frac{-6}{\frac{3}{0}} \text{ but not } \begin{bmatrix} 3\\ -6\\ 3 \end{bmatrix} = 0$		
(b)	$8+3\lambda = -4 + \mu$ $6-3\lambda = 2\mu$ $-9-\lambda = 11-3\mu$	M1		set up any two equations		
	$\lambda = -2, \mu = 6$ verify third equation	m1 A1 m1		solve for λ and μ substitute λ, μ in third equation		
	intersect at $(2, 12, -7)$	A1	5	CAO		
	Alt (for last two marks) substitute λ into l_1 and μ into l_2	(m1)				
	intersect at $(2, 12, -7)$, condone $\begin{pmatrix} 2\\12\\-7 \end{pmatrix}$	(A1)		(2, 12, -7) found from both lines Note: working for (b) done in (a): award marks in (b)		
7(c)	$\overrightarrow{AP} = \begin{pmatrix} 6\\12\\-18 \end{pmatrix}$ $AP^2 = 504$ $AB^2 = 2AP^2$	M1		$\overrightarrow{AP} = \pm \left\{ \text{their } \overrightarrow{OP} - \begin{pmatrix} -4\\0\\11 \end{pmatrix} \right\}$		
	$AP^2 = 504$	A1F		ft on P		
	$AB^2 = 2AP^2$ $AB = 12\sqrt{7}$	M1	4	Calculate AB^2		
	AB – 12N/ Total	A1	4 11	OE accept 31.7 or better		