Trigonometry Questions

3	It is	given that $3\cos\theta - 2\sin\theta = R\cos(\theta + \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$.						
	(a)	Find the value of R .	(1 mark)					
	(b)	Show that $\alpha \approx 33.7^{\circ}$.	(2 marks)					
	(c)	Hence write down the maximum value of $3\cos\theta - 2\sin\theta$ and find a positive of θ at which this maximum value occurs.	e value (3 marks)					
6	(a)	Express $\cos 2x$ in the form $a\cos^2 x + b$, where a and b are constants.	(2 marks)					
4	(a)	(i) Express $\sin 2x$ in terms of $\sin x$ and $\cos x$.	 (1 mark)					
		(ii) Express $\cos 2x$ in terms of $\cos x$.	(1 mark,					
	(b)	Show that						
		$\sin 2x - \tan x = \tan x \cos 2x$						
		for all values of x .	(3 marks)					
	(c)	Solve the equation $\sin 2x - \tan x = 0$, giving all solutions in degrees in the $0^{\circ} < x < 360^{\circ}$.	interval (4 marks)					
3	(a)	Express $\cos 2x$ in terms of $\sin x$.	— (1 mark)					
	(b)	(b) (i) Hence show that $3\sin x - \cos 2x = 2\sin^2 x + 3\sin x - 1$ for all values of $x = 2\sin^2 x + 3\sin x - 1$ for all values of $x = 2\sin^2 x + 3\sin x - 1$						
		(ii) Solve the equation $3 \sin x - \cos 2x = 1$ for $0^{\circ} < x < 360^{\circ}$.	(4 marks)					
	(c)	Use your answer from part (a) to find $\int \sin^2 x dx$.	(2 marks)					
	_		_					

7 (a) Use the identity

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

to express $\tan 2x$ in terms of $\tan x$.

(2 marks)

(b) Show that

$$2 - 2\tan x - \frac{2\tan x}{\tan 2x} = (1 - \tan x)^2$$

for all values of x, $\tan 2x \neq 0$.

(4 marks)

- 3 (a) Express $4\cos x + 3\sin x$ in the form $R\cos(x \alpha)$, where R > 0 and $0^{\circ} < \alpha < 360^{\circ}$, giving your value for α to the nearest 0.1°. (3 marks)
 - (b) Hence solve the equation $4\cos x + 3\sin x = 2$ in the interval $0^{\circ} < x < 360^{\circ}$, giving all solutions to the nearest 0.1° . (4 marks)
 - (c) Write down the minimum value of $4\cos x + 3\sin x$ and find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ at which this minimum value occurs. (3 marks)

Trigonometry Answers

3(a)

$$R = \sqrt{13}$$
 Or 3.6
 B1
 1

 (b)
 $\frac{\sin \alpha}{\cos \alpha} = \tan \alpha = \frac{2}{3}$ $\alpha \approx 33.7$
 M1A1
 2
 Allow M1 for $\tan \alpha = \frac{-2}{3}$ or $\pm \frac{3}{2}$

 (c)
 maximum value $= \sqrt{13}$ $\cos (\theta + 33.7) = 1$ $(\theta = -33.7)$ $m1$ $\theta = 326.3$
 B1F
 AI
 AWRT 326

 Total
 6
 AWRT 326

6(a)
$$\cos 2x = 2\cos^2 x - 1$$
 B1B1 2

4(a)(i)
$$\sin 2x = 2\sin x \cos x$$
 B1 1

(b) $\sin 2x - \tan x = 2\sin x \cos x - \frac{\sin x}{\cos x}$ M1 Use of their $\cos 2x$ or $\sin 2x$ Use of $\tan x = \frac{\sin x}{\cos x}$ and the other double angle identity

$$= \sin x \left(\frac{2\cos^2 x - 1}{\cos x} \right) = \tan x \cos 2x$$
 A1 3 AG convincingly obtained

(c) $\tan x \cos 2x = 0$ $x = 180$ B1 Ignore $x = 0$, $x = 360^\circ$ & any others outside range

$$\cos 2x = 0 \text{ or } \cos^2 x = \frac{1}{2} \left(\text{ or } \sin^2 x = \frac{1}{2} \right)$$
 M1 $x = 45$ A1 4 CAO max 3/4 for answers in radians

Total 9

3(a)	$\cos 2x = 1 - 2\sin^2 x$	B1	1	
(b)(i)	$3\sin x - \cos 2x = 3\sin x - (1 - 2\sin^2 x)$ $= 3\sin x - 1 + 2\sin^2 x$	M1 A1	2	Candidate's $\cos 2x$ or $\sin^2 x$ AG
(ii)	$2\sin^2 x + 3\sin x - 2 = 0$ $(2\sin x - 1)(\sin x + 2) = 0$	M1 M1		Soluble quadratic form Attempt to solve (allow one error in formula, allow sign errors)
	$\sin x = \frac{1}{2} x = 30 x = 150$ Allow misread for	M1 A1	4	\sin^{-1} and two solutions (0° < x < 360°) A0 if radians
	$2\sin^2 x + 3\sin x - 1 = 0$	(M1)		Soluble quadratic form
	$\sin x = \frac{-3 \pm \sqrt{17}}{4}$	(M1)		Use of formula (allow one error)
	$x = 16.3^{\circ}, 163.7^{\circ}$	(A1)		Max 3/4
(c)	$\int \frac{1}{2} (1 - \cos 2x) = \frac{x}{2} - \frac{\sin 2x}{4} (+c)$	M1A1	2	M1 – solve integral, must have 2 terms for $\sin^2 x$ from (a)
			9	

7(a)	$\tan(x+x) = \frac{\tan x + \tan x}{1 - \tan x \tan x} \left(= \frac{2 \tan x}{1 - \tan^2 x} \right)$	M1 A1	2	A = B = x used
(b)	$2 - 2 \tan x - \frac{2 \tan x (1 - \tan^2 x)}{2 \tan x}$	M1		Substitute from (a)
	$2-2\tan x - (1-\tan x)(1+\tan x)$	M1		Simplification $2-2\tan x - (1-\tan^2 x)$
	$(1 - \tan x)(2 - (1 + \tan x))$ $(1 - \tan x)^2$	M1		$2-2\tan x-1+\tan^2 x$
	$(1-\tan x)^2$	A1	4	AG (convincingly obtained)
				$=(\tan x - 1)^2 = (1 - \tan x)^2$
				Any equivalent method
	Total		6	

_

2(-)	D 5	D1		1
3(a)	R=5	B1		
	$\tan \alpha = \frac{3}{4}$ (OE) $\alpha = 36.9^{\circ}$ (ISW 216.9)	M1A1	3	SC1 $\tan \alpha = \frac{4}{3}, \alpha = 53.1^{\circ}$
				$R, \alpha \text{ PI in (b)}$
(b)	$\cos(x - \alpha) = \frac{2}{R}$	M1		
	$x - \alpha = 66.4^{\circ}$	A1		
	$x = 103.3^{\circ}$	A1F		
	$x = 330.4^{\circ}$	A1F	4	accept 330.5°, -1 each extra
				ft on acute $lpha$
(c)	minimum value $=-5$	B1F		ft on R
	$\cos(x - 36.9) = -1$	M1		SC $\cos(x+36.9)$ treat as miscopy
	$x = 216.9^{\circ}$	A1	3	216.9 or better accept graphics calculator solution to this accuracy
				SC Find max: max = 5 at $(x + 36.9)$ stated 1/3
				Max 8/10 for work in radians
	Total		10	