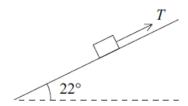
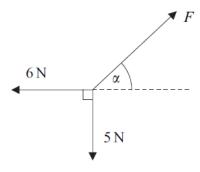

Resolving Forces Questions

8 A rough slope is inclined at an angle of 25° to the horizontal. A box of weight 80 newtons is on the slope. A rope is attached to the box and is parallel to the slope. The tension in the rope is of magnitude T newtons. The diagram shows the slope, the box and the rope.


- (a) The box is held in equilibrium by the rope.
 - (i) Show that the normal reaction force between the box and the slope is 72.5 newtons, correct to three significant figures. (3 marks)
 - (ii) The coefficient of friction between the box and the slope is 0.32. Find the magnitude of the maximum value of the frictional force which can act on the box.
 (2 marks)
 - (iii) Find the least possible tension in the rope to prevent the box from moving down the slope. (4 marks)
 - (iv) Find the greatest possible tension in the rope. (3 marks)
 - (v) Show that the mass of the box is approximately 8.16 kg. (1 mark)
- (b) The rope is now released and the box slides down the slope. Find the acceleration of the box.
 (3 marks)
- 2 A particle is in equilibrium under the action of four horizontal forces of magnitudes 5 newtons, 8 newtons, P newtons and Q newtons, as shown in the diagram.

- (a) Show that P = 9. (3 marks)
- (b) Find the value of Q. (2 marks)

4 A block is being pulled up a rough plane inclined at an angle of 22° to the horizontal by a rope parallel to the plane, as shown in the diagram.


The mass of the block is $0.7 \,\mathrm{kg}$, and the tension in the rope is T newtons.

(a) Draw a diagram to show the forces acting on the block.

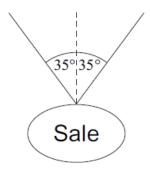
(1 mark)

- (b) Show that the normal reaction force between the block and the plane has magnitude 6.36 newtons, correct to three significant figures. (3 marks)
- (c) The coefficient of friction between the block and the plane is 0.25. Find the magnitude of the frictional force acting on the block during its motion. (2 marks)
- (d) The tension in the rope is 5.6 newtons. Find the acceleration of the block. (4 marks)
- 3 The diagram shows three forces which act in the same plane and are in equilibrium.

- (a) Find F. (3 marks)
- (b) Find α . (3 marks)

6 A trolley, of mass 100 kg, rolls at a constant speed along a straight line down a slope inclined at an angle of 4° to the horizontal.

Assume that a constant resistance force, of magnitude P newtons, acts on the trolley as it moves. Model the trolley as a particle.


(a) Draw a diagram to show the forces acting on the trolley.

(1 mark)

(b) Show that $P = 68.4 \,\mathrm{N}$, correct to three significant figures.

(3 marks)

- (c) (i) Find the acceleration of the trolley if it rolls down a slope inclined at 5° to the horizontal and experiences the same constant force of magnitude *P* that you found in part (b). (4 marks)
 - (ii) Make one criticism of the assumption that the resistance force on the trolley is constant. (1 mark)
- 3 A sign, of mass 2 kg, is suspended from the ceiling of a supermarket by two light strings. It hangs in equilibrium with each string making an angle of 35° to the vertical, as shown in the diagram. Model the sign as a particle.

- (a) By resolving forces horizontally, show that the tension is the same in each string.

 (2 marks)
- (b) Find the tension in each string.

(5 marks)

(c) If the tension in a string exceeds 40 N, the string will break. Find the mass of the heaviest sign that could be suspended as shown in the diagram. (3 marks)

- 6 A box, of mass 3 kg, is placed on a slope inclined at an angle of 30° to the horizontal. The box slides down the slope. Assume that air resistance can be ignored.
 - (a) A simple model assumes that the slope is smooth.
 - (i) Draw a diagram to show the forces acting on the box. (1 mark)
 - (ii) Show that the acceleration of the box is $4.9 \,\mathrm{m \, s^{-2}}$. (2 marks)
 - (b) A revised model assumes that the slope is rough. The box slides down the slope from rest, travelling 5 metres in 2 seconds.
 - (i) Show that the acceleration of the box is $2.5 \,\mathrm{m \, s^{-2}}$. (2 marks)
 - (ii) Find the magnitude of the friction force acting on the box. (3 marks)
 - (iii) Find the coefficient of friction between the box and the slope. (5 marks)
 - (iv) In reality, air resistance affects the motion of the box. Explain how its acceleration would change if you took this into account. (2 marks)

Resolving Forces Answers

8(a)(i)	$R = 80\cos 25^{\circ}$	M1		component attempted		
		A1		correct component		
	R = 72.5N	A1	3	cao		
(ii)	$F = 0.32 \times 72.5$	M1		condone inequality		
(11)	F = 23.2N	A1	2	cao		
			-			
(iii)	$T + F = 80\cos 65^{\circ}$	M2		3 forces direction correct, component		
				attempted		
		A1		component		
	T = 10.6N	A1√	1	√ friction		
	I = 10.0N	AI√	4	V Inction		
(iv)	$T = F + 80\cos 65^{\circ}$	M1		3 forces, direction correct, component		
(IV)	1 1 100 20303			attempted		
		A1		component		
	T = 57.0 N (57 N)	A1√	3	√ friction		
	(2.23)					
(iv)	Mass = $\frac{80}{g}$ = (8.16kg)	B1	1			
()	g (6.10kg)		-			
(b)	$80\cos 65^{\circ} - F = \text{mass} \times \text{acceleration}$	M1		3 terms, component attempted		
	$10.6 = \frac{80}{} \times acc$					
	g	A1		all correct		
	$acc = 1.30 \mathrm{m s}^{-2}$	A1	3	cao		
	$(1.3 \mathrm{ms}^{-2})$					
	Total		16			
I	Total	I	10			
2(a)	$P = 5 + 8\cos 60^{\circ}$	M1		Both relevant forces, component of 8N		
` '	1 5 1 5 6 5 5 5 5			attempted		
	-	A1		All correct		
	P = 9	A1	3	CAO		
a >	0 - 8 20°	M1		Component of 8N attempted		
(b)	Q = 8 cos 30°					
	$Q = 6.93 \text{ or } 4\sqrt{3}$	A1	2	AWRT 6.93		
ļ	Total	I	5	I		

4(a)	R $0.7g$	B1	1	Accept W or mg (or 6.86) for weight Arrows and labels needed (can replace W with 2 correct components)
(b)	$R = 0.7g\cos 22^{\circ}$ $R = 6.36 \text{ N}$	M1 A1 A1	3	component of weight attempted all correct, including signs CAO
(c)	$F = 0.25 \times 6.36$	M1		
	$F = 1.59 \mathrm{N}$	A1	2	CAO
(d)	$5.6 - 0.7g \sin 22^{\circ} - 1.59 = 0.7a$ $a = 2.06 \text{ms}^{-2}$	M1 A2 A1F	4	4 terms with weight component attempted A marks -1 each error, accept ±0.7a FT one error, accept ±
	Total		10	

3(a)	1 - VO +3	M1A1		Obtaining an equation for F with square or root. Correct equation
	$=\sqrt{61}=7.81$	A1	3	Correct force
	Alt			
	$\alpha = \tan^{-1}\left(\frac{5}{6}\right) = 39.8^{\circ}$			
	$F = \frac{6}{\cos 39.8} = 7.81 \text{ or}$	(M1A1)		Equation for F with a value for α . Correct equation
	$F = \frac{5}{\sin 39.8} = 7.81$	(A1)		Correct force
4.	-1(5) $-1(6)$ $-1(6)$	M1		Obtaining an equation for α using
(b)	$\alpha = \tan^{-1}\left(\frac{5}{6}\right) \operatorname{or} \cos^{-1}\left(\frac{6}{7.81}\right) \operatorname{or} \sin^{-1}\left(\frac{6}{7.81}\right)$	A1		trigonometry. Correct equation (using
	= 39.8°	A1	3	their F) Correct angle
	Alt			Accept values between 39.7 and 39.9
	$\frac{\sin \alpha}{\alpha} = \frac{\sin 90^{\circ}}{2}$			
	$\frac{1}{5} = \frac{1}{\sqrt{61}}$			
	$\alpha = 39.8^{\circ}$			
	Total		6	

(c) $100a = 100 \times 9.8 \sin 5^{\circ} - 100 \times 9.8 \sin 4^{\circ}$ $= 0.171$ (d) You would expect P to vary with the speed of the car. B1 1 Correct diagram with Must not use F instead Condone resistance in Using sin 4° or $\cos 86^{\circ}$ A1 3 AG Correct P from Correct equation of Weight resolved correct equation A1 A1 Correct a. (Accept 0.1) A1 Correct a. (Accept 0.1) A1 Correct explanation Correct result from correct equation, with different string Correct result from correct equation of the cor	of P stead of P stead of P street working f motion ctly
	orrect working f motion ctly
	orrect working f motion ctly
	orrect working f motion ctly
$a = \frac{100 \times 9.8 \sin 5^{\circ} - 100 \times 9.8 \sin 4^{\circ}}{100}$ $= 0.171$ A1 $A1$ $A1$ $= 0.171$ A1 $A1$ $A1$ $A1$ $A2$ $A1$ $A1$ $A2$ $A3$ $A3$ $A3$ $A3$ $A3$ $A4$ $A4$ $A4$ $A4$ $A4$ $A4$ $A5$ $A7$ $A8$ $A8$ $A9$ $A9$ $A9$ $A9$ $A9$ $A9$ $A9$ $A9$	ctly
$a = \frac{100 \times 9.8 \sin 5^{\circ} - 100 \times 9.8 \sin 4^{\circ}}{100}$ $= 0.171$ A1 4 Correct a. (Accept 0.1) (d) You would expect P to vary with the speed of the car. B1 1 Correct explanation 9 $T_{1} \sin 35^{\circ} = T_{2} \sin 35^{\circ}$ $T_{1} = T_{2}$ OR A1 2 Correct result from containing to the containing of the car.	70 or 0.17)
	70 or 0.17)
	70 or 0.17)
3(a) $T_1 \sin 35^\circ = T_2 \sin 35^\circ$ M1 Resolving two forces a equation, with different string $T_1 = T_2$ OR A1 2 Correct result from containing	
$T_1 = T_2$ A1 2 equation, with different string Correct result from contact $T_1 = T_2$ Correct result from contact $T_2 = T_2$ Correct result from $T_2 = T_2$ Correct resu	
$T_1 = T_2$ A1 2 equation, with different string Correct result from contact $T_1 = T_2$ Correct result from contact $T_2 = T_2$ Correct result from $T_2 = T_2$ Correct resu	
$T_1 = T_2$ A1 2 Correct result from correct Properties of the correct result from Correct Properties Corre	
	rect working
$T_1 = T_2$	
(b) $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ M1 Resolving forces to for vertical equation	m a three term
AI Correct equation	4
A1 T_1 or T_2 eliminated core T_1 or T_2 eliminated T_2 or T_3 or T_4 or T_2 or T_2	rectly
$T_1 = \frac{2 \times 9.8}{2 \cos 35^{\circ}} = 12.0 \text{ N (to 3sf)}$ $dM1$ A1 $A1$ Solving for T_1 or T_2 Correct tension Accept 12 N or 11.9 N	
(c) $2 \times 40 \cos 35^{\circ} = 9.8m$ M1 Forming an equation we find m	rith two tensions to
80 cos 35° A1 Correct equation	
$m = \frac{80\cos 35^{\circ}}{9.8} = 6.69 \text{ kg}$ A1 3 Correct mass Accept 6.68	
OR (AM)	
$m = \frac{40}{11.96} \times 2 \tag{M1}$	
= 6.69 kg (A1)	
Total 10	

6(a)(i	$R \circ_{\mathbf{r}} N$			
	mg or W or 3g	B1	1	Correct diagram with arrows and labels
(ii	$3a = 3g\sin 30^{\circ}$	M1		Two term equation of motion
	$a = g \sin 30^{\circ} = 4.9 \text{ ms}^{-2}$	A1	2	AG Correct acceleration from correct working (Allow $a = g \sin 30^{\circ}$)
(b)(i	$5 = \frac{1}{2}a \times 2^2$	M1		Constant acceleration equation with $u = 0$
	$a = 2.5 \text{ ms}^{-2}$	A1	2	AG Correct answer from correct working. (Use of $v = 5$ must be justified)
(ii	$3 \times 2.5 = 3g \sin 30^{\circ} - F$	M1 A1		Three term equation of motion Correct equation
	$F = 3g \sin 30^{\circ} - 7.5$			
	= 7.20 N (to 3 sf)	A1	3	Correct F Accept 7.2 N
	1	ı	ı	1
(iii)	$R = 3g\cos 30^{\circ} \ (= 25.46)$	M1		Resolving perpendicular to the slope to find R
		A1		Correct R
	$7.2 = \mu \times 3g \cos 30^{\circ}$	M1		Use of $F = \mu R$
		A1F		Correct expression
	$\mu = \frac{7.2}{3g\cos 30^{\circ}} = 0.283$	A1F	5	Correct μ Accept 0.282 (Follow through from incorrect F from above, but not an incorrect R)
(iv)	Reduce a, as the air resistance would	B1		Reduces
(11)	reduce the magnitude of the resultant	B1	2	Explanation
	force or because the air resistance			Second B1 dependent on the first B1 mark
	increases as the velocity increases			1
	towards its terminal value			
	Total		15	