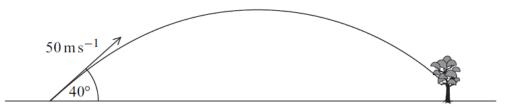

Projectiles Questions

5 A golf ball is projected from a point O with initial velocity V at an angle α to the horizontal. The ball first hits the ground at a point A which is at the same horizontal level as O, as shown in the diagram.

It is given that $V \cos \alpha = 6u$ and $V \sin \alpha = 2.5u$.

- (a) Show that the time taken for the ball to travel from O to A is $\frac{5u}{g}$. (4 marks)
- (b) Find, in terms of g and u, the distance OA. (2 marks)
- (c) Find V, in terms of u. (2 marks)
- (d) State, in terms of u, the least speed of the ball during its flight from O to A. (1 mark)
- 7 A golf ball is struck from a point O with velocity 24 m s^{-1} at an angle of 40° to the horizontal. The ball first hits the ground at a point P, which is at a height h metres above the level of O.


The horizontal distance between O and P is 57 metres.

- (a) Show that the time that the ball takes to travel from *O* to *P* is 3.10 seconds, correct to three significant figures. (3 marks)
- (b) Find the value of *h*. (3 marks)
- (c) (i) Find the speed with which the ball hits the ground at *P*. (5 marks)
 - (ii) Find the angle between the direction of motion and the horizontal as the ball hits the ground at *P*. (2 marks)

7 A golf ball is struck from a point on horizontal ground so that it has an initial velocity of $50 \,\mathrm{m \, s^{-1}}$ at an angle of 40° above the horizontal.

Assume that the golf ball is a particle and its weight is the only force that acts on it once it is moving.

- (a) Find the maximum height of the golf ball. (4 marks)
- (b) After it has reached its maximum height, the golf ball descends but hits a tree at a point which is at a height of 6 metres above ground level.

Find the time that it takes for the ball to travel from the point where it was struck to the tree. (6 marks)

7 An arrow is fired from a point A with a velocity of 25 m s^{-1} , at an angle of 40° above the horizontal. The arrow hits a target at the point B which is at the same level as the point A, as shown in the diagram.

- (a) State **two** assumptions that you should make in order to model the motion of the arrow. (2 marks)
- (b) Show that the time that it takes for the arrow to travel from A to B is 3.28 seconds, correct to three significant figures. (4 marks)
 (c) Find the distance between the points A and B. (2 marks)
 (d) State the magnitude and direction of the velocity of the arrow when it hits the target. (2 marks)
- (e) Find the minimum speed of the arrow during its flight. (2 marks)

Projectiles Answers

		_		
5(a)	$s = ut + \frac{1}{2}at^2$			
	$0 = 2\frac{1}{2}ut - \frac{1}{2}gt^2$	M1		full method required for time
	2 2	A1		(equation of motion, or standard result)
	$s = ut + \frac{1}{2}at^{2}$ $0 = 2\frac{1}{2}ut - \frac{1}{2}gt^{2}$ $0 = t\left(2\frac{1}{2}u - \frac{1}{2}gt\right)$	m1		
	$t = \frac{5u}{g}$	A1	4	(if $g = 9.8$ used, lose last A1)
(b)	$OA = 6u \times \frac{5u}{g}$ $= \frac{30u^2}{z}$	M1		
	$=\frac{30u^2}{g}$	A1	2	cao
(c)	speed ² = $(6u)^2 + \left(2\frac{1}{2}u\right)^2$ speed = $6\frac{1}{2}u$	M1		
	speed = $6\frac{1}{2}u$	A1	2	cao
(d)	Least speed, at top, $= 6u$	B 1	1	
	Total		9	
7(a)	$57 = 24\cos 40^\circ \times t$	M1		Component attempted and acceleration $= 0$
		A1		All correct
	t = 3.10 sec	A1	3	CAO
	1 .	2.61		
(b)	$h = 24\sin 40^{\circ} \times 3.1 - \frac{1}{2} \times 9.8 \times 3.1^{2}$	M1 A1		Component attempted & acceleration = 9.8 All correct
	h = 0.734 m	A1F	3	FT one slip e.g. +9.8 used
				Accept 2 s.f. answer, AWRT 0.71-0.74
(c)(i)	horizontal, $u = 24 \cos 40^\circ = 18.39 \text{ ms}^{-1}$	B1		Seen anywhere in (c) accept 18.4
(c)(l)	norizontal, $u = 24\cos 40^\circ = 18.39 \text{ ms}^\circ$ vertical, $v = 24\sin 40^\circ - 9.8 \times 3.1$	M1		Component attempted & acceleration = 9.8
	$v = -14.95 \text{ ms}^{-1}$	A1		(Accept -15.0)
	$V = \sqrt{(18.39)^2 + (-14.95)^2}$	M1		Use of candidate's u and new v (when
	• • • • • •			t = 3.1)
	$V = 23.7 \mathrm{ms}^{-1}$	A1F	5	FT use of candidate's u and v and new v when $t = 3.1$
	14.05			
(ii)	$\tan\theta = \frac{14.95}{18.39}$	M1		Use of candidate's u and v Accept inverted ratio
_	$\begin{array}{c} \theta = 39.1^{\circ} \text{ or } 39.2^{\circ} \\ \text{Also } 140.8^{\circ} \text{ or } 140.9^{\circ} \end{array} \right\} \text{accept } \pm$	A1F	2	FT use of candidates u and v and V
-	T-4-1		13	
	Total		15	

7(a)	$0^2 = (50\sin 40^\circ)^2 + 2 \times (-9.8)h$	M1A1		Equation for <i>h</i> with $v = 0$ and a
	(50 : 100) ²	dM1		component of velocity. Correct equation Solving for h
	$h = \frac{(50\sin 40^\circ)^2}{2 \times 0.8} = 52.7$	Al		Correct h
	2×9.8	111		
	Alt $0 = 50\sin 40^\circ - 9.8t$	(M1)		Equation for t with $v = 0$ and a component of velocity
	$t = \frac{50\sin 40^{\circ}}{9.8} = 3.280$	(A1)		Correct t
	$h = 50\sin 40^{\circ} \times 3.280 - \frac{1}{2} \times 9.8 \times 3.280^{2}$	(dM1)		Expression for h with a component of velocity
	= 52.7 ALLOW 52.6	(A1)	4	Correct h
(b)	$6 = 50\sin 40^{\circ}t - 4.9t^2$	M1A1		Forming a quadratic in <i>t</i> . Correct terms with any signs
	$0 = 4.9t^2 - 50\sin 40^\circ t + 6$	A1		Correct equation
	$t = \frac{50\sin 40^\circ \pm \sqrt{(50\sin 40^\circ)^2 - 4 \times 4.9 \times 6}}{2 \times 4.9}$	dM1		Solving quadratic
	= 0.192 or 6.37			
	t = 6.37	A2	6	Correct solution selected
	Alt			
	$46.7 = 4.9t_1^2$	(M1)		Finding two times
	4 2 005	(dM1)		Equation for time to go down Correct time
	$t_1 = 3.087$	(A1)		
	$t_2 = 3.280$	(A1)		Time to go up
	t = 3.087 + 3.280 = 6.37	(A2)		Correct total
	Total		10	

	Te	otal	12	
	$v_{\rm min} = \frac{62.807}{3.2795} = 19.2 {\rm ms}^{-1}$			
	OR (2.807			Accept 19.1 ms ⁻¹
		A1	2	Correct speed
(e)	$v_{\rm min} = 25 \cos 40^\circ = 19.2 \ {\rm ms}^{-1}$	M1		Horizontal component of velocity
		B 1	2	Direction
(d)	25 ms^{-1} at 40° below the horizontal	B1	-	Speed
(0)	3 - 5.26 × 25 C08 40 - 62.8 III	A1	2	Correct range
(c)	$s = 3.28 \times 25 \cos 40^\circ = 62.8 \text{ m}$	M1		(Verification method M1A1M1A0) Finding range
				working
	Time of flight = 3.28 s	A1	4	AG Correct final answer from correct
	$t = 0$ or $t = \frac{25 \sin 40^{\circ}}{4.9}$			
	$0 = t(25\sin 40^\circ - 4.9t)$	dM1		Solving for <i>t</i>
	$0 = 25 \sin 40^{\circ} t - 4.9t^{2}$ $0 = t(25 \sin 40^{\circ} - 4.9t)$	A1		Correct equation
(b)	$0 = 25 \sin 40^{\circ} t - 4.9t^2$	M1		Equation for time of flight
				assumption
				If more than 2 assumptions given, subtra one mark for each incorrect additional
	gravity acting		-	
	A particle or no spin No air resistance or no wind or only	B1	2	First assumption Second assumption