Differentiation Questions

(b)	Given that $y = \frac{3x+1}{2x+1}$, show that $\frac{dy}{dx} = \frac{1}{(2x+1)^2}$.	(3 marks)
2	(a) Find $\frac{dy}{dx}$ when $y = (3x - 1)^{10}$.	(2 marks)
6	(a) Find $\frac{dy}{dx}$ when: (i) $y = (4x^2 + 3x + 2)^{10}$;	(2 marks)
2	(a) Differentiate $(x - 1)^4$ with respect to x.	(2 mark)

Why so short?

Because the techniques learnt are embedded and checked in questions on other topics.

Differentiation Answers

(b)	$\frac{dy}{dx} = \frac{(2x+1)3 - 2(3x+1)}{(2x+1)^2} = \frac{6x+3-6x-2}{(2x+1)^2}$ $= \frac{1}{(2x+1)^2}$ Alternative	M1 A1 A1	3	use of quotient rule AG (no errors)
	Alternative $-2(3x+1)(2x+1)^{-2}+3(2x+1)^{-1}$ (M1A1) $=\frac{1}{(2x+1)^{2}}$ (A1)			Alternative: $y = \frac{3}{2} - \frac{1}{2}(2x+1)^{-1}$ M1A1 $\frac{dy}{dx} = (2x+1)^{-2}$ A1 $= \frac{1}{(2x+1)^2}$ AG
2(a)	$y = (3x - 1)^{10}$ $\frac{dy}{dx} = 10 (3x - 1)^9 \times 3$ $= 30 (3x - 1)^9$	M1 A1	2	M1 for $a(3x-1)^9$ where $a = \text{constant}$
6(a)((i) $y = (4x^2 + 3x + 2)^{10}$ $\frac{dy}{dx} = 10 (4x^2 + 3x + 2)^9 (8x + 3)$	M1 A1	2	For $f(x)()^9$ where $f(x) \neq k$ and is linear
2(a)	$4(x-1)^3$ or in expanded form	B1	1	allow $-4(1-x)^3$

Why so short?

Because the techniques learnt are embedded and checked in questions on other topics.