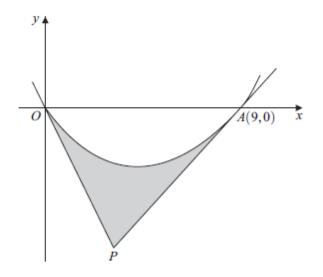
Differentiation Questions

- 1 Given that $y = 16x + x^{-1}$, find the two values of x for which $\frac{dy}{dx} = 0$. (5 marks)
- 8 A curve, drawn from the origin O, crosses the x-axis at the point A(9,0). Tangents to the curve at O and A meet at the point P, as shown in the diagram.



The curve, defined for $x \ge 0$, has equation

(c)

$$y = x^{\frac{3}{2}} - 3x$$
(a) Find $\frac{dy}{dx}$. (2 marks)
(b) (i) Find the value of $\frac{dy}{dx}$ at the point O and hence write down an equation of the tangent at O. (2 marks)
(ii) Show that the equation of the tangent at $A(9, 0)$ is $2y = 3x - 27$. (3 marks)
(iii) Hence find the coordinates of the point P where the two tangents meet. (3 marks)
Find $\int \left(x^{\frac{3}{2}} - 3x\right) dx$. (3 marks)

(d) Calculate the area of the shaded region bounded by the curve and the tangents OP and AP. (5 marks) 7 At the point (x, y), where x > 0, the gradient of a curve is given by

$$\frac{dy}{dx} = 3x^{\frac{1}{2}} + \frac{16}{x^2} - 7$$
(a) (i) Verify that $\frac{dy}{dx} = 0$ when $x = 4$.

(ii) Write
$$\frac{16}{x^2}$$
 in the form $16x^k$, where k is an integer. (1 mark)

(1 mark)

(iii) Find
$$\frac{d^2y}{dx^2}$$
. (3 marks)

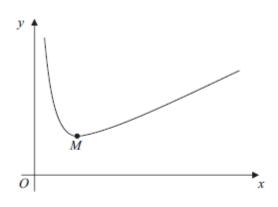
- (iv) Hence determine whether the point where x = 4 is a maximum or a minimum, giving a reason for your answer. (2 marks)
- (b) The point P(1, 8) lies on the curve.

(i)	Show that the gradient of the curve at the point P is 12.	(1 mark)

(ii) Find an equation of the normal to the curve at P. (3 marks)

(c) (i) Find
$$\int (3x^{\frac{1}{2}} + \frac{16}{x^2} - 7) dx.$$
 (3 marks)

(ii) Hence find the equation of the curve which passes through the point P(1, 8). (3 marks) 6 A curve C is defined for x > 0 by the equation $y = x + 1 + \frac{4}{x^2}$ and is sketched below.



(a) (i) Given that $y = x + 1 + \frac{4}{x^2}$, find $\frac{dy}{dx}$. (3 marks)

(ii) The curve C has a minimum point M. Find the coordinates of M. (4 marks)

(iii) Find an equation of the normal to C at the point (1, 6). (4 marks)

(b) (i) Find
$$\int \left(x+1+\frac{4}{x^2}\right) dx$$
. (3 marks)

- (ii) Hence find the area of the region bounded by the curve C, the lines x = 1 and x = 4 and the x-axis.
 (2 marks)
- 5 A curve is defined for x > 0 by the equation

$$y = \left(1 + \frac{2}{x}\right)^2$$

The point P lies on the curve where x = 2.

- (a) Find the y-coordinate of P. (1 mark)
- (b) Expand $\left(1+\frac{2}{x}\right)^2$. (2 marks)

(c) Find
$$\frac{dy}{dx}$$
. (3 marks)

(d) Hence show that the gradient of the curve at P is -2. (2 marks)

(e) Find the equation of the normal to the curve at P, giving your answer in the form x + by + c = 0, where b and c are integers. (4 marks)

Differentiation Answers

	Solution	Marks	Total	Comments
1	$y'(x) = 16 - x^{-2}$	M1		One term correct
		A1		Both correct
	$y'(x) = 16 - \frac{1}{x^2}$ $y'(x) = 0 \Longrightarrow 16x^2 = 1;$	B1		$x^{-2} = \frac{1}{x^2} \text{ OE PI}$
	$y'(x) = 0 \Longrightarrow 16x^2 = 1;$ $\Rightarrow x = \pm \frac{1}{2}$	M1		c's $y'(x)=0$ and one relevant further step
	4	A1	5	Both answers required.
	Total		5	

8(a)	$\frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}} - 3$	M1 A1	2	One term correct Both correct
(b)(i)	When $x = 0$, $\frac{dy}{dx} = -3$ Eqn of tangent at O is $y = -3x$	B1F√ B1F√	2	Ft provided answer ≤ 0 . OE Ft on y'(0)
(ii)	At (9,0) $\frac{dy}{dx} = \frac{3}{2}(9)^{\frac{1}{2}} - 3$ Eqn tangent at <i>A</i> is $y - 0 = y'(9)[x - 9]$	M1 m1		Attempt to find y '(9) OE
	$\Rightarrow y = \frac{3}{2}(x-9) \Rightarrow 2y = 3x - 27$	A1	3	CSO. AG
(iii)	Eliminating $y \Rightarrow -6x = 3x - 27$	M1		OE method to one variable (eg $2y = -y - 27$)
	$9x = 27 \implies x = 3$	A1F		[A1F for each coordinate; only ft on $y = kx$ tangent in (b)(i) for $k < 0$]
	When $x = 3$, $y = -9$. { $P(3, -9)$ }	A1F	3	
(c)	$\int \left(x^{\frac{3}{2}} - 3x\right) dx = \frac{2}{5}x^{\frac{5}{2}} - \frac{3x^2}{2} (+c)$	M1 A2,1,0	3	One power correct Condone absence of "+ <i>c</i> " and unsimplified forms
(d)	$\int_{0}^{9} \left(x^{\frac{3}{2}} - 3x\right) dx =$	В1		Ы
	$=\frac{2}{5} \times 9^{\frac{5}{2}} - \frac{3}{2} \times 9^{2} - 0$ $= -24.3$	M1		Correct use of limits following integration
	Area of triangle $OPA = \frac{1}{2} \times 9 \times y_p $	M1		
	Sh.Area = $\frac{1}{2} \times 9 \times y_p - \int_0^9 \left(x^{\frac{3}{2}} - 3x\right) dx $	M1		OE
	= 40.5 - 24.3 = 16.2	A1	5	
	Total		18	

uestion	Solution	Marks	Total	Comments
7(a)(i)	When $x = 4$, $\frac{dy}{dx} = 3(2) + \frac{16}{16} - 7 = 0$	B1	1	AG Be convinced
(ii)	$\frac{16}{x^2} = 16x^{-2}$	B1	1	Accept $k = -2$
(iii)	$\frac{d^2 y}{dx^2} = 3 \times \frac{1}{2} x^{-\frac{1}{2}} + 16 \times (-2) x^{-3} - 0$	M1		A power decreased by 1
	$\frac{d^2 y}{dx^2} = \frac{3}{2}x^{-\frac{1}{2}}; -32x^{-3}$	A1; A1√	3	candidate's negative integer k [−1 for >2 term(s)]
(iv)	When $x = 4$, $\frac{d^2 y}{dx^2} = \frac{3}{4} - \frac{32}{64} = \frac{1}{4}$	M1		Attempt to find y"(4) reaching as far as two simplified terms
	Minimum since $y''(4) \ge 0$	E1√	2	candidate's sign of $y''(4)$
	[Alternative: Finds the sign of $y'(x)$ either s statement: (M1) Correct ft conclusion with y'(4)=0]			
(b)(i)	At $P(1,8)$, $\frac{dy}{dx} = 3(1)^{\frac{1}{2}} + \frac{16}{1^2} - 7 = 12$	B1	1	AG Be convinced
(ii)	Gradient of normal = $-\frac{1}{12}$	M1		Use of or stating $m \times m' = -1$
(ii)	Gradient of normal = $-\frac{1}{12}$	М1		Use of or stating $m \times m' = -1$
	Equation of normal is $y - 8 = m[x - 1]$	M1		Can be awarded even if m=12
	$y-8 = -\frac{1}{12}(x-1) \Longrightarrow 12y-96 = -x+1$ $\Longrightarrow 12y+x=97$	A1	3	Any correct form of the equation
(c)(i)	$\int 3x^{\frac{1}{2}} + \frac{16}{x^2} - 7 \mathrm{d}x =$			
	$\dots = 3\frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 16\frac{x^{-1}}{-1} - 7x + c$	M1 A2,1,0 ✓	3	One power correct. A1 if 2 of 3 terms correct candidate's negative integer k Condone absence of "+ c "
(ii)	$y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c \qquad (*)$	В1√		y = candidate's answer to (c)(i) with tidied coefficients and with '+c'. ('y =' PI by next line)
	When $x = 1, y = 8 \implies 8 = 2 - 16 - 7 + c$	M1		Substitute. (1,8) in attempt to find constant of integration
	$y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + 29$	A1	3	Accept $c = 29$ after (*), including $y =$, stated
	Total		17	

×	Solution	11201-050	10041	Comments
6(a)(i)	$y = x + 1 + 4x^{-2} \Rightarrow \frac{dy}{dx} = 1 - 8x^{-3}$	M1		Power $p \rightarrow p-1$
	dx	A2,1,0	3	(A1 if $1 + ax^n$ with $a = -8$
				or $n = -3$)
				du .
(ii)	$1 - 8x^{-3} = 0$	M1		Puts c's $\frac{dy}{dx} = 0$
	$x^3 = 8$. 1
	x" = 8	ml		Using $x^{-k} = \frac{1}{x^k}$ to reach $x^a = b$, $a \ge 0$ or
				correct use of logs.
	x = 2	A1		
	When $x = 2$, $y = 4$	A1ft	4	
(iii)	At (1, 6), $\frac{dy}{dx} = 1 - 8 = -7$	M1		Attempt to find $y'(1)$
	1			
	Gradient of normal = $\frac{1}{7}$	M1		Use of or stating
				$m \times m' = -1$
	Equation of normal is $y-6=m[x-1]$	M 1		m numerical
	$y-6=\frac{1}{7}(x-1)$			
	$y - 0 = \frac{7}{7}(x - 1)$	A1ft	4	OE ft on c's answer for (a)(i) provided at
	$\left\{\frac{y-6}{x-1}=\frac{1}{7}; 7y=x+41\right\}$			least A1 given in (a)(i) and previous 3M marks awarded
	x - 1 7			
(b)(i)	$\int x \left(+1 + \frac{4}{x^2} \right) dx =$			
	$\dots = \frac{x^2}{2} + x - 4x^{-1} \{+c\}$	M1		One of three terms correct.
	2	A2,1,0	3	For A2 need all <u>three</u> terms as printed or better
				(A1 if 2 of 3 terms correct)
(ii)	$\{Area=\} \int_{1}^{4} x + 1 + \frac{4}{x^2} dx =$			
	$\left[\frac{x^2}{2} + x - \frac{4}{x}\right]_{1}^{4} = (8 + 4 - 1) - \left(\frac{1}{2} + 1 - 4\right)$			
	$\begin{bmatrix} 2 + x - \overline{x} \end{bmatrix}_{1}^{-(0+4-1)} (\overline{2}^{+1-4})$	M1		Dealing correctly with limits; F(4)-F(1)
	•			(must have integrated)
	= 13.5	A1	2	
	Total		16	

	Total		12	
	$y-4 = \frac{1}{2}(x-2)$ x-2y+6=0	A1	4	recovered. CAO Must be this or $0 = x - 2y + 6$
	$y-4=\frac{1}{2}(x-2)$	A1ft		Ft on candidate's y_P from part (a) if not
	y - 4 = m(x - 2)	.,		m must be numerical.
(e)	$-2 \times m' = -1$ y - 4 = m(x - 2)	M1 M1		$m_1 \times m_2 = -1$ OE stated or used. PI C's y_P from part (a) if not recovered;
	2	24		
	Gradient = $-1 - 1 = -2$	A1	2	AG (be convinced-no errors seen)
(d)	When $x = 2$, $\frac{dy}{dx} = -4 \times 2^{-2} - 8 \times 2^{-3}$	M1		Attempt to find $y'(2)$.
	at	A1ft A1	3	At least 1 term in x correct ft on expn CSO Full correct solution. ACF
(c)	$\frac{dy}{dx} = -4x^{-2} - 8x^{-3}$	M1		Index reduced by 1 after differentiating x to a negative power
	$y = 1 + 4x^{-1} + 4x^{-2}$			solution must be correct
(b)	$y = 1 + \frac{2}{x} + \frac{2}{x} + \frac{4}{x^2}$	B2,1,0	2	(B1 if only one error in the expansion) For B2 the last line of the candidate's
5(a)	$y_p = 4$	B1	1	