Differentiation Questions

7 The volume, $V \text{ m}^3$, of water in a tank at time t seconds is given by

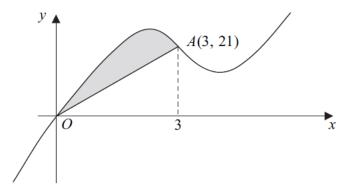
$$V = \frac{1}{3}t^6 - 2t^4 + 3t^2$$
, for $t \ge 0$

(a) Find:

(i)
$$\frac{\mathrm{d}V}{\mathrm{d}t}$$
; (3 marks)

(ii)
$$\frac{d^2 V}{dt^2}$$
. (2 marks)

(b) Find the rate of change of the volume of water in the tank, in $m^3 s^{-1}$, when t = 2. (2 marks)


- (c) (i) Verify that V has a stationary value when t = 1. (2 marks)
 - (ii) Determine whether this is a maximum or minimum value. (2 marks)
- 3 A curve has equation $y = 7 2x^5$.

(a) Find
$$\frac{dy}{dx}$$
. (2 marks)

(b) Find an equation for the tangent to the curve at the point where x = 1. (3 marks)

(c) Determine whether y is increasing or decreasing when x = -2. (2 marks)


5 The curve with equation $y = x^3 - 10x^2 + 28x$ is sketched below.

The curve crosses the x-axis at the origin O and the point A(3, 21) lies on the curve.

(a) (i) Find
$$\frac{dy}{dx}$$
. (3 marks)

- (ii) Hence show that the curve has a stationary point when x = 2 and find the *x*-coordinate of the other stationary point. (4 marks)
- 5 The diagram shows an **open-topped** water tank with a horizontal rectangular base and four vertical faces. The base has width x metres and length 2x metres, and the height of the tank is h metres.

The combined internal surface area of the base and four vertical faces is 54 m^2 .

- (a) (i) Show that $x^2 + 3xh = 27$. (2 marks)
 - (ii) Hence express h in terms of x. (1 mark)

(iii) Hence show that the volume of water, $V m^3$, that the tank can hold when full is given by

$$V = 18x - \frac{2x^3}{3} \tag{1 mark}$$

(b) (i) Find
$$\frac{dV}{dx}$$
. (2 marks)

- (ii) Verify that V has a stationary value when x = 3. (2 marks)
- (c) Find $\frac{d^2 V}{dx^2}$ and hence determine whether V has a maximum value or a minimum value when x = 3. (2 marks)
- 4 A model helicopter takes off from a point O at time t = 0 and moves vertically so that its height, y cm, above O after time t seconds is given by

$$y = \frac{1}{4}t^4 - 26t^2 + 96t$$
, $0 \le t \le 4$

(a) Find:

(i)
$$\frac{dy}{dt}$$
; (3 marks)

(ii)
$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}$$
. (2 marks)

- (b) Verify that y has a stationary value when t = 2 and determine whether this stationary value is a maximum value or a minimum value. (4 marks)
- (c) Find the rate of change of y with respect to t when t = 1. (2 marks)
- (d) Determine whether the height of the helicopter above O is increasing or decreasing at the instant when t = 3. (2 marks)

Differentiation Answers

(i) $\frac{d^2 V}{dt^2} = 10t^4 - 24t^2 + 6$ (b) $\frac{d^2 V}{dt^2} = 10t^4 - 24t^2 + 6$ (c) $\frac{d^2 V}{dt^2} = 10t^4 - 24t^2 + 6$ (d) $\frac{d^2 V}{dt^2} = 10t^4 - 24t^2 + 6$ (e) $\frac{d^2 V}{dt^2} = 10t^4 - 24t^2 + 6$ (f) $\frac{d^2 V}{dt^2} = 10t^4 - 24t^2 + 6$ (g) $\frac{d^2 V}{dt^2} = 10t^4 - 24t^2 + 6$ (h) $\frac{d^2 V}{dt} = 2 - 8t^2 + 6$ (h) $\frac{d^2 V}{dt} = 2 - 8 + 6 + 28 + 28 + 28 + 28 + 28 + 28 + 2$	ied	One term correct unsimplified		M1	dV a^{3} a^{3} c^{3}	7(a)(i)
(i) $\frac{d^2V}{dt^2} = 10t^4 - 24t^2 + 6$ (b) Substitute $t = 2$ into their $\frac{dV}{dt}$ $(= 64 - 64 + 12) = 12$ (c)(i) $t = 1 \Rightarrow \frac{dV}{dt} = 2 - 8 + 6$ $= 0 \Rightarrow$ Stationary value (c)(i) Substitute $t = 2 = 12$ (c)(i) $t = 1 \Rightarrow \frac{dV}{dt} = 2 - 8 + 6$ $= 0 \Rightarrow$ Stationary value (c)(i) $t = 1 \Rightarrow \frac{dV}{dt} = 2 - 8 + 6$ $= 0 \Rightarrow$ Stationary value (c)(i) $t = 1 \Rightarrow \frac{dV}{dt} = 2 - 8 + 6$ $= 0 \Rightarrow$ Stationary value (c)(i) $t = 1 \Rightarrow \frac{dV}{dt} = 2 - 8 + 6$ $= 0 \Rightarrow$ Stationary value (c)(i) $t = 1 \Rightarrow \frac{dV}{dt} = 2 - 8 + 6$ $= 0 \Rightarrow$ Stationary value (c)(i) $t = 1 \Rightarrow \frac{dV}{dt} = 2 - 8 + 6$ $= 0 \Rightarrow$ Stationary value (c)(i) $t = 1 \Rightarrow \frac{dV}{dt} = 2 - 8 + 6$ $= 0 \Rightarrow$ Stationary value (c)(i) $t = 1 \Rightarrow \frac{dV}{dt} = 2 - 8 + 6$ $= 0 \Rightarrow$ Stationary value (c)(i) $t = 1 \Rightarrow \frac{dV}{dt} = 2 - 8 + 6$ $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 1 \Rightarrow \frac{dV}{dt} = 2 - 8 + 6$ $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 0$ $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 0$ $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 0$ $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 0$ $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 0$ $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 0$ $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 0$ $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 0$ t = 0 $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 0$ $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 0$ $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 0$ $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 0$ $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 0$ $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 0$ $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 0$ $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 0$ t = 0 $t = 0 \Rightarrow$ Stationary value (c)(i) $t = 0$ t = 0 t	olified	Further term correct unsimplified		A1	$\frac{1}{dt} = 2t^2 - 8t^2 + 6t$	
(c)(i) $t = 1 \Rightarrow \frac{dV}{dt} = 2 - 8 + 6$ = 0 \Rightarrow Stationary value M1 A1 A1 CSO. Shown to = 0 AND s (If solving equation must ob)	· · · · ·	All correct unsimplified (no + c et	3	A1		
(c)(i) $t = 1 \Rightarrow \frac{dV}{dt} = 2 - 8 + 6$ = 0 \Rightarrow Stationary value M1 A1 A1 CSO. Shown to = 0 AND s (If solving equation must ob)	plified	One term FT correct unsimplified		M1	$d^2 V = 10 d^4 = 24 d^2 + 6$	(ii)
(c)(i) $t = 1 \Rightarrow \frac{dV}{dt} = 2 - 8 + 6$ = 0 \Rightarrow Stationary value M1 A1 A1 CSO. Shown to = 0 AND s (If solving equation must ob)	d	CSO . All correct simplified	2	A1	$\frac{1}{dt^2} = 10t^4 - 24t^2 + 6$	(11)
(c)(i) $t = 1 \Rightarrow \frac{dV}{dt} = 2 - 8 + 6$ = 0 \Rightarrow Stationary value M1 A1 A1 CSO. Shown to = 0 AND s (If solving equation must ob)				M1	Substitute $t = 2$ into their $\frac{dV}{dt}$	(b)
(c)(i) $t = 1 \Rightarrow \frac{dV}{dt} = 2 - 8 + 6$ = 0 \Rightarrow Stationary value M1 A1 A1 CSO. Shown to = 0 AND s (If solving equation must ob)					dt	
(c)(i) $t = 1 \Rightarrow \frac{dV}{dt} = 2 - 8 + 6$ = 0 \Rightarrow Stationary value M1 A1 A1 CSO. Shown to = 0 AND s (If solving equation must ob)	ume 1s	CSO . Rate of change of volume is	2	A1	(= 64 - 64 + 12) = 12	
(If solving equation must ob		$12m^{3} s^{-1}$				
(If solving equation must ob		Or putting their $\frac{dV}{dt} = 0$		M1	$t = 1 \Rightarrow \frac{\mathrm{d}V}{\mathrm{l}t} = 2 - 8 + 6$	(c)(i)
(If solving equation must ob				IVII	dt	
(ii) $t = 1 \Rightarrow \frac{d^2 V}{dt^2} = -8$ M1 Sub $t = 1$ into their second deequivalent full test.		CSO . Shown to = 0 AND statement (If solving equation must obtain $t = 1$	2	A1	$= 0 \Rightarrow$ Stationary value	
	erivative or	Sub $t = 1$ into their second derivative equivalent full test.		M1	$t = 1 \Rightarrow \frac{\mathrm{d}^2 V}{\mathrm{d}t^2} = -8$	(ii)
Maximum value $A1\sqrt{2}$ Ft if their test implies minim	mum	Ft if their test implies minimum	2	A1√	Maximum value	
Total 11			11		Total	

3(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -10x^4$	M1 A1	2	kx^4 condone extra term Correct derivative unsimplified
(b)	When $x = 1$, gradient = -10	B1√		FT their gradient when $x = 1$
	Tangent is	M1		Attempt at <i>y</i> & tangent (not normal)
	y-5 = -10(x-1) or $y+10x = 15$ etc	A1	3	CSO Any correct form
(c)	y-5 = -10(x-1) or $y+10x = 15$ etc When $x = -2$ $\frac{dy}{dx} = -160$ (or < 0)	B1√		Value of their $\frac{dy}{dx}$ when $x = -2$
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} < 0 \text{ hence}\right) \ y \text{ is decreasing}$	E1	2	ft Increasing if their $\frac{dy}{dx} > 0$
	Total		7	

	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 20x + 28$	M1 A1 A1	3	One term correct Another term correct All correct (no $+ c$ etc)
(ii)	Their $\frac{dy}{dx} = 0$ for stationary point (x-2)(3x-14) = 0 $\Rightarrow x = 2$ or $x = \frac{14}{3}$	M1 m1 A1 A1	4	Or realising condition for stationary pt Attempt to solve using formula/ factorise Award M1, A1 for verification that $x = 2 \Rightarrow \frac{dy}{dx} = 0$ then may earn m1 later

$$\begin{aligned} \mathbf{5(a)(0)} & \begin{bmatrix} 2x^2 + 2xh + 4xh & (=54) \\ \Rightarrow x^3 + 3xh = 27 & \mathbf{AI} \\ \mathbf{(i)} & h = \frac{27 - x^2}{3x} & \text{or} & h = \frac{9}{x} - \frac{x}{3} \text{ etc} \\ \mathbf{B1} & \mathbf{AI} & \mathbf{2} & \mathbf{AG} & \mathbf{CSO} \\ \mathbf{(ii)} & h = \frac{27 - x^2}{3x} & \text{or} & h = \frac{9}{x} - \frac{x}{3} \text{ etc} \\ \mathbf{B1} & \mathbf{1} & \mathbf{Any correct form} \\ \mathbf{(iii)} & V = 2x^2h & = 18x - \frac{2x^3}{3} & \mathbf{B1} & \mathbf{1} \\ V = 2x^2h & = 18x - \frac{2x^3}{3} & \mathbf{B1} & \mathbf{1} \\ \mathbf{AI} & \mathbf{2} & \mathbf{AG} \text{ (watch fudging) condone omission of brackets} \\ \mathbf{(b)(0)} & \frac{dV}{dx} = 18 - 2x^2 & \mathbf{M1} \\ \mathbf{AI} & \mathbf{2} & \mathbf{AI} \text{ correct "their" } V \\ \mathbf{AI} \text{ correct unsimplified } 18 - 6x^2/3 & \mathbf{O} \text{ or attempt to solve their } \frac{dV}{dx} = \mathbf{0} \\ \mathbf{Shown to equal 0 plus statement that this implies a stationary point if verifying \\ \mathbf{C} & \frac{d^2V}{dx^2} = -4x & (=-12) \\ \frac{d^2V}{dx^2} < \mathbf{0} \text{ at stationary point } \Rightarrow \max \text{ maximum} \\ \mathbf{E1} \wedge & \mathbf{2} & \mathbf{FT} \text{ their second derivative conclusion } \\ \mathbf{I}^* \text{ their" } \frac{d^2}{dx^2} > \mathbf{0} \Rightarrow \min \text{ minimum etc} \\ \mathbf{V} = \mathbf{V} & \mathbf{V} = \mathbf{V} \\ \mathbf{V} = \mathbf{V} + \mathbf{V} = \mathbf{V} & \mathbf{V} \\ \mathbf{V} = \mathbf{V} = \mathbf{V} \\ \mathbf{V} = \mathbf{V} & \mathbf{V} \\ \mathbf{V} = \mathbf{V} = \mathbf{V} \\ \mathbf{V} \\ \mathbf{V} = \mathbf{V} \\ \mathbf{V} = \mathbf{V} \\ \mathbf{V} = \mathbf{V} \\ \mathbf{V} = \mathbf{V} \\ \mathbf{V} \\ \mathbf{V} \\ \mathbf{V} = \mathbf{V} \\ \mathbf{V} \\ \mathbf{V} = \mathbf{V} \\ \mathbf{V} \\ \mathbf{V} = \mathbf{V} \\ \mathbf{V} \\ \mathbf{V} \\ \mathbf{V} = \mathbf{V} \\ \mathbf{V} \\ \mathbf{V} = \mathbf{V} \\ \mathbf{V}$$

(d)	Substitute $t = 3$ into their $\frac{dy}{dt}$	M1		interpreting their value of $\frac{dy}{dt}$
	(27 - 156 + 96 = -33 < 0)			
	\Rightarrow decreasing when $t = 3$	E1√	2	allow increasing if their $\frac{dy}{dt} > 0$
	Total		13	