Basic Algebra Questions – Mainly Surds

- 1 (a) Simplify $(\sqrt{5} + 2)(\sqrt{5} 2)$. (2 marks)
 - (b) Express $\sqrt{8} + \sqrt{18}$ in the form $n\sqrt{2}$, where *n* is an integer. (2 marks)
- 4 (a) Express $(4\sqrt{5}-1)(\sqrt{5}+3)$ in the form $p+q\sqrt{5}$, where p and q are integers. (3 marks)
 - (b) Show that $\frac{\sqrt{75} \sqrt{27}}{\sqrt{3}}$ is an integer and find its value. (3 marks)
- 3 (a) Express $\frac{\sqrt{5}+3}{\sqrt{5}-2}$ in the form $p\sqrt{5}+q$, where p and q are integers. (4 marks)
 - (b) (i) Express $\sqrt{45}$ in the form $n\sqrt{5}$, where *n* is an integer. (1 mark)
 - (ii) Solve the equation

$$x\sqrt{20} = 7\sqrt{5} - \sqrt{45}$$

giving your answer in its simplest form.

(3 marks)

- 2 (a) Express $\frac{\sqrt{63}}{3} + \frac{14}{\sqrt{7}}$ in the form $n\sqrt{7}$, where *n* is an integer. (3 marks)
 - (b) Express $\frac{\sqrt{7}+1}{\sqrt{7}-2}$ in the form $p\sqrt{7}+q$, where p and q are integers. (4 marks)

Basic Algebra Answers – Mainly Surds

	Answer = $5\sqrt{2}$	A1	2	Full marks for correct answer /no working
(b)	$\sqrt{8} = 2\sqrt{2}$; $\sqrt{18} = 3\sqrt{2}$	M1		Either correct
1(4)	(40) . 240 240	A1	2	squares attempted Full marks for correct answer /no working
1(a)	$\left(\sqrt{5}\right)^2 + 2\sqrt{5} - 2\sqrt{5} - 4 = 1$	M1		Multiplying out or difference of two

4(a)	$4(\sqrt{5})^2 + 12\sqrt{5} - \sqrt{5} - 3$	M1		Multiplied out At least 3 terms with $\sqrt{5}$ term
	$4\left(\sqrt{5}\right)^2 = 4 \times 5 (=20)$ Answer = 17 + 11 $\sqrt{5}$	B1		
	Answer = $17 + 11\sqrt{5}$	A1	3	
(b)	Either $\sqrt{75} = \sqrt{25}\sqrt{3}$ or $\sqrt{27} = \sqrt{9}\sqrt{3}$	M1		Or multiplying top and bottom by $\sqrt{3}$
	Expression = $\frac{5\sqrt{3} - 3\sqrt{3}}{\sqrt{3}}$	A1		or $\frac{\sqrt{225} - \sqrt{81}}{3}$ or $\sqrt{25} - \sqrt{9}$ or 5–3
	= 2	A1	3	CSO
	Total		6	

	Total		8	
	x=2	A1	3	CSO
	$\left[x \ 2\sqrt{5} = 7\sqrt{5} - 3\sqrt{5}\right]$ or $x\sqrt{20} = 2\sqrt{20}$	A1		or $x = \sqrt{4}$
	or $\sqrt{20}$ only			
	or attempt to have equation with $\sqrt{5}$			
(ii)	$\sqrt{20} = \sqrt{4}\sqrt{5} \text{ or } 4\sqrt{5} = \sqrt{4} \times \sqrt{20}$	M1		Both sides
(b)(i)	$\sqrt{45} = 3\sqrt{5}$	В1	1	
	Final answer = $5\sqrt{5} + 11$	A1	4	With clear evidence that denominator =1
	$= 5\sqrt{5} + 11$	A1		
				$\pm \left(\sqrt{5+3}\right)\left(\sqrt{5+2}\right)$
	Numerator = $5 + 3\sqrt{5} + 2\sqrt{5} + 6$	M1		Multiplying out (condone one slip)
3(a)	$\frac{\sqrt{5}+3}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2}$	M1		Multiplying top & bottom by $\pm(\sqrt{5}+2)$

2(a)	3	В1		or $\frac{\left(\sqrt{7}\sqrt{63} + 14 \times 3\right)}{3\sqrt{7}}$
	$\frac{14}{\sqrt{7}} = 2\sqrt{7} \text{ or } \frac{14\sqrt{7}}{7}$	В1		or $\frac{\sqrt{7}}{\sqrt{7}}$ () M1
	\Rightarrow sum = $3\sqrt{7}$	В1	3	⇒ correct answer with all working correct A2
(b)	Multiply by $\frac{\sqrt{7}+2}{\sqrt{7}+2}$	M1		
	Denominator = $7 - 4 = 3$	A1		
	Numerator = $\left(\sqrt{7}\right)^2 + \sqrt{7} + 2\sqrt{7} + 2$	m1		multiplied out (allow one slip) $9 + 3\sqrt{7}$
	Answer = $\sqrt{7} + 3$	A1	4	
	Total		7	