Numerical Methods

Questions

Q1.

The temperature, $\theta^{\circ} \mathrm{C}$, of coffee in a cup, t minutes after the cup of coffee is put in a room, is modelled by the differential equation

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} t}=-k(\theta-20)
$$

where k is a constant.
The coffee has an initial temperature of $80^{\circ} \mathrm{C}$
Using $k=0.1$
(a) use two iterations of the approximation formula $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{0}=\frac{y_{1}-y_{0}}{h}$ to estimate the temperature of the coffee 3 minutes after it was put in the room.

The coffee in a different cup, which also had an initial temperature of $80^{\circ} \mathrm{C}$ when it was put in the room, cools more slowly.
(b) Use this information to suggest how the value of k would need to be changed in the model.

Q2.

Use Simpson's rule with 4 intervals to estimate

$$
\int_{0.4}^{2} \mathrm{e}^{x^{2}} \mathrm{~d} x
$$

Q3.

A population of deer was introduced onto an island.
The number of deer, P, on the island at time t years following their introduction is modelled by the differential equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{P}{5000}\left(1000-\frac{P(t+1)}{6 t+5}\right) \quad t>0
$$

It was estimated that there were 540 deer on the island six months after they were introduced.

Use two applications of the approximation formula $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{n} \approx \frac{y_{n+1}-y_{n}}{h}$ to estimate the number of deer on the island 10 months after they were introduced.
(Total for question = 7 marks)

Q4.

Julie decides to start a business breeding rabbits to sell as pets.
Initially she buys 20 rabbits. After t years the number of rabbits, R, is modelled by the differential equation

$$
\frac{\mathrm{d} R}{\mathrm{~d} t}=2 R+4 \sin t \quad t>0
$$

Julie needs to have at least 40 rabbits before she can start to sell them.
Use two iterations of the approximation formula

$$
\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{n} \approx \frac{y_{n+1}-y_{n}}{h}
$$

to find out if, according to the model, Julie will be able to start selling rabbits after 4 months.

Q5.

The variables x and y satisfy the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 y^{2}-x-1
$$

where $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$ and $y=0$ at $x=0$
Use the approximations

$$
\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{n} \approx \frac{\left(y_{n+1}-2 y_{n}+y_{n-1}\right)}{h^{2}} \text { and }\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{n} \approx \frac{\left(y_{n+1}-y_{n-1}\right)}{2 h}
$$

with $h=0.1$ to find an estimate for the value of y at $x=0.2$

Q6.

A community is concerned about the rising level of pollutant in its local pond and applies a chemical treatment to stop the increase of pollutant.

The concentration, x parts per million (ppm), of the pollutant in the pond water t days after the chemical treatment was applied, is modelled by the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{3+\cosh t}{3 x^{2} \cosh t}-\frac{1}{3} x \tanh t \tag{I}
\end{equation*}
$$

When the chemical treatment was applied the concentration of pollutant was 3 ppm .
(a) Use the iteration formula

$$
\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{n} \approx \frac{\left(y_{n+1}-y_{n}\right)}{h}
$$

once to estimate the concentration of the pollutant in the pond water 6 hours after the chemical treatment was applied.
(b) Show that the transformation $u=x^{3}$ transforms the differential equation (I) into the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} t}+u \tanh t=1+\frac{3}{\cosh t} \tag{II}
\end{equation*}
$$

(c) Determine the general solution of equation (II)
(d) Hence find an equation for the concentration of pollutant in the pond water t days after the chemical treatment was applied.
(e) Find the percentage error of the estimate found in part (a) compared to the value predicted by the model, stating if it is an overestimate or an underestimate.

Q7.

The variables x and y satisfy the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+15 \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y^{2}=2 x
$$

where $y=1$ at $x=0$ and where $y=2$ at $x=0.1$
Use the approximations

$$
\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{n} \approx \frac{\left(y_{n+1}-2 y_{n}+y_{n-1}\right)}{h^{2}} \text { and }\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{n} \approx \frac{\left(y_{n+1}-y_{n-1}\right)}{2 h}
$$

with $h=0.1$ to find an estimate for the value of y when $x=0.3$
(Total for question = 6 marks)

Q8.

The velocity $v \mathrm{~ms}^{-1}$, of a raindrop, t seconds after it falls from a cloud, is modelled by the differential equation

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=-0.1 v^{2}+10 \quad t \geq 0
$$

Initially the raindrop is at rest.
(a) Use two iterations of the approximation formula $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{n} \approx \frac{y_{n+1}-y_{n}}{h}$ to estimate the velocity of the raindrop 1 second after it falls from the cloud.

Given that the initial acceleration of the raindrop is found to be smaller than is suggested by the current model,
(b) refine the model by changing the value of one constant.

Q9.

Figure 1
Figure 1 shows a sketch of the vertical cross-section of the entrance to a tunnel. The width at the base of the tunnel entrance is 2 metres and its maximum height is 3 metres.

The shape of the cross-section can be modelled by the curve with equation $y=\mathrm{f}(x)$ where

$$
\mathrm{f}(x)=3 \cos \left(\frac{\pi}{2} x^{2}\right) \quad x \in[-1,1]
$$

A wooden door of uniform thickness 85 mm is to be made to seal the tunnel entrance.
Use Simpson's rule with 6 intervals to estimate the volume of wood required for this door, giving your answer in m^{3} to 4 significant figures.

Q10.

The value, V hundred pounds, of a particular stock t hours after the opening of trading on a given day is modelled by the differential equation

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{V^{2}-t}{t^{2}+t V} \quad 0<t<8.5
$$

A trader purchases $£ 300$ of the stock one hour after the opening of trading.
Use two iterations of the approximation formula $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{0} \approx \frac{y_{1}-y_{0}}{h}$ to estimate to the nearest $£$ the value of the trader's stock half an hour after it was purchased.

$$
\text { (Total for question = } 6 \text { marks) }
$$

Q11.

Use Simpson's Rule with 6 intervals to estimate

$$
\begin{equation*}
\int_{1}^{+} \sqrt{1+x^{3}} \mathrm{~d} x \tag{5}
\end{equation*}
$$

Mark Scheme - Numerical Methods

Q1.

Question		Scheme	Marks	AOs
		$\frac{\mathrm{d} \theta}{\mathrm{d} t}=-k(\theta-20), k$ is a constant. $\theta_{0}=80$		
(a)		\{Two iterations from $t=0$ to $t=3 \Rightarrow\} h=1.5$		
		Uses $h=1.5, \theta_{0}=80, k=0.1$ (condone $k=-0.1$) in a complete strategy to find a numerical expression for $\theta_{1}=\ldots$	M1	3.1b
		$\left\{\theta_{0}=80, k=0.1 \Rightarrow\right\}\left(\frac{\mathrm{d} \theta}{\mathrm{d} t}\right)_{0}=-0.1(80-20)\{=-6\}$	M1	3.4
		$\left\{\frac{\theta_{1}-80}{1.5}=-6 \Rightarrow\right\} \theta_{1}=80+(1.5)(-6)$	M1	1.1b
		$\theta_{1}=71$	A1	1.1b
		$\left\{\theta_{1}=71 \Rightarrow\right\}\left(\frac{\mathrm{d} \theta}{\mathrm{d} t}\right)_{1}=-0.1\left(771^{\prime \prime}-20\right) \quad\{=-5.1\}$	M1	1.1b
		$\theta_{2}=71+(1.5)(-5.1)=63.35\left({ }^{\circ} \mathrm{C}\right)$	A1	2.1
			(6)	
(b)		Decrease k to become a smaller positive value	B1	3.5c
			(1)	
(7 marks)				
Notes				
(a)				
M1:	See scheme			
M1:	Uses the model to evaluate the initial value of $\frac{\mathrm{d} \theta}{\mathrm{d} t}$ using $k=0.1$ (condone $k=-0.1$) and the initial condition $\theta_{0}=80$			
M1:	Applies the approximation formula with $\theta_{0}=80, k=0.1$ (condone $k=-0.1$) and their h to find a numerical expression for $\theta_{1}=\ldots$			
A1: F	Finds the approximation for θ at 1.5 minutes as 71			
M1:	Uses their 71 and $k=0.1$ (condone $k=-0.1$) to find $\frac{\mathrm{d} \theta}{\mathrm{d} t}$			
A1:	Applies the approximation formula again to give $63.35\left({ }^{\circ} \mathrm{C}\right)$ or awrt $63\left({ }^{\circ} \mathrm{C}\right)$			
Note:	$\begin{aligned} & h=0.1 \Rightarrow \theta_{1}=79.4, \theta_{2}=78.806 ; \\ & h=1 \Rightarrow \theta_{1}=74, \theta_{2}=68.6 ; \\ & h=0.15 \Rightarrow \theta_{1}=79.1, \theta_{2}=78.2135 \end{aligned}$			
(b)				
B1: S	See scheme			
Note: A	Allow B1 for "the value of k should satisfy $0<k<0.1$ "			
Note:	Condone "the value of k would need to be decreased" for B1			
Note:	Give B0 for "change k to become negative"			

Q2.

Q3.

Question	Scheme	Marks	AOS
	$t_{0}=\frac{1}{2}$ and steps are 2 months, so $h=\frac{1}{6} \quad\left(t_{1}=\frac{2}{3}, t_{2}=\frac{5}{6}\right)$	B1	3.3
	$\left(\frac{\mathrm{d} P}{\mathrm{~d} t}\right)_{0}=\frac{540}{5000}\left(1000-\frac{540 \times\left(\frac{1}{2}+1\right)}{6 \times \frac{1}{2}+5}\right)=\ldots\left(97.065=\frac{19413}{200}\right)$	M1	3.4
	So when $t=\frac{2}{3}, P_{1}=540+\frac{1}{6}{ }^{\prime} \times \prime 97.065^{\prime}=\ldots$ Or starts with '97.065' $=\frac{y_{1}-540}{1 / 6}$ and rearranges to find $P_{1}=\ldots$	M1	1.1b
	$=\frac{222471}{400}=556.1775$	Al	1.1b
		M1	3.4
	So when $t=\frac{5}{6}, P_{2}=' 556.1775^{\prime}+\frac{1}{6} \times$ '99.778 ...' $=\ldots(572.807 \ldots$)	M1	1.1b
	So there are estimated to be 572 or 573 deer after 10 months.	Al	3.2a
		(7)	
(7 marks)			

Notes:

B1: Uses the given information to set up correct parameters for the model, $t_{0}=\frac{1}{2},\left(t_{1}=\frac{2}{3}, t_{2}=\frac{5}{6}\right)$ and $h=\frac{1}{6}$ seen or implied.
M1: Uses $P_{0}=540$ and their value for t_{0} in the given equation to find a value for $\left(\frac{\mathrm{d} P}{\mathrm{~d} t}\right)_{0}$
M1: Applies the approximation formula with 540 , their h and their $\left(\frac{\mathrm{d} P}{\mathrm{~d} t}\right)_{0}$ to find a value for P_{1}
Al: Correct approximation P at $t=\frac{2}{3}$. Accept awrt 556.2
M1: Uses $t_{1}=t_{0}+h$ and their P_{1} in the given equation to find a value for $\left(\frac{\mathrm{d} P}{\mathrm{~d} t}\right)_{1}$.

M1: Uses the approximation a second time with their h, their P_{1} and their $\left(\frac{\mathrm{d} P}{\mathrm{~d} t}\right)_{1}$. to find a value for P_{2}
A1: Correct answer. Accept either 572 or 573 .
Useful table of values for reference

n	P_{n}	t	$\frac{\mathrm{~d} P}{\mathrm{~d} t}$	$h \frac{\mathrm{~d} P}{\mathrm{~d} t}$
0	540	$\frac{1}{2}$	97.065	16.1775
1	556.1775	$\frac{2}{3}$	99.77870698	16.6297845
2	572.807	$\frac{5}{6}$		

Note use of $t_{0}=6$ and $h=2$ leads to $\left(\frac{\mathrm{d} P}{\mathrm{~d} t}\right)_{0}=\frac{100494}{1025}=98.04 \ldots \quad P_{1}=736.08 \ldots\left(\frac{\mathrm{~d} P}{\mathrm{~d} t}\right)_{1}=128.8 \ldots$ $P_{2}=993.7 .$. which scores a maximum of B0 M1 M1 A0 M1 M1 A0

Q4.

Question	Scheme	Marks	AOs
	\{The population after 4 months is required over two iterations\} $\Rightarrow h=\frac{1}{6}$	B1	3.3
	$\left\{t_{0}=0, R_{0}=20 \Rightarrow\right\}\left(\frac{\mathrm{d} R}{\mathrm{~d} t}\right)_{0}=2(20)+4 \sin 0\{=40\}$	M1	3.4
	$\left\{\frac{R_{1}-20}{"\left(\frac{1}{6}\right) "}=" 40 " \Rightarrow R_{1}=20+\frac{11}{6}{ }^{\prime \prime \prime}(40) "\right.$	M1	1.1b
	$R_{1}=\frac{80}{3}$ or awrt 26.7 or $20+($ their $h)(40)$	A1ft	1.1 b
	$\left(\frac{\mathrm{d} R}{\mathrm{~d} t}\right)_{1}=2\left({ }^{\prime} R_{1}^{\prime \prime}\right)+4 \sin \left({ }^{\prime \prime} h^{\prime \prime}\right)=2\left(\frac{80}{3}\right)+4 \sin \left(\frac{1}{6}\right)\{=53.9969 \ldots\}$	M1	1.1b
	$R_{2}=R_{1}+h\left(\frac{\mathrm{~d} R}{\mathrm{~d} t}\right)_{1}=\frac{80}{3}+\frac{1}{6}(53.9969 \ldots)=35.666 \ldots=35$ or 36 rabbits	A1	1.1b
	$R_{2}=35.666 \ldots \approx 35 \text { or } 36<40$ Julie will not be able to start to sell her rabbits after 4 months.	B1ft	3.2a
		(7)	
(7 marks)			

Notes for Question	
B1:	Translates the situation given to state (or use) the correct value for the step length h
M1:	Uses the model to find the initial value of $\frac{\mathrm{d} R}{\mathrm{~d} t}$ using the initial condition $t_{0}=0, R_{0}=20$
M1:	Applies the approximation formula with $R_{0}=20$, their stated h, their $\left(\frac{\mathrm{d} R}{\mathrm{~d} t}\right)_{0}$ to find a numerical expression for R_{1}
Al:	depends on both previous M marks At 2 months, finds the approximation for R as $\frac{80}{3}$ or awrt 26.7
No	Only give the following follow through. i.e. Allow Alff for 20
M1:	Attempts to find a numerical expression for $\left(\frac{\mathrm{d} R}{\mathrm{~d} t}\right)_{1}$ with their $\frac{80}{3}$ and $t_{1}=$ their h
Al:	Applies the approximation formula for a second time to give R_{2} as a truncated 35 or a value in the interval $[35.5,36]$
Blft:	Attempts two iterations of their $R_{n+1}=R_{n}+h\left(\frac{\mathrm{~d} R}{\mathrm{~d} t}\right)_{n}$ to find a value for R_{2}. Compares their value of R_{2} with 40 (which can be implied) and draws a conclusion about whether Julie will be able to start to sell her rabbits after 4 months.
Note:	Give final B 0 for applying more than or fewer than two iterations before comparing
Note:	Using $h=\frac{1}{12}$ yields $R_{1}=23.3333 \ldots, R_{2}=27.2499 \ldots, R_{3}=31.8469 \ldots, R_{4}=37.2372 \ldots$
Note:	Give special case final A1 for giving R_{4} as a truncated 37 or a value in the interval [37,37.4]
Note:	Therefore, using $h=\frac{1}{12}$ with four iterations can gain a maximum B0 M1 M1 A1 M1 A1 B0
Note:	Answers in the range $[35.5,36]$ can follow from an incorrect method. E.g. Give final M0 A0 for using $h=\frac{1}{6},\left(\frac{d R}{d t}\right)_{1}=2\left(\frac{80}{3}\right)+4 \sin (\underline{0.1})=53.73266 \ldots \Rightarrow R_{2}=\frac{80}{3}+\frac{1}{6}(53.73266 \ldots)=35.622 \ldots$

Q5.

Question	Scheme	Marks	AOs
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 y^{2}-x-1 \Rightarrow\left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right)_{0}=0-0-1=-1$	B1	1.1 b
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{0}=3 \Rightarrow \frac{\left(y_{1}-y_{-1}\right)}{0.2} \approx 3$	B1	1.1b
	$\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{0} \approx \frac{\left(y_{1}-2 y_{0}+y_{-1}\right)}{h^{2}} \Rightarrow \frac{y_{1}-2(0)+y_{-1}}{0.01} \approx-1$	M1	1.1 b
	$y_{1} \approx \frac{1}{2}(0.6-0.01)=0.295$	dM1	2.1
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 y^{2}-x-1 \Rightarrow\left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right)_{1}=2(0.295)^{2}-0.1-1=-0.92595$	dM1	1.1 b
	$\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{1} \approx \frac{\left(y_{2}-2 y_{1}+y_{0}\right)}{h^{2}} \Rightarrow \frac{y_{2}-2(0.295)+0}{0.01} \approx-0.92595 \Rightarrow y_{2}=\ldots$	dM1	2.1
	$y_{2} \approx 2(0.295)-0.92595 \times 0.01=0.581$ (3 s.f.)	A1	1.1 b
		(7)	
(7 marks)			
Notes			
B1: Correct value for the second derivative using the differential equation B1: Correct equation in terms of y_{1} and y_{-1} using the first order approximation M1: Uses the second order approximation to obtain another equation in terms of y_{1} and y_{-1} M1: Uses their two equations in y_{1} and y_{-1} and solves together to find y at $x=0.1$. M1: Uses the differential equation with their y at $x=0.1$ and $x=0.1$ to find a value for the second derivative at $x=0.1$ M1: Completes the process by using the second order approximation and their second derivative to obtain a value for y_{2} A1: Correct value for y at $x=0.2$ Note that all method marks are dependent			

Q6.

Question	Scheme	Marks	AOS
(a)	At 6 hours $t=0.25$ so " h " is 0.25	B1	3.1b
	At $t=0 \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{3+\cosh 0}{3 \times 3^{2} \cosh 0}-\frac{1}{3}(3) \tanh 0=\ldots\left(=\frac{4}{27}\right)$	M1	3.4
	So $x_{1} \approx 3+" 0.25 " \times 2 \frac{4}{27}{ }^{\prime \prime}=\ldots$	M1	1.1b
	After 6 hours concentration of the pollutant is approximately awrt 3.04 ppm (3 s.f.) or $\frac{82}{27} \mathrm{ppm}$	Al	3.2a
		(4)	
(b)	$\begin{aligned} & \frac{\mathrm{d} u}{\mathrm{~d} t}=3 x^{2} \times \frac{\mathrm{d} x}{\mathrm{~d} t} \text { or } \frac{1}{3 x^{2}} \frac{\mathrm{~d} u}{\mathrm{~d} t}=\frac{\mathrm{d} x}{\mathrm{~d} t} \text { or } \\ & \frac{\mathrm{d} u}{\mathrm{~d} t}=\frac{\mathrm{d} u}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=3 x^{2}\left(\frac{3+\cosh t}{3 x^{2} \cosh t}-\frac{1}{3} x \tanh t\right) \end{aligned}$	B1	2.2a
	$\begin{aligned} & \text { So } \begin{aligned} \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{3+\cosh t}{3 x^{2} \cosh t}-\frac{1}{3} x \tanh t & \rightarrow \frac{1}{3 x^{2}} \frac{\mathrm{~d} u}{\mathrm{~d} t}=\frac{3+\cosh t}{3 x^{2} \cosh t}-\frac{1}{3} x \tanh t \\ & \rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} t}=\frac{3}{\cosh t}+1-u \tanh t \end{aligned} \\ & \begin{aligned} \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{3+\cosh t}{3 x^{2} \cosh t}-\frac{1}{3} x \tanh t & \rightarrow \frac{1}{3 u^{\frac{2}{3}} \frac{\mathrm{~d} u}{\mathrm{~d} t}}=\frac{3+\cosh t}{3 u^{\frac{2}{3}} \cosh t}-\frac{1}{3} u^{\frac{1}{3}} \tanh t \\ & \rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} t}=\frac{3}{\cosh t}+1-u \tanh t \end{aligned} \end{aligned}$	M1	2.1
	$\frac{\mathrm{d} u}{\mathrm{~d} t}+u \tanh t=1+\frac{3}{\cosh t} * * * * ~_{\text {a }}$	Al*	1.1b
		(3)	

(c)	I.F. $=\exp \left(\int \tanh t \mathrm{~d} t\right)=\exp (\ln \cosh t)=\cosh t$	B1	2.2a
	$\Rightarrow u^{\prime} \cosh t^{\prime}=\int \cdot \cosh t^{\prime}\left(1+\frac{3}{\cosh t}\right) \mathrm{d} t=\left\{\int \cosh t+3 \mathrm{~d} t\right\}$	M1	1.1 b
	$\Rightarrow u \cosh t=\sinh t+3 t(+c)$	M1	1.1 b
	$u \cosh t=\sinh t+3 t+c$ or $u=\tanh t+\frac{3 t}{\cosh t}+\frac{c}{\cosh t}$ oe	Al	1.1 b
		(4)	
(d)	$t=0 \Rightarrow x=3, u=27 \Rightarrow c=27 \cosh 0-\sinh 0-3(0)=27$	M1	3.4
	$\Rightarrow x=\left(\tanh t+\frac{3 t+" 27 "}{\cosh t}\right)^{\frac{1}{3}}$	M1	3.4

	$x=\left(\tanh t+\frac{3 t+27}{\cosh t}\right)^{\frac{1}{3}}(\mathrm{oe})$	Al	3.2a
		(3)	
(e)	$x(0.25)=\left(\tanh 0.25+\frac{(0.75+27)}{\cosh 0.25}\right)^{\frac{1}{3}}=\ldots(=3.0055 \ldots)$	M1	3.4
	\% error is $\frac{3.0055 \ldots-3.037 \ldots}{3.0055 \ldots} \times 100=\ldots$	M1	1.1b
	Estimate in (a) is an overestimate by 1.05% (3 s.f.)	Al	3.2a
		(3)	
(17 marks)			

Notes:

(a)

Bl : Identifies a correct step length for the situation -6 hours is a quarter of a day, so $h=0.25$
M1: Uses " $y_{0} "=x(0)=3$ and $t=0$ to find $"\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)_{0}^{"}=\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)_{0}$. Accept with whichever notation used, as long as it is clear they are attempting the correct things.
M1: Applies the approximation formula with their " h " and their $"\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)_{0}$ "
Al: For awrt 3.04 ppm . Accept $\frac{82}{27} \mathrm{ppm}$
(b)
$\mathrm{Bl}:$ A correct equation relating $\frac{\mathrm{d} u}{\mathrm{~d} t}$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}$ from the chain rule.
M1: Makes a complete substitution for x and $\frac{\mathrm{d} x}{\mathrm{~d} t}$ in equation (I) or a complete substitution for u and $\frac{\mathrm{d} u}{\mathrm{~d} t}$ in equation (II)
Al*: Simplifies correctly to achieve the given result.
(c)

B1: Correct integrating factor found or spotted. Allow for $\mathrm{e}^{\text {lncosht }}$
M1: Applies IF to achieve $u^{\prime \prime} \cosh t^{\prime \prime}=\int " \cosh t^{\prime \prime}\left(1+\frac{3}{\cosh t}\right) \mathrm{d} t$
M1: A reasonable attempt to integrate the RHS. Need not include constant of integration. If I.F. correct allow for $\pm \sinh t+3 t(+c)$
A1: Correct general solution, either implicit or explicit form including the context of integration (award when first seen and isw)
(d)

M1: Uses the initial conditions in an appropriate equation to find the constant of integration. Either $t=0$ and $u=27$ in the answer to (c), or $t=0$ and $x=3$ if substitution for x occurs first.

M1: Reverses the substitution and rearranges to find equation for x, with evaluated constant included.
A1: Correct equation, any equivalent form, but must be $x=\ldots$
(e)

M1: Uses their model solution to find the value at $t=0.25$
M1: Applies $\frac{\text { actual value }- \text { estimate }}{\text { actual value }} \times 100$ with their values.
A1: States part (a) is overestimate by 1.05%

Q7.

Question	Scheme	Marks	AOs
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{1} \approx \frac{\left(y_{2}-1\right)}{0.2}$	B1	1.1b
	$\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{1} \approx \frac{\left(y_{2}-2(2)+1\right)}{0.1^{2}}$	B1	1.1b
	$\frac{\left(y_{2}-2(2)+1\right)}{0.1^{2}}+15\left(\frac{\left(y_{2}-1\right)}{0.2}\right)-3(2)^{2}=2(0.1) \Rightarrow y_{2}=\ldots$	M1	2.1
	$y_{2} \approx \frac{1936}{875}(2.2125 \ldots)$	A1	1.1b
	$\frac{\left(y_{3}-2\left(\frac{1986}{85}\right)+2\right)}{0.1^{2}}+15\left(\frac{y_{3}-2}{0.2}\right)-3\left(\frac{1936}{875}\right)^{2}=2(0.2) \Rightarrow y_{3}=\ldots$	M1	2.1
	$y_{3} \approx 2.32914 \ldots$	A1	1.1b
		(6)	
(6 marks)			
Notes			
B1: Correct expression for the first derivative using the given values and the approximation B1: Correct expression for the second derivative using the given values and the approximation M1: Uses the approximations for the first and second derivatives, substitutes into the differential equation and obtains a value for y at $x=0.2$ A1: Correct value for y at $x=0.2$ (accept the exact value or awrt 2.21) M1: Completes the process by using their value for y at $x=0.2$ to obtain a value for y at $x=0.3$ A1: Correct value for y when $x=0.3$ (allow awrt 2.33)			

Q8.

Question	Scheme	Marks	AOs
(a)	Identifies $t_{0}=0, v_{0}=0,\left(\frac{d v}{d t}\right)_{0}=10$ and $h=0.5$	B1	3.4
	$v_{1}=v_{0}+h\left(\frac{d v}{d t}\right)_{0} \Rightarrow v_{1}=0+0.5 \times 10=\ldots$	M1	1.1b
	$v_{1}=5$	A1	1.1b
	$\begin{gathered} \left(\frac{\boldsymbol{d} v}{\boldsymbol{d} t}\right)_{1}=-0.1(5)^{2}+10=\ldots\{7.5\} \\ v_{2}=v_{1}+h\left(\frac{d v}{d t}\right)_{1} \Rightarrow v_{2}=5+0.5 \times 7.5=\ldots \end{gathered}$	M1	3.4
	$v_{2}=8.75$ so $8.75 \mathrm{~ms}^{-1}$	A1	1.1 b
		(5)	
(b)	$\frac{d v}{d t}=-0.1 v^{2}+A$ where $0<A<10$	B1	3.5c
		(1)	

Notes:

(a)

Bl: Uses the model to identify the correct initial conditions and requirements for h. May be implied by use in the equation.
M1: Applies the approximation formula with their values for $v_{0},\left(\frac{d v}{d t}\right)_{0}$ and h to find a value for v_{1}
Al: $v_{1}=5$
M1: Uses their v_{1} to find a value for $\left(\frac{d v}{d t}\right)_{1}$ and applies the approximation formula with their values for $v_{1},\left(\frac{d v}{d t}\right)_{1}$ and h to find a value for v_{2}
Al: $v_{2}=8.75$ or $8.75 \mathrm{~ms}^{-1}$
(b)

Bl : Reduce the value of 10 or explains this is what needs reducing, but do not accept 0 or negative values in place of the 10 . Note: "change the 10 " is B0 if it does not explain how to change it.

Q9.

Question	Scheme								Marks	AOs
	Step $\frac{1}{3}$								B1	1.1b
		y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	M1	3.4
	x	-1	$-\frac{2}{3}$	$-\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{2}{3}$	1		
	y	0	2.2981	2.9544	3	2.9544	2.2981	0		
	$\begin{aligned} & y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+4 y_{5}+y_{6}=" 42.203 " \\ & \{0+4(2.2981+3+2.2981)+2(2.9544+2.9544)+0\} \end{aligned}$								M1	1.1b
	$=42.203\left(=24 \cos \left(\frac{2 \pi}{9}\right)+12 \cos \left(\frac{\pi}{18}\right)+12\right)$								A1	1.1b
	So volume required is approx. $\frac{85}{1000} \times \frac{\frac{1}{3}}{3} \times 142.203 "$								M1	3.1a
	$=$ awrt $0.3986 \mathrm{~m}^{3}$								A1	3.2a
	Alternative interval $[0,1]$) step $\frac{1}{6}$ and the answer is doubled later								B1	1.1b
		y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}		
	x	0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{5}{6}$	1	M1	3.4
	y	3	2.9971	2.9544	2.7716	2.2981	1.3852	0		
	$\begin{aligned} & y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+4 y_{5}+y_{6}=" 42.1206 " \\ & \{3+4(2.9971+2.7716+1.3852)+2(2.9544+2.2981)+0\} \end{aligned}$								M1	1.1b
	Awrt 42.121								A1	1.1b
	So volume required is approx. $\frac{85}{1000} \times \frac{\frac{1}{6}}{3} \times 142.1206 " \times 2$								M1	3.1a
	$=$ awrt $0.3978 \mathrm{~m}^{3}$								A1	3.2a
									(6)	
(6 marks)										

Notes:

B1: Correct strip width for the method chosen $\frac{1}{3}$ for the interval $[-1,1]$
M1: Uses the model to find the appropriate values for the method. May use that the function is even to only work out half of them, so may be implied by use in the formula. At least two correct values to 4 s.f. needed for the method.
M1: Applies the "bracket" of Simpson's rule, " $y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+4 y_{5}+y_{6}$ ". Coefficients must be correct.
A1: Correct value for the "bracket". If not explicitly seen, may be implied by awrt 4.689 as a value for the cross section area following correct values.
M1: Correct full method to find the volume. E.g. multiplies their bracket by their $\frac{h}{3}$ and by 0.085 .
Accept an attempt in any consistent units, so e.g. in mm^{3} ie $85 \times \frac{\frac{1}{3}}{3} \times 42.203 " \times 1000^{2}$
Al: Correct answer in m^{3}.

B1: Correct strip width for the method chosen $\frac{1}{6}$ for the interval $[0,1]$ and later doubled.
M1: Uses the model to find the appropriate values for the method. May use that the function is even to only work out half of them, so may be implied by use in the formula. At least two correct values to 4 s.f. needed for the method.
M1: Applies the "bracket" of Simpson's rule, " $y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+4 y_{5}+y_{6}$ ". Coefficients must be correct.
Al: Correct value for the "bracket". If not explicitly seen, may be implied by awrt 4.680 as a value for the cross section area following correct values.
M1: Correct full method to find the volume. E.g. multiplies their bracket by their $\frac{h}{3}$ and by 0.085 . Accept an attempt in any consistent units, so e.g. in mm^{3} ie $85 \times \frac{\frac{1}{6}}{3} \times 42.203 " \times 1000^{2} \times 2$
Al: Correct answer in m^{3}.

Using 6 ordinates

Max score B0 Ml M0 A0 M0 A0

	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
x	-1	-0.6	-0.2	0.2	0.6	1
y	0	2.53298	2.9941	2.9941	2.53298	0

B0: Incorrect strip width

M1: Uses the model to find the appropriate values for the method. At least two correct values to 4 s.f. needed for the method.

Q10.

Question	Scheme	Marks	AOs
	$£ 300$ purchased one hour after opening $\Rightarrow V_{0}=3$ and $t_{0}=1$; half an hour after purchase $\Rightarrow t_{2}=1.5$, so step h required is 0.25	B1	3.3
	$t_{0}=1, V_{0}=3,\left(\frac{\mathrm{~d} V}{\mathrm{~d} t}\right)_{0} \approx \frac{3^{2}-1}{1^{2}+3}=2$	M1	3.4
	$V_{1} \approx V_{0}+h\left(\frac{\mathrm{~d} V}{\mathrm{~d} t}\right)_{0}=3+0.25 \times 2=\ldots$	M1	1.1b
	$=3.5$	A1ft	1.1b
	$\left(\frac{\mathrm{d} V}{\mathrm{~d} t}\right)_{1} \approx \frac{3.5^{2}-1.25}{1.25^{2}+1.25 \times 3.5}\left(=\frac{176}{95}\right)$	M1	1.1b
	$V_{2} \approx V_{1}+h\left(\frac{\mathrm{~d} V}{\mathrm{~d} t}\right)_{1}=3.5+0.25 \times \frac{176}{95}=3.963 \ldots$, so $£ 396$ (nearest $£$)	A1	3.2a
		(6)	
(6 marks)			
Notes			
$\begin{array}{ll} \hline \text { B1 } & \text { Identifies the correct initial conditions and requirement for } h . \\ \text { M1 } & \text { Uses the model to evaluate } \frac{\mathrm{d} V}{\mathrm{~d} t} \text { at } t_{0} \text {, using their } t_{0} \text { and } V_{0} . \end{array}$			
M1 Applies the approximation formula with their values.			
M1 Attempt to find $\left(\frac{\mathrm{d} V}{\mathrm{~d} t}\right)_{1}$ with their 3.5			
	plies the approximation and interprets the result to give $£ 396$.		

Q11.

