Probability Generating Functions

Questions

Q1.

The discrete random variable X has probability generating function

$$
\mathrm{G}_{X}(t)=k \ln \left(\frac{2}{2-t}\right)
$$

where k is a constant.
(a) Find the exact value of k
(b) Find the exact value of $\operatorname{Var}(X)$
(c) Find $\mathrm{P}(X=3)$

Q2.
A discrete random variable X has probability generating function given by

$$
\mathrm{G}_{X}(t)=\frac{1}{64}\left(a+b t^{2}\right)^{2}
$$

where a and b are positive constants.
(a) Write down the value of $\mathrm{P}(X=3)$

Given that $\mathrm{P}(X=4)=\frac{25}{64}$
(b) (i) find $\mathrm{P}(X=2)$
(ii) find $\mathrm{E}(X)$

The random variable $Y=3 X+2$
(c) Find the probability generating function of Y

Q3.

The probability generating function of the random variable X is

$$
\mathrm{G}_{x}(t)=k(1+2 t)^{5}
$$

where k is a constant.
(a) Show that $k=\frac{1}{243}$
(b) Find $\mathrm{P}(X=2)$
(c) Find the probability generating function of $W=2 X+3$

The probability generating function of the random variable Y is

$$
\mathrm{G}_{\mathrm{Y}}(t)=\frac{t(1+2 t)^{2}}{9}
$$

Given that X and Y are independent,
(d) find the probability generating function of $U=X+Y$ in its simplest form.
(e) Use calculus to find the value of $\operatorname{Var}(U)$

Q4.

The probability generating function of the discrete random variable X is given by

$$
\mathrm{G}_{x}(t)=k\left(3+t+2 t^{2}\right)^{2}
$$

(a) Show that $k=\frac{1}{36}$
(b) Find $\mathrm{P}(X=3)$
(c) Show that $\operatorname{Var}(X)=\frac{29}{18}$
(d) Find the probability generating function of $2 X+1$

Mark Scheme - Probability Generating Functions

Q1.

Qu	Scheme	Marks	AO
(a)	$\mathrm{G}(1)=1 \Rightarrow k \ln 2=1 \text { so } k=\frac{1}{\ln 2}$	B1 ${ }^{\text {(1) }}$	2.1
(b)	$\left\{\mathrm{G}(t)=\frac{1}{\ln 2}[\ln 2-\ln (2-t)]\right\} \Rightarrow \mathrm{G}^{\prime}(t)=\frac{1}{\ln 2}\left[\frac{1}{2-t}\right] \text { or } \frac{1}{\ln 2}(2-t)$	M1	${ }_{1.1}^{2.1}$
	$[\mathrm{E}(X)=] \mathrm{G}^{\prime}(1)=\frac{1}{1}$	A1	1.1
	$\mathrm{G}^{\prime \prime}(t)=\frac{1}{\ln 2} \times \frac{1}{(2}$	M1	${ }_{1.16}^{2.1}$
	$\operatorname{Var}(X)=\mathrm{G}^{\prime \prime}(1)+\mathrm{G}^{\prime}(1)-\left[\mathrm{G}^{\prime}(1)\right]$	M1	2.1
	$=\frac{1}{\ln 2}\left(2-\frac{1}{\ln 2}\right)$	A1	1.1 b
(c)	$\mathrm{P}(X=3)=$ coefficient of t^{3} by Maclaurin need $\mathrm{G}^{m}(0)$	1	a
	$\mathrm{G}^{\prime \prime \prime}(t)=\frac{1}{\ln 2} \frac{2}{(2-t)}$	A1	b
	($=3$) $=\frac{\mathrm{G}^{\prime \prime}(0)}{3!}$	M1	a
	$\frac{1}{\frac{1}{\ln 2}}=\frac{1}{24 \ln 2}=0.0601122 \ldots \quad \text { awrt } \underline{0.0601}$		
	Notes		
(a) (b)	B1 for finding k (must be exact)		
	$1^{\text {t }} \mathrm{M} 1$ for an attempt to differentiate $\mathrm{G}(t)$ e.g. $A(2-t)^{-1}(0 . e$.		
	$2^{\text {nd }} \mathrm{A} 1$ for correct $\mathrm{E}(X)$ or $\mathrm{G}^{\prime}(1)$ (allow awrt 1.44 calc: $1.442695 \ldots$ but not k) seen anywhere $2^{\text {nd }} \mathrm{M} 1$ for attempting second derivative (ft their $\mathrm{G}^{\prime}(t)$)		
	$3^{\text {rd }} \mathrm{A} 1$ for a correct $2^{\text {nd }}$ derivative (condone k or use of $\frac{1}{\mathrm{~m}^{2}}=$ awit 1.44)		
	$3^{\text {rd }} \mathrm{M} 1$ for a correct method for $\operatorname{Var}(X)$ (some substitution into the correct formula)		
	$4^{\text {th }} \mathrm{A} 1$ for $\frac{1}{\ln 2}\left(2-\frac{1}{\ln 2}\right)$ o.e. but must simplify i.e. collect like terms		
	NB 0.8040211.. is A0 unless exact answer seen		
(c)	$\begin{array}{ll}1^{\text {st }} \mathrm{M1} & \text { for a suitable strategy to solve the problem (finding link with Maclaurin) } \\ & \text { Need mention of coefficient of } t^{3} \text { and }\left[\mathrm{G}^{\prime \prime}(t) \text { or } \mathrm{G}^{\prime \prime}(0)\right]\left(\text { condone } \mathrm{G}^{\prime \prime}(1)\right.\end{array}$		
ALT	Log series $1^{\text {st }} \mathrm{M} 1$ attempt to write $\mathrm{G}(t)$ in suitable form as far as: $k\left[\ln 2-\ln \left(2\left[1-\frac{t}{2}\right]\right)\right]$ $1^{\text {st }} \mathrm{A} 1$ reaching $-k \ln \left(1-\frac{t}{2}\right)$		

Q2.

Question	Scheme	Marks	AOs
(a)	$\mathrm{P}(X=3)=\underline{0}$	B1	1.1b
		(1)	
(b)(i)	Coefficient of $t^{4}=\frac{1}{64} b^{2}$	M1	2.1
	$\frac{1}{64} b^{2}=\frac{25}{64}$	M1	1.1b
	$b=5$ (reject $b=-5$ since $b>0$)	A1	2.3
	$\begin{aligned} & \mathrm{G}_{X}(1)=1 \\ & \frac{1}{64}(a+" 5 ")^{2}=1 \\ & \hline \end{aligned}$	M1	2.1
	$a=3$ (reject $a=-13$ since $a>0$)	A1	1.1b
	$\mathrm{P}(X=2)=$ coefficient of $t^{2}=\frac{1}{64}(2 a b)$	M1	3.4
	$=\frac{15}{32}$	A1	1.1 b
		(7)	
(ii)	$\mathrm{E}(X)=\mathrm{G}_{X}^{\prime}(1)$	M1	2.1
	$\begin{aligned} & \mathrm{G}_{x}^{\prime}(t)=\frac{2}{64}\left(" 3 "+" 5 t^{2}\right) \times 10 " t \text { or } \\ & \mathrm{G}_{x}^{\prime}(t)=\frac{1}{64}\left(" 60 " t+100^{\prime \prime} t^{3}\right) \end{aligned}$	M1	1.1b
	$\mathrm{G}_{x}^{\prime}(1)=2.5$	A1ft	1.1b
		(3)	
(c)	$\mathrm{G}_{\mathrm{Y}}(t)=t^{2} \mathrm{G}_{X}\left(t^{3}\right)\left[=\frac{\frac{2}{6}_{64}^{44}}{}\left(a+b\left(t^{3}\right)^{2}\right)^{2}\right]$	M1	3.1a
	$\mathrm{G}_{Y}(t)=\frac{T^{2}}{64}\left(33^{\prime \prime}+" 5 " t^{6}\right)^{2}$	A1ft	1.1 b
		(2)	
(13 marks)			

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Notes}

\hline (a) \& B1: 0 (Since there is no term in t^{3})

\hline (b)(i)

(b)(ii) \& | M1: Realising that $\frac{1}{64} b^{2}$, the coefficient of t^{4}, is needed |
| :--- |
| M1: Equating their coefficient of t^{4} to $\frac{25}{64}$ with an attempt to find b |
| A1: $b=5$ only |
| M1: Realising that $\mathrm{G}_{x}(1)=1$ is required |
| A1: $a=3$ only |
| M1: Finding coefficient of t^{2} with their $a>0$ and $b>0$ |
| A1: $\frac{15}{32}$ (condone awrt 0.469) |
| M1: Realising $\mathrm{G}_{x}^{\prime}(1)$ is needed |
| M1: Attempt to differentiate $\mathrm{G}_{x}(t)$ with their values of a and b |
| A1ft: 2.5 ($\mathrm{ft}(3 \mathrm{sf})$ their values of a and $b, a>0$ and $b>0) \mathrm{E}(X)=\frac{a b b b^{2}}{16}$ |
| Alternative: |
| M1: Realising $X=0,2$ and 4 only $\text { M1: }[0 \times \mathrm{P}(X=0)]+2 \times \mathrm{P}(X=2)+4 \times \mathrm{P}(X=4)$ |

\hline (c) \& | M1: either $\mathrm{G}_{X}\left(t^{3}\right)$ or $\times t^{2}$ or using $Y=2,8,14$ |
| :--- |
| A1ft: ft their values of a and $b, a>0$ and $b>0$ $\begin{aligned} & \mathrm{G}_{Y}(t)=\frac{t^{2}}{64}\left(" 3 "+" 51 t^{6} t^{2} \text { or } \mathrm{G}_{Y}(t)=\frac{t^{2}}{64}\left(" 9 "+" 30 " t^{6}+" 25 " t^{12}\right)\right. \text { or } \\ & \mathrm{G}_{Y}(t)=\frac{1}{64}\left(" 9 t^{2} "+" 30 " t^{8}+" 255^{\prime \prime} t^{14}\right) \end{aligned}$ |

\hline
\end{tabular}

Q3.

Question	Scheme	Marks	AOs
(a)	$\mathrm{G} x(1)=1$	M1	2.1
	$k \times 3^{5}=1 \quad \therefore k=\frac{1}{243} *$	A1* ${ }^{\text {cso }}$ (2)	1.1b
(b)	$\mathrm{P}(X=2)$ is coefficient of t^{2} so $\mathrm{G}_{X}(t)=k\left(\ldots+{ }^{5} C_{2}(2 t)^{2}+\ldots\right)$	M1	1.1b
	$\mathrm{P}(X=2)=\frac{40}{243}$	$\begin{aligned} & \text { A1 } \\ & \text { (2) } \end{aligned}$	1.1b
(c)	$\mathrm{G}_{\mathrm{W}}(t)=\frac{t^{3}}{243}\left(1+2\left(t^{2}\right)\right)^{5}$	M1	3.1a
	$\mathrm{G}_{W}(t)=\frac{t^{3}}{243}\left(1+2 t^{2}\right)^{5}$	A1 (2)	1.1b
(d)	$G_{V}(t)=\frac{1}{243}(1+2 t)^{5} \times \frac{t(1+2 t)^{2}}{9}$	M1	3.1a
	$=\frac{t(1+2 t)^{7}}{2187}$	$\begin{aligned} & \text { A1 } \\ & \text { (2) } \end{aligned}$	1.1b

(e)	$\mathrm{G}_{v}{ }^{\prime}(t)=\frac{14 t(1+2 t)^{6}}{2187}+\frac{(1+2 t)^{7}}{2187}$	M1	2.1
	$\mathrm{G}_{U}{ }^{\prime}(1)=\frac{17}{3}$	A1ft	1.1b
	$\mathrm{G}_{U}^{\prime \prime}{ }^{\prime \prime}(t)=\frac{168 t(1+2 t)^{5}}{2187}+\frac{14(1+2 t)^{6}}{2187}+\frac{14(1+2 t)^{6}}{2187}$	M1	2.1
	$\mathrm{G}_{v}{ }^{\prime \prime}(1)=28$	A1	1.1 b
	$\operatorname{Var}(U)=" 28 "+" \frac{17}{3} n-\left(\# \frac{17}{3} n\right)^{2}$	M1	2.1
	$=\frac{14}{9}$	$\begin{aligned} & \text { A1 } \\ & \text { (6) } \\ & \hline \end{aligned}$	1.1b
ALT(e)	$\mathrm{G}_{x}^{\prime \prime}(t)=A(1+2 t)^{3}$	M1	
	$\mathrm{G}_{x}{ }^{\prime}(1)=\frac{10}{3}$ and $\mathrm{G}_{x}{ }^{\prime \prime}(1)=\frac{80}{9}$	A1ft	
	$\mathrm{G}^{\prime \prime}{ }^{\prime \prime}(t)=H(8+24 t)$	M1	
	$\mathrm{G}_{Y}{ }^{\prime}(1)=\frac{7}{3}$ and $\mathrm{G}_{Y}^{\prime \prime}(1)=\frac{32}{9}$	A1	
	Using $\mathrm{G}_{U}{ }^{\prime \prime}(1)+\mathrm{G}_{U}{ }^{\prime}{ }^{\prime}(1)-\left(\mathrm{G}_{U}{ }^{\prime}(1)\right)^{2}$ to find $\operatorname{Var}(X), \operatorname{Var} Y$ and $\operatorname{Var} U$	M1	
	$\frac{14}{9}$ or awrt1.56	A1	
(14 marks)			

Notes:

(a)	M1:	Stating $\mathrm{G}_{X}(1)=1 \quad$ eg $\quad \mathrm{G}_{x}(1)=k(1+2)^{5}=1 \quad k(1+2)^{5}=1$ Allow Verification $\frac{1}{243} \times 3^{5}=1$
	A1*:	Fully correct proof with no errors Substituting $t=1$ Verification need therefore $\mathrm{G}_{x}(1)=1$
(b)	M1:	Attempting to find the coefficient of t^{2}
	A1:	$\frac{40}{243}$ or awrt 0.165
(c)	M1:	Realising the need to multiply through by t^{3} or subst t^{2} for t
	Al:	$\frac{t^{3}}{243}\left(1+2 t^{2}\right)^{5} \text { oe eg } \frac{t^{3}}{243}\left(1+10 t^{2}+40 t^{4}+80 t^{6}+80 t^{8}+32 t^{10}\right)$
(d)	M1:	Realising the need to use $G_{U}(t)=G_{X}(t) \times G_{Y}(t)$
	A1:	$\frac{t(1+2 t)^{7}}{2187} \text { oe }$
(e)	M1:	For an attempt to differentiate $\mathrm{G}(u)$ e.g $\mathrm{G}_{U}{ }^{\prime}(t)=A t(1+2 t)^{6}+B(1+2 t)^{7} \mathrm{ft}$ their part(d) if in the form $k t(1+2 t)^{n}$ where $n \geqslant 5$
	Alft:	$\frac{17}{3}$ or awrt 5.67
	M1:	For attempting second derivative eg $\mathrm{G}_{U}{ }^{\prime \prime}(t)=C t(1+2 t)^{5}+D(1+2 t)^{6} \mathrm{ft}$ their part(d) if in the form $k t(1+2 t)^{n}$ where $n \geqslant 5$
	A1	28
	M1:	Using $\mathrm{G}_{U}{ }^{\prime \prime}(1)+\mathrm{G}_{U}{ }^{\prime}(1)-\left(\mathrm{G}_{U}{ }^{\prime}(1)\right)^{2} \mathrm{ft}$ their values
	Al:	$\frac{14}{9}$ or awrt1.56

Q4.

Question	Scheme	Marks	AOs
(a)	$\mathrm{G}_{x}(1)=1$ gives	M1	2.1
	k×6 ${ }^{2}=1 \quad$ so $k=\frac{1}{36}$ *	A1*cso	1.1b
		(2)	
(b)	$\mathrm{P}(X=3)=$ coefficient of t^{3} so $\mathrm{G}_{X}(t)=k\left(\ldots+4 t^{3} \ldots\right)$	M1	1.1 b
	$[\mathrm{P}(X=3)=] \frac{1}{9}$	A1	1.1b
		(2)	
(c)	$\mathrm{G}_{x}^{\prime}(t)=2 k\left(3+t+2 t^{2}\right) \times(1+4 t)$	M1	2.1
	$\mathrm{E}(X)=\mathrm{G}_{x}^{\prime}(1)=2 k(3+1+2) \times(1+4)$	M1	1.1b
	$=\frac{5}{3}$	A1	1.1b
	$\mathrm{G}_{x}^{\prime \prime}(t)=2 k\left[\left(3+t+2 t^{2}\right) \times 4+(1+4 t)^{2}\right\rfloor$	M1	$\begin{gathered} \hline 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$
	$\mathrm{G}_{x}^{\prime \prime}(1)=2 k\left[6 \times 4+5^{2}\right] \quad\left\{=\frac{49}{18}\right\}$	M1	1.1b
	$\operatorname{Var}(X)=\mathrm{G}_{x}^{\prime \prime}(1)+\mathrm{G}_{x}^{\prime}(1)-\left[\mathrm{G}_{x}^{\prime}(1)\right]^{2}=\frac{49}{18}+\frac{5}{3}-\frac{25}{9}$	M1	2.1
	$=\frac{29}{18}$ *	A1*cso	1.1b
		(8)	
(d)	$\mathrm{G}_{2 X+1}(t)=\frac{t}{36}\left(3+t^{2}+2\left(t^{2}\right)^{2}\right)^{2} \quad\left[\times t\right.$ or sub t^{2} for $\left.t\right]$	M1	3.1a
	$=\mathrm{G}_{2 X+1}(t)=\frac{t}{36}\left(3+t^{2}+2 t^{4}\right)^{2}$	A1	1.1b
		(2)	
(14 marks)			

Notes	
(a)	M1: Stating $\mathrm{G}_{x}(1)=1$ $\mathbf{A 1}^{*}$ cso: Fully correct proof with no errors
(b)	$\mathbf{M 1 :}$ Attempting to find the coefficient of t^{3}. May be implied by obtaining $\frac{1}{9}$ or awrt
	0.11 A1: $\frac{1}{9}$, allow awrt 0.111

Notes (continued)	
(c)	M1: Attempting to find $\mathrm{G}_{x}^{\prime}(t)$. Allow Chain rule or multiplying out the brackets and differentiating M1: Substituting $t=1$ into $\mathrm{G}_{x}^{\prime}(t)$ A1: $\frac{5}{3}$, allow awrt 1.67 M1: Attempting to find $\mathrm{G}_{x}^{\prime \prime}(t)$ A1: $2 k\left\lfloor\left(3+t+2 t^{2}\right) \times 4+(1+4 t)^{2}\right]$ or $k\left(48 t^{2}+24 t+26\right)$ o.e. A1: $2 k\left[6 \times 4+5^{2}\right]$ o.e. M1: Using $\mathrm{G}_{x}^{\prime \prime}(1)+\mathrm{G}_{x}^{\prime}(1)-\left[\mathrm{G}_{x}^{\prime}(1)\right]^{2}$ to find the Variance A1*cso: $\frac{29}{18}$
(d)	M1:Realising the need to $\times t$ or sub t^{2} for t A1: $\frac{t}{36}\left(3+t^{2}+2 t^{4}\right)^{2}$, or $\frac{t}{36}\left(9+6 t^{2}+13 t^{4}+4 t^{6}+4 t^{8}\right)$ o.e.

