Probability Generating Functions

Questions

Q1.

The discrete random variable X has probability generating function

$$G_X(t) = k \ln\left(\frac{2}{2-t}\right)$$

where k is a constant.

(a) Find the exact value of k

(b) Find the exact value of Var(X)

- (1)
- (7)
- (c) Find P(X = 3)

(4)

(1)

(3)

(Total for question = 12 marks)

Q2.

A discrete random variable X has probability generating function given by

$$G_{X}(t) = \frac{1}{64} (a + bt^{2})^{2}$$

where a and b are positive constants.

(a) Write down the value of P(X = 3)

Given that $P(X = 4) = \frac{25}{64}$ (b) (i) find P(X = 2)

(ii) find E(*X*) (7)

The random variable Y = 3X + 2

(c) Find the probability generating function of Y

(2) (Total for question = 13 marks) Q3.

The probability generating function of the random variable X is

$$G_X(t) = k(1+2t)^{\epsilon}$$

where k is a constant.

(a) Show that
$$k = \frac{1}{243}$$

- (b) Find P(X = 2) (2)
- (c) Find the probability generating function of W = 2X + 3

The probability generating function of the random variable Y is

$$G_{\rm Y}(t) = \frac{t(1+2t)^2}{9}$$

Given that X and Y are independent,

- (d) find the probability generating function of U = X + Y in its simplest form.
- (e) Use calculus to find the value of Var(U)

(6)

(2)

(2)

(Total for question = 14 marks)

Q4.

The probability generating function of the discrete random variable X is given by

(a) Show that
$$k = \frac{1}{36}$$

(b) Find P(X = 3)
(c) Show that $Var(X) = \frac{29}{18}$
(d) Find the probability generating function of 2X + 1
(2)

 $G_{X}(t) = k(3 + t + 2t^{2})^{2}$

(Total for question = 14 marks)

Mark Scheme – Probability Generating Functions

Q1.

Qu	Scheme	Marks	AO
(a)	$G(1) = 1 \implies k \ln 2 = 1$ so $k = \frac{1}{\ln 2}$	B1	2.1
(b)	$\left\{ G(t) = \frac{1}{\ln 2} \left[\ln 2 - \ln(2 - t) \right] \right\} \implies G'(t) = \frac{1}{\ln 2} \left[\frac{1}{2 - t} \right] \text{ or } \frac{1}{\ln 2} (2 - t)^{-1}$	(1) M1 A1	2.1 1.1b
	$[E(X) =] G'(1) = \frac{1}{\ln 2}$	A1	1.1b
	$\mathbf{G}''(t) = \frac{1}{\ln 2} \times \left[\frac{1}{\left(2-t\right)^2}\right]$	M1 A1	2.1 1.1b
	$Var(X) = G''(1) + G'(1) - [G'(1)]^2 = \frac{1}{\ln 2} + \frac{1}{\ln 2} - \left(\frac{1}{\ln 2}\right)^2$	M1	2.1
	$=\frac{1}{\ln 2}\left(2-\frac{1}{\ln 2}\right)$	A1 (7)	1.1b
(c)	$P(X=3) = \text{coefficient of } t^3$ by Maclaurin need $G'''(0)$	M1 (7)	3.1a
	$G''(t) = \frac{1}{\ln 2} \frac{2}{(2-t)^3}$	A1ft	1.1b
	$P(X=3) = \frac{G''(0)}{3!}$	M1	3.2a
	$=\frac{\frac{1}{4\ln 2}}{6}=\frac{1}{24\ln 2}=0.0601122$ awrt <u>0.0601</u>	A1 (4)	1.1b
	0 24m 2	(12 m	arks)
	Notes		
(a)	B1 for finding k (must be exact)		
(b)	1 st M1 for an attempt to differentiate $G(t)$ e.g. $A(2-t)^{-1}$ (o.e.)		
	1 st A1 for a correct first derivative (condone k or use of $\frac{1}{\ln 2}$ = awrt 1.44)		
	2^{nd} A1 for correct E(X) or G'(1) (allow awrt 1.44 calc: 1.442695but not k)) seen any	where
	2^{nd} M1 for attempting second derivative (ft their G'(t))		
	3 rd M1 for a correct method for $Var(X)$ (some substitution into the correct form)	112)	
	4^{th} A1 for $\frac{1}{\ln 2} \left(2 - \frac{1}{\ln 2}\right)$ o.e. but must simplify i.e. collect like terms	на)	
	[Mark final answer – penalise incorrect NB 0 8040211 is A0 unless exact answer seen	log work	etc]
(c)	1 st M1 for a suitable strategy to solve the problem (finding link with Maclauri	n)	
	Need mention of coefficient of t^3 and $[G''(t) \text{ or } G'''(0)]$ (condone $G'''(t)$	(1)) et)	
	Correct $G''(t)$ or $G''(0)$ scores 1 st M1 1 st A1ft	stj	
	2 nd M1 for translating Maclaurin to probability (a correct expression) 2 nd A1 for $\frac{1}{24h^2}$ or awrt 0.0601		
ALT	Log series 1^{st} M1 attempt to write $G(t)$ in suitable form as far as: $k[\ln 2 - \ln(2[1 + 1) + 1)]$	$-\frac{t}{2}])]$	
	1^{st}A1 reaching $-k \ln(1-\frac{t}{2})$		
	2 nd M1 use of $-\ln(1-x)$ series (some correct substitution) NB $G(t) = \frac{1}{\ln 2} \left(\frac{t}{2} + \frac{t^2}{3}\right)$	$\frac{1}{2} + \frac{t^3}{24} + $	

Question	Scheme	Marks	AOs
(a)	$P(X=3) = \underline{0}$	B1	1.1b
		(1)	
(b)(i)	Coefficient of $t^4 = \frac{1}{64}b^2$	M1	2.1
	$\frac{1}{64}b^2 = \frac{25}{64}$	M1	1.1t
	b = 5 (reject $b = -5$ since $b > 0$)	A1	2.3
	$G_x(1) = 1$ $\frac{1}{64}(a + 5'')^2 = 1$	M1	2.1
	a = 3 (reject $a = -13$ since $a > 0$)	A1	1.11
	$P(X=2) = \text{coefficient of } t^2 = \frac{1}{64}(2ab)$	M1	3.4
	$=\frac{15}{32}$	A1	1.11
		(7)	
(ii)	$\mathbf{E}(X) = \mathbf{G}'_X(1)$	M1	2.1
	$G'_{X}(t) = \frac{2}{64} ("3" + "5"t^{2}) \times "10"t \text{ or}$ $G'_{X}(t) = \frac{1}{64} ("60"t + "100"t^{3})$	M1	1.11
	$G'_{X}(1) = 2.5$	A1ft	1.11
		(3)	
(c)	$G_{Y}(t) = t^{2}G_{X}(t^{3})[=\frac{t^{2}}{64}(a+b(t^{3})^{2})^{2}]$	M1	3.1a
	$G_{Y}(t) = \frac{t^{2}}{64} ("3" + "5"t^{6})^{2}$	Alft	1.11
		(2)	

	Notes	
(a)	B1 : 0 (Since there is no term in t^3)	
(b)(i)	M1: Realising that $\frac{1}{64}b^2$, the coefficient of t^4 , is needed	
	M1: Equating their coefficient of t^4 to $\frac{25}{64}$ with an attempt to find b	
	A1: $b = 5$ only	
	M1: Realising that $G_X(1) = 1$ is required	
	A1: $a = 3$ only	
	M1 : Finding coefficient of t^2 with their $a > 0$ and $b > 0$	
	A1: $\frac{15}{32}$ (condone awrt 0.469)	
(b)(ii)	M1: Realising $G'_{X}(1)$ is needed	
	M1: Attempt to differentiate $G_X(t)$ with their values of a and b	
	A1ft: 2.5 (ft (3sf) their values of a and b, $a > 0$ and $b > 0$) $E(X) = \frac{ab+b^2}{16}$	
	Alternative:	
	M1: Realising $X = 0$, 2 and 4 only	
÷	M1: $[0 \times P(X=0)] + 2 \times P(X=2) + 4 \times P(X=4)$	
	M1: either $G_X(t^3)$ or $\times t^2$ or using $Y = 2, 8, 14$	
(2)	A1ft: ft their values of a and b , $a > 0$ and $b > 0$	
(c)	$G_{Y}(t) = \frac{t^{2}}{64} ("3" + "5"t^{6})^{2}$ or $G_{Y}(t) = \frac{t^{2}}{64} ("9" + "30"t^{6} + "25"t^{12})$ or	
	$G_{\mathbf{Y}}(t) = \frac{1}{64} ("9t^2" + "30"t^8 + "25"t^{14})$	

Question	Scheme	Marks	AOs
(a)	$G_X(1) = 1$	M1	2.1
	$k \times 3^5 = 1 \therefore k = \frac{1}{243} *$	A1*cso (2)	1.1b
(b)	$P(X=2)$ is coefficient of t^2 so $G_X(t) = k(+{}^5C_2(2t)^2+)$	M1	1.1b
	$P(X=2) = \frac{40}{243}$	A1 (2)	1.1b
(c)	$\mathbf{G}_{\mathbf{F}}(t) = \frac{t^3}{243} \left(1 + 2\left(t^2\right) \right)^5$	M1	3.1a
	$G_{\rm pr}(t) = \frac{t^3}{243} (1 + 2t^2)^5$	A1 (2)	1.1b
(d)	$G_{U}(t) = \frac{1}{243} (1+2t)^{5} \times \frac{t(1+2t)^{2}}{9}$	M1	3.1a
	$=\frac{t(1+2t)^{7}}{2187}$	A1 (2)	1.1b
(e)	$\mathbf{G}_{U}'(t) = \frac{14t(1+2t)^{6}}{2187} + \frac{(1+2t)^{7}}{2187}$	M1	2.1
	$G_{U}'(1) = \frac{17}{3}$	A1ft	1.1b
	$\mathbf{G}_{U}''(t) = \frac{168t(1+2t)^{5}}{2187} + \frac{14(1+2t)^{6}}{2187} + \frac{14(1+2t)^{6}}{2187}$	M1	2.1
	$G_{U}''(1) = 28$	A1	1.1b
	$Var(U) = "28" + "\frac{17}{3}" - \left("\frac{17}{3}"\right)^2$	M1	2.1
	$=\frac{14}{9}$	A1 (6)	1.1b
ALT(e)	$G_{x}''(t) = A(1+2t)^{3}$	M1	
	$G_{x}'(1) = \frac{10}{3}$ and $G_{x}''(1) = \frac{80}{9}$	A1ft	Ç.
	$\mathbf{G}_{\mathbf{Y}}^{"}(t) = H(8+24t)$	M1	
	$G_{r}'(1) = \frac{7}{3}$ and $G_{r}''(1) = \frac{32}{9}$	A1	
	Using $\mathbf{G}_{U}^{''}(1) + \mathbf{G}_{U}^{'}(1) - \left(\mathbf{G}_{U}^{'}(1)\right)^{2}$ to find $\operatorname{Var}(X)$, $\operatorname{Var} X$ and $\operatorname{Var} U$	M1	

Note	Notes:		
(a)	Ml:	Stating $G_X(1) = 1$ eg $G_X(1) = k(1+2)^5 = 1$ $k(1+2)^5 = 1$ Allow Verification $\frac{1}{243} \times 3^5 = 1$	
	Al*:	Fully correct proof with no errors Substituting $t=1$ Verification need therefore $G_X(1) = 1$	
(b)	M1:	Attempting to find the coefficient of t^2	
	Al:	$\frac{40}{243}$ or awrt 0.165	
(c)	M1 :	Realising the need to multiply through by t^3 or subst t^2 for t	
	Al:	$\frac{t^3}{243} (1+2t^2)^5 \text{ oe eg } \frac{t^3}{243} (1+10t^2+40t^4+80t^6+80t^8+32t^{10})$	
(d)	M1:	Realising the need to use $G_U(t) = G_X(t) \times G_Y(t)$	
	A1:	$\frac{t(1+2t)^7}{2187}$ oe	
(e)	M1:	For an attempt to differentiate G (u) e.g $G_{U}'(t) = At(1+2t)^{6} + B(1+2t)^{7}$ ft their part(d) if in the form $kt(1+2t)^{n}$ where $n \ge 5$	
	Alft:	$\frac{17}{3}$ or awrt 5.67	
	M1:	For attempting second derivative eg $G_U''(t) = Ct(1+2t)^5 + D(1+2t)^6$ ft their part(d) if in the form $kt(1+2t)^n$ where $n \ge 5$	
	Al	28	
	M1:	Using ${\bf G}_{U}^{''}(1) + {\bf G}_{U}^{'}(1) - \left({\bf G}_{U}^{'}(1) \right)^2$ ft their values	
	Al:	$\frac{14}{9}$ or awrt1.56	

Question	Scheme	Marks	AOs
(a)	$G_X(1) = 1$ gives	M1	2.1
	$k \times 6^2 = 1$ so $k = \frac{1}{36}$ *	A1*cso	1.1b
5		(2)	
(b)	$P(X=3) = \text{coefficient of } t^3 \text{ so } G_X(t) = k(+4t^3)$	M1	1.1b
	$[P(X=3)=]\frac{1}{9}$	A1	1.1b
6		(2)	
(c)	$G'_{X}(t) = 2k(3+t+2t^{2}) \times (1+4t)$	M1	2.1
	$E(X) = G'_X(1) = 2k(3+1+2) \times (1+4)$	M1	1.1b
	$=\frac{5}{3}$	A1	1.1b
	$G''_{r}(t) = 2k \left (3+t+2t^{2}) \times 4 + (1+4t)^{2} \right $	M1	2.1
		A1	1.1b
	$G''_{X}(1) = 2k[6 \times 4 + 5^{2}] \qquad \left\{ = \frac{49}{18} \right\}$	M1	1.1b
	$\operatorname{Var}(X) = G_X''(1) + G_X'(1) - \left[G_X'(1)\right]^2 = \frac{49}{18} + \frac{5}{3} - \frac{25}{9}$	M1	2.1
	$=\frac{29}{18}*$	A1*cso	1.1b
2		(8)	
(d)	$G_{2X+1}(t) = \frac{t}{36} \left(3 + t^2 + 2\left(t^2\right)^2\right)^2 \qquad [\times t \text{ or sub } t^2 \text{ for } t]$	M1	3.1a
	$= G_{2X+1}(t) = \frac{t}{36} \left(3 + t^2 + 2t^4\right)^2$	A1	1.1b
		(2)	
		(14	marks)

2	Notes	
(a)	M1: Stating $G_X(1) = 1$	
(b)	M1: Attempting to find the coefficient of t^2 May be implied by obtaining $\frac{1}{2}$ or away	
	Attempting to find the coefficient of i , way be implied by obtaining $\frac{1}{9}$ of awr	
	A1: $\frac{1}{2}$, allow awrt 0.111	
	9	

	Notes (continued)	
(c)	 M1: Attempting to find G'_x(t). Allow Chain rule or multiplying out the brackets and differentiating M1: Substituting t = 1 into G'_x(t) 	
	A1: $\frac{5}{3}$, allow awrt 1.67	
	M1 : Attempting to find $G''_{X}(t)$	
	A1: $2k \lfloor (3+t+2t^2) \times 4 + (1+4t)^2 \rfloor$ or $k(48t^2+24t+26)$ o.e.	
	A1: $2k[6 \times 4 + 5^2]$ o.e.	
	M1: Using $G''_X(1) + G'_X(1) - [G'_X(1)]^2$ to find the Variance	
	A1*cso: $\frac{29}{18}$	
(d)	M1 :Realising the need to $\times t$ or sub t^2 for t	
	A1: $\frac{t}{36}(3+t^2+2t^4)^2$, or $\frac{t}{36}(9+6t^2+13t^4+4t^6+4t^8)$ o.e.	