Methods in Differential Equations

Questions

Q1.
(a) Find, in the form $y=\mathrm{f}(x)$, the general solution of the equation

$$
\begin{equation*}
\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \sin x=2 \cos ^{3} x \sin x+1, \quad 0<x<\frac{\pi}{2} \tag{8}
\end{equation*}
$$

Given that $y=5 \sqrt{2}$ when $x=\frac{\pi}{4}$
(b) find the value of y when $x=\frac{\pi}{6}$, giving your answer in the form $a+b \sqrt{3}$, where a and b are rational numbers to be found.

Q2.
(a) Determine the general solution of the differential equation
$\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \sin x=\mathrm{e}^{2 x} \cos ^{2} x$
giving your answer in the form $y=\mathrm{f}(x)$
Given that $y=3$ when $x=0$
(b) determine the smallest positive value of x for which $y=0$

Q3.
(a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=26 \sin 3 x \tag{8}
\end{equation*}
$$

(b) Find the particular solution of this differential equation for which $y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$

Mark Scheme - Methods in Differential Equations

Q1.

$\begin{array}{\|l\|} \hline \text { Question } \\ \text { Number } \end{array}$	Scheme	Notes	Marks
	$\cos x \frac{\mathrm{~d} y}{\mathrm{dx}}+y \sin$	$=2 \cos ^{3} x \sin x+1$	
(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}+y \tan x=2 \cos ^{2} x \sin x+\frac{1}{\cos x}$	Divides by $\cos x$ LHS both terms divided RHS $\min 1$ term divided	M1
	$I=e^{\tan x d x}=\mathrm{e}^{\operatorname{lisex} x}=\sec x$	M1: Attempt integrating factor $\mathrm{e}^{\int \operatorname{tanxdx}}$ needed A1: Correct integrating factor, $\sec x$ or $\frac{1}{\cos x}$	dM1A1
	$y \sec x=\int\left(2 \sin x \cos x+\sec ^{2} x\right) \mathrm{d} x$	Multiply through by their IF and integrate LHS (integration may be done later) $y I=\int($ their RHS $) I \mathrm{~d} x$	M1
	$y \sec x=-\frac{1}{2} \cos 2 x+\tan x(+c)$	M1: Attempt integration of at least one term on RHS (provided both sides have been multiplied by their IF.) OR $\sec ^{2} x \rightarrow K \tan x$	M1A1A1
		A1: $-\frac{1}{2} \cos 2 x$ or equivalent integration of $2 \sin x \cos x\left(\sin ^{2} x\right.$ or $\left.-\cos ^{2} x\right)$	
		A1: $\tan x$ constant not needed.	
	$\begin{gathered} y=\left(-\frac{1}{2} \cos 2 x+\tan x+c\right) \cos x \\ y=\left(-\cos ^{2} x+\tan x+c\right) \cos x \\ y=\left(\sin ^{2} x+\tan x+c\right) \cos x \end{gathered}$	Include the constant and deal with it correctly. Must start $y=\ldots$ Or equivalent eg $y=-\frac{1}{2} \cos 2 x \cos x+\sin x+c \cos x$ Follow through from the line above	Alft
			(8)
(b)	$x=\frac{\pi}{4} \Rightarrow 5 \sqrt{2}=\ldots \ldots \Rightarrow c=\ldots$.	Substitutes for x and y and solves for c (If substitution not shown award for at least one term evaluated correctly.)	M1
	$x=\frac{\pi}{6} \Rightarrow y=\ldots \ldots .$.	Substitutes $x=\frac{\pi}{6}$ to find a value for y	M1
	$\begin{aligned} y & =\frac{1}{2}+\frac{35}{8} \sqrt{3} \\ \text { or } y & =0.5+4.375 \sqrt{3} \end{aligned}$	Must be in given form. Equivalent fractions allowed. ...	Alcao
			(3)
NB	(b) There may be no working shown due to use of calculator. In such cases: Final answer correct (and in required form with no decimals instead of $\sqrt{3}$ seen), score $3 / 3$. Final answer incorrect (or decimals instead of $\sqrt{3}$ seen), score $0 / 3$. This applies whether (a) is correct or not.		
			Total 11

Q2.

Question	Scheme	Marks	AOs
(a)	$\begin{gathered} \frac{d y}{d x}+y \tan x=e^{2 x} \cos x \\ \mathrm{IF}=e^{\int \tan x d x}=e^{l n \sec x}=\sec x \Rightarrow \sec x \frac{d y}{d x}+y \sec x \tan x \\ =e^{2 x} \\ \Rightarrow y \sec x=\int e^{2 x} d x \end{gathered}$	M1	3.1a
	$y \sec x=\frac{1}{2} e^{2 x}(+c)$	A1	1.1b
	$y=\left(\frac{1}{2} e^{2 x}+c\right) \cos x$	A1	1.1b
		(3)	
(b)	$x=0, y=3 \Rightarrow c=\ldots\{2.5\}$	M1	3.1a
	$y=\left(\frac{1}{2} e^{2 x}+\frac{5}{2}\right) \cos x=0 \Rightarrow \cos x=0 \Rightarrow x=\ldots$	M1	1.1b
	$x=\frac{\pi}{2}$	A1	1.1b
		(3)	
(6 marks)			

Notes:

(a)

M1: Finds the integrating factor and attempts the solution of the differential equation.
Look for I.F. $=e^{\int \tan x d x} \Rightarrow y \times$ 'their I.F.' $=\int e^{2 x} \cos x \times$ 'their I.F.' $d x$
Al: Correct solution condone missing $+c$
Al: Correct general solution, Accept equivalents of the form $y=\mathrm{f}(x)$, such as $y=\frac{e^{2 x}}{2 \sec x}+\frac{c}{\sec x}$
(b)

M1: Uses $x=0 \quad y=3$ to find the constant of integration. Allow if done as part of part (a) and allow for their answer to (a) as long as it has a constant of integration to find.
M1: Sets $y=0$ in an equation of the form $y=\left(A e^{2 x}+c\right) \cos x(o \mathrm{e})$ where A is 1,2 or $\frac{1}{2}$, with their c or constant c and makes a valid attempt to solve the equation to find a value for x. (Allow even if the constant of integration has not been found).
Al: Depends on both M's. Awrt 1.57 or $\frac{\pi}{2}$ only. There must have been an attempt to find the constant of integration, but allow from a correct answer to (a) as long as a positive value for c has been found (can be scored from implicit form).

Q3.

Question Number	Scheme	Notes	Marks
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=$	n $3 x$	
(a)	$m^{2}-2 m=0 \Rightarrow m=0,2$	Solves AE	M1
	(CF or $y=$) $A+B \mathrm{e}^{2 x}$ or $A \mathrm{e}^{0}+B \mathrm{e}^{2 x}$ oe	Correct CF (CF or $y=$ not needed)	A1
	(PI or $y=$) $a \cos 3 x+b \sin 3 x$	Correct form for PI (PI or $y=$ not needed)	B1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-3 a \sin 3 x+3 b \cos 3 x, \frac{\mathrm{~d}^{2} y}{\mathrm{dx}}$	$-9 a \cos 3 x-9 b \sin 3 x$	M1A1
	M1: Differentiates twice; change of trig function first derivative, $\pm 1, \pm 3$ or ± 9 for second de A1: Correct de	ons needed, ± 1 or ± 3 for coeffs for vative ($1 / 3$ etc indicates integration) vatives	
	$-9 a \cos 3 x-9 b \sin 3 x+6 a \sin 3$	$-6 b \cos 3 x=26 \sin 3 x$	
	$\therefore-9 a-6 b=0,-9 b+6 a=26 \Rightarrow a=\ldots, b=\ldots$	Substitutes and forms simultaneous equations (by equating coeffs) and attempts to solve for a and b Depends on the second M mark	dM1
	$a=\frac{4}{3}, b=-2$	Correct a and b	A1
	$y=A+B \mathrm{e}^{2 x}+\frac{4}{3} \cos 3 x-2 \sin 3 x$	Forms the GS (ft their CF and PI) Must start $y=\ldots$..	A1ft (8)
(b)	$0=A+B+\frac{4}{3}$	Substitutes $x=0$ and $y=0$ into their GS	M1
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=2 B \mathrm{e}^{2 x}-4 \sin 3 x-6 \cos 3 x \Rightarrow 0=2 B-6$ Differentiates and substitutes $x=0$ and $y^{\prime}=0$ (change of trig functions needed, ± 1 or ± 3 for coeffs)		M1
	$0=A+B+\frac{4}{3}, 0=2 B-6 \Rightarrow A=\ldots, B=.$.	Solves simultaneously to obtain values for A and B Depends on the second M mark	dM1
	$A=\frac{-13}{3}, \quad B=3$	Correct values	A1
	$y=3 \mathrm{e}^{2 x}-\frac{13}{3}+\frac{4}{3} \cos 3 x-2 \sin 3 x$	Follow through their GS and A and B Must start $y=$...	A1ft (5)
			Total 13

