Matrices

Questions

Q1.

$$
\mathbf{M}=\left(\begin{array}{rrr}
2 & 1 & -3 \\
4 & -2 & 1 \\
3 & 5 & -2
\end{array}\right)
$$

(a) Find \mathbf{M}^{-1} giving each element in exact form.
(b) Solve the simultaneous equations

$$
\begin{gather*}
2 x+y-3 z=-4 \\
4 x-2 y+z=9 \\
3 x+5 y-2 z=5 \tag{2}
\end{gather*}
$$

(c) Interpret the answer to part (b) geometrically.

Q2.

(In this question you must show all stages of your working.)

A college offers only three courses: Construction, Design and Hospitality.
Each student enrols on just one of these courses.
In 2019, there was a total of 1110 students at this college.
There were 370 more students enrolled on Construction than Hospitality.

- Construction increased by 1.25%
- Design increased by 2.5%
- Hospitality decreased by 2%

In 2020, the total number of students at the college increased by 0.27% to 2 significant figures.
(a) (i) Define, for each course, a variable for the number of students enrolled on that course in 2019.
(ii) Using your variables from part (a)(i), write down three equations that model this situation.
(b) By forming and solving a matrix equation, determine how many students were enrolled on each of the three courses in 2019.

Q3.

The population of chimpanzees in a particular country consists of juveniles and adults. Juvenile chimpanzees do not reproduce.

In a study, the numbers of juvenile and adult chimpanzees were estimated at the start of each year. A model for the population satisfies the matrix system

$$
\binom{J_{n+1}}{A_{n+1}}=\left(\begin{array}{cc}
a & 0.15 \\
0.08 & 0.82
\end{array}\right)\binom{J_{n}}{A_{n}} \quad n=0,1,2, \ldots
$$

where a is a constant, and J_{n} and A_{n} are the respective numbers of juvenile and adult chimpanzees n years after the start of the study.
(a) Interpret the meaning of the constant a in the context of the model.

At the start of the study, the total number of chimpanzees in the country was estimated to be 64000

According to the model, after one year the number of juvenile chimpanzees is 15360 and the number of adult chimpanzees is 43008
(b) (i) Find, in terms of a

$$
\left(\begin{array}{cc}
a & 0.15 \tag{3}\\
0.08 & 0.82
\end{array}\right)^{-1}
$$

(ii) Hence, or otherwise, find the value of a.
(iii) Calculate the change in the number of juvenile chimpanzees in the first year of the study, according to this model.

Given that the number of juvenile chimpanzees is known to be in decline in the country,
(c) comment on the short-term suitability of this model.

A study of the population revealed that adult chimpanzees stop reproducing at the age of 40 years.
(d) Refine the matrix system for the model to reflect this information, giving a reason for your answer.
(There is no need to estimate any unknown values for the refined model, but any known values should be made clear.)

Q4.
$\mathbf{M}=\left(\begin{array}{rrr}a & 2 & -3 \\ 2 & 3 & 0 \\ 4 & a & 2\end{array}\right) \quad$ where a is a constant
(a) Show that \mathbf{M} is non-singular for all values of a.
(b) Determine, in terms of a, \mathbf{M}^{-1}

Q5.

$$
\mathbf{M}=\left(\begin{array}{rrr}
2 & 1 & 4 \\
k & 2 & -2 \\
4 & 1 & -2
\end{array}\right) \quad \mathbf{N}=\left(\begin{array}{rrr}
k-7 & 6 & -10 \\
2 & -20 & 24 \\
-3 & 2 & -1
\end{array}\right)
$$

where k is a constant.
(a) Determine, in simplest form in terms of k, the matrix $\mathbf{M} \mathbf{N}$.
(b) Given that $k=5$
(i) write down $\mathbf{M} \mathbf{N}$
(ii) hence write down \mathbf{M}^{-1}
(c) Solve the simultaneous equations

$$
\begin{align*}
& 2 x+y+4 z=2 \\
& 5 x+2 y-2 z=3 \\
& 4 x+y-2 z=-1 \tag{2}
\end{align*}
$$

(d) Interpret the answer to part (c) geometrically.

Q6.

$$
A=\left(\begin{array}{rr}
4 & -1 \\
7 & 2 \\
-5 & 8
\end{array}\right) \quad B=\left(\begin{array}{rrr}
2 & 3 & 2 \\
-1 & 6 & 5
\end{array}\right) \quad C=\left(\begin{array}{rrr}
-5 & 2 & 1 \\
4 & 3 & 8 \\
-6 & 11 & 2
\end{array}\right)
$$

Given that I is the 3×3 identity matrix,
(a) (i) show that there is an integer k for which

$$
\mathbf{A B}-3 \mathbf{C}+k \mathbf{I}=\mathbf{0}
$$

stating the value of k
(ii) explain why there can be no constant m such that

$$
\mathbf{B A}-3 \mathbf{C}+m \mathbf{I}=\mathbf{0}
$$

(b) (i) Show how the matrix \mathbf{C} can be used to solve the simultaneous equations

$$
\begin{gathered}
-5 x+2 y+z=-14 \\
4 x x+3 y+8 z=3 \\
-6 x+11 y+2 z=7
\end{gathered}
$$

(ii) Hence use your calculator to solve these equations.
(Total for question = 7 marks)

Q7.

$$
\mathbf{M}=\left(\begin{array}{rrr}
2 & -1 & 1 \\
3 & k & 4 \\
3 & 2 & -1
\end{array}\right) \quad \text { where } k \text { is a constant }
$$

(a) Find the values of k for which the matrix \mathbf{M} has an inverse.
(b) Find, in terms of p, the coordinates of the point where the following planes intersect

$$
\begin{gathered}
2 x-y+z=p \\
3 x-6 y+4 z=1 \\
3 x+2 y-z=0
\end{gathered}
$$

(c) (i) Find the value of q for which the set of simultaneous equations

$$
\begin{gathered}
2 x-y+z=1 \\
3 x-5 y+4 z=q \\
3 x+2 y-z=0
\end{gathered}
$$

can be solved.
(ii) For this value of q, interpret the solution of the set of simultaneous equations geometrically.

Q8.

(i) \mathbf{A} is a 2 by 2 matrix and \mathbf{B} is a 2 by 3 matrix.

Giving a reason for your answer, explain whether it is possible to evaluate
(a) $\mathbf{A B}$
(b) $\mathbf{A}+\boldsymbol{B}$
(ii) Given that

$$
\left(\begin{array}{rrr}
-5 & 3 & 1 \\
a & 0 & 0 \\
b & a & b
\end{array}\right)\left(\begin{array}{rrr}
0 & 5 & 0 \\
2 & 12 & -1 \\
-1 & -11 & 3
\end{array}\right)=\lambda \mathbf{I}
$$

where a, b and λ are constants,
(a) determine

- the value of λ
- the value of a
- the value of b
(b) Hence deduce the inverse of the matrix $\left(\begin{array}{rrr}-5 & 3 & 1 \\ a & 0 & 0 \\ b & a & b\end{array}\right)$
(iii) Given that

$$
\mathbf{M}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & \sin \theta & \cos \theta \\
0 & \cos 2 \theta & \sin 2 \theta
\end{array}\right) \quad \text { where } 0 \leqslant \theta<\pi
$$

determine the values of θ for which the matrix \mathbf{M} is singular.

Mark Scheme - Matrices

Q1.

| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: | :---: |
| (a) | $\mathbf{M}^{-1}=\frac{1}{69}\left(\begin{array}{rrr}1 & 13 & 5 \\ -11 & -5 & 14 \\ -26 & 7 & 8\end{array}\right)$ | B1 | 1.1 b |
| | | B1 | 1.1 b |
| (b) | $\frac{1}{69}\left(\begin{array}{rrr}1 & 13 & 5 \\ -11 & -5 & 14 \\ -26 & 7 & 8\end{array}\right)\left(\begin{array}{r}-4 \\ 9 \\ 5\end{array}\right)=\ldots$ | (2) | |

Notes

(a)

B1: Evidence that the determinant is ± 69 (may be implied by their matrix e.g. where entries are
not in exact form: $\pm\left(\begin{array}{ccc}0.014 & 0.188 & 0.072 \\ -0.159 & -0.072 & 0.203 \\ -0.377 & 0.101 & 0.116\end{array}\right)$)(Should be mostly correct)
Must be seen in part (a).
B1: Fully correct inverse with all elements in exact form
(b)

M1: Any complete method to find the values of x, y and z (Must be using their inverse if using the method in the main scheme)
A1: Correct coordinates
A solution not using the inverse requires a complete method to find values for x, y and z for the method mark.
Correct coordinates only scores both marks.
(c)

B1: Describes the correct geometrical configuration.
Must include the two ideas of planes and meet in a point with no contradictory statements.
This is dependent on having obtained a unique point in part (b)

Q2.

Question	Scheme	Marks	Aos
(a)(i)	$x / C=$ number of Construction students $y / D=$ number of Design students $z / H=$ number of Hospitality students	B1	3.3
(ii)	The increase in number of students in $20201110 \times 0.0027\{=$ $2.997 \approx 3\}$ Or The number of students in $20201110 \times 1.0027=\{1112.997 \approx$ 1113\}	M1	1.1 b
	$\begin{gathered} x+y+z=1110 \quad C+D+H=1110 \\ x-z=370 \text { o.e. } \quad C-H=370 \text { o.e. } \\ 0.0125 C+0.025 D-0.02 H=3 \text { or } 2.997 \text { o.e } 1.0125 C+1.025 D+ \\ 0.98 H=1113 \text { or } 1112.997 \text { o.e. } \\ 0.0125 x+0.025 y-0.02 z=3 \text { or } 2.997 \text { o.e1.0125x }+1.025 y+ \\ 0.98 z=1113 \text { or } 1112.997 \text { o.e. } \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 3.3 \\ 1.1 \mathrm{~b} \end{gathered}$
		(4)	
(b)	$\begin{aligned} & \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1.0125 & 1.025 & 0.98 \end{array}\right)\left(\begin{array}{l} C \\ D \\ H \end{array}\right)=\left(\begin{array}{c} 1110 \\ 370 \\ 1113 \end{array}\right) \\ & \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0.0125 & 0.025 & -0.02 \end{array}\right)\left(\begin{array}{c} C \\ D \\ H \end{array}\right)=\left(\begin{array}{c} 1110 \\ 370 \\ 3 \end{array}\right) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1ft } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\begin{aligned} & \left(\begin{array}{l} C \\ D \\ H \end{array}\right)=\left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1.0125 & 1.025 & 0.98 \end{array}\right)^{-1}\left(\begin{array}{c} 1110 \\ 370 \\ 1113 \end{array}\right)=\left(\begin{array}{l} \cdots \\ \cdots \\ \ldots \end{array}\right) \\ & \left(\begin{array}{l} C \\ D \\ H \end{array}\right)=\left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0.0125 & 0.025 & -0.02 \end{array}\right)^{-1}\left(\begin{array}{c} 1110 \\ 370 \\ 3 \end{array}\right)=\binom{\cdots}{\cdots} \end{aligned}$	dM1	1.16
	So in 2019, 720 students studied Construction, $\mathbf{4 0}$ students studied Design and 350 students studied Hospitality	A1	3.2a
		(4)	
(8 marks)			

Notes:

Mark (i) and (ii) together
(a)(i)

B1: Defines 3 variables, minimum e.g. construction $=C$, Design $=D$, Hospitality $=H$. This may be seen in text of the question, abbreviations may be used

Ml: Finds either the increase or the number of students in 2020 . This may be implied by any equation which equals 1113 or 1112.997 . If students use 1100 instead of 1110 this is slip and we can award this mark.
M1: Attempts to use the model to set up at least 2 equations
A1: All 3 simplified equations correct (decimals or fractions), one for each different piece of information. Award with mark even if B0 is scored and it is clear what the variables used stand for. Ignore any additional equations even if incorrect. As soon as 3 correct equations are seen you may award this mark.

Alternative approach

(i) B1: Construction $=H+370$, Design $=D$, Hospitality $=H$
(ii) MlM1A1: $H+370+D+H=1110$ o.e $C=H+3701.0125(H+370)+1.025 D+$ $0.98 H=1113$ or 1112.997 o.e. they do not need to be simplified
(b) This is Ml Ml Al Al on ePen but is marked MlAlM1Al

M1: Uses their equation in part(a) to set up a matrix equation of the form $\left(\begin{array}{ccc}\ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots\end{array}\right)\left(\begin{array}{l}C \\ D \\ H\end{array}\right)=$ $\left(\begin{array}{l}\ldots \\ \ldots \\ \ldots\end{array}\right)$, where "..." are numerical values.
Alft: Correct matrix equation for their equations
dM1: Dependent on previous method mark. Writes $\left(\right.$ their $A()^{-1}\left(\begin{array}{c}1110 \\ \text { their " } 370 \text { " } \\ \text { their " } 3 "\end{array}\right)$) and obtains at least one value of C, D or H. The inverse matrix need not be found, writing $\mathbf{A}^{-1}\left(\begin{array}{c}1110 \\ 370 \\ \text { their "3" }\end{array}\right)=\ldots$ is sufficient. A correct matrix equation followed by correct values implies this mark.
Condone $\left(\begin{array}{c}1110 \\ \text { their " } 370 \text { " } \\ \text { their " } 3 \text { " }\end{array}\right) \mathbf{A}^{-1}=\ldots$ as long as they reach some values. The values imply the correct method

$$
\left.\left.\begin{array}{c}
\text { Note: }\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & -1 \\
0.0125 & 0.025 & -0.02
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\frac{10}{23}=0.43 \ldots & \frac{18}{23}=0.78 \ldots \\
\frac{3}{23}=0.13 \ldots & -\frac{13}{23}=-0.56 \ldots \\
\frac{10}{23}=0.43 \ldots & -\frac{500}{23}=-0.21 \ldots
\end{array}\right)-\frac{800}{23}=34.78 \ldots \\
\frac{400}{23}=-17.39 \ldots
\end{array}\right) . \begin{array}{ccc}
\frac{410}{23}=17.82 \ldots & \frac{18}{23}=0.78 \ldots & -\frac{400}{23}=-17.39 \ldots \\
1.0125 & 1.025 & 0.98
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & -1 \\
-\frac{797}{23}=-34.65 \ldots & -\frac{13}{23}=-0.56 \ldots & \frac{800}{23}=34.78 \ldots \\
\frac{410}{23}=17.82 \ldots & -\frac{5}{23}=-0.21 \ldots & -\frac{400}{23}=-17.39 \ldots
\end{array}\right) .
$$

Al: Interprets the answer in the context of the question, minimum is $C=720, D=40, H=350$ with their variables. Condone the variable not been defined for this mark if it is clear which variable belong to what course.

Note: they must be using a matrix equation to solve the equation to score any marks.

Alternative approach

For example
Equations simplifies to $C-H=370, D+2 H=740$ and $1.025 D+1.9925 H=738.375$
which leads to $\left(\begin{array}{ccc}0 & 1 & 2 \\ 1 & 0 & -1 \\ 0 & 1.025 & 1.9925\end{array}\right)\left(\begin{array}{l}C \\ D \\ H\end{array}\right)=\left(\begin{array}{c}740 \\ 370 \\ 738.375\end{array}\right)$ then $\left(\begin{array}{l}C \\ D \\ H\end{array}\right)=$
$\left(\begin{array}{ccc}17.826 & 1 & -17.3913 \\ -34.6521 & 0 & 34.7826 \\ 17.826 & 0 & -17.3913\end{array}\right)\left(\begin{array}{c}740 \\ 370 \\ 738.375\end{array}\right)=\left(\begin{array}{c}720 \\ 40 \\ 350\end{array}\right)$

Note: A 2×2 matrix is fine if it is appropriate for their equation.
Special Case: Forming an equation in one variable
(a)(i) Bl: Hospitality $=x$, Construction $=x+370$, Design $=740-2 x$
(ii) M1M1A1: $1.0125(x+370)+1.025(740-2 x)+0.98 x=1113$ or 1112.997
(a)(i) B1: Hospitality $=x-370$, Construction $=x$, Design $=1480-2 x$
(ii) M1M1A1: $1.0125(x)+1.025(1480-2 x)+0.98(x-370)=1113$ or 1112.997
(b) M 0 A 0 M 0 A 0 : They have an equation and are not forming and solving a matrix equation

Q3.

Question	Scheme	Marks	AOs
(a)	a represents the proportion of juvenile chimpanzees that (survive and) remain juvenile chimpanzees the next year.	B1	3.4
		(1)	
(b)(i)	Determinant $=0.82 a-0.08 \times 0.15$	M1	1.1b
	$\left(\begin{array}{cc}a & 0.15 \\ 0.08 & 0.82\end{array}\right)^{-1}=\ldots\left(\begin{array}{cc}0.82 & -0.15 \\ -0.08 & a\end{array}\right)$	M1	1.1b
	$\left(\begin{array}{cc}a & 0.15 \\ 0.08 & 0.82\end{array}\right)^{-1}=\frac{1}{0.82 a-0.012}\left(\begin{array}{cc}0.82 & -0.15 \\ -0.08 & a\end{array}\right)$	A1	1.1b
(ii)		(3)	
	$\begin{aligned} & \left(\begin{array}{cc} a & 0.15 \\ 0.08 & 0.82 \end{array}\right)^{-1}\binom{15360}{43008}=\frac{1}{0.82 a-0.012}\binom{0.82 \times 15360-0.15 \times 43008}{(-0.08) \times 15360+43008 a} \\ & \text { OR forms equations } \begin{array}{r} 15360=a J_{0}+0.15 \times A_{0} \\ 43008=0.08 \times J_{0}+0.82 \times A_{0} \end{array} \end{aligned}$	M1	3.1a
	$\begin{aligned} & \frac{1}{0.82 a-0.012}[6144+(43008 a-1228.8)]=64000 \\ & \Rightarrow 4915.2+43008 a=64000(0.82 a-0.012) \Rightarrow a=\ldots \end{aligned}$ OR $\begin{aligned} & A_{0}=64000-J_{0} \Rightarrow 43008=0.08 \times J_{0}+0.82 \times\left(64000-J_{0}\right)=J_{0}=\ldots \\ & \Rightarrow a=\frac{15360-\left(64000-J_{0}\right)}{J_{0}}=\ldots \end{aligned}$	M1	3.1a
	$a=\frac{5683.2}{9472}=0.60$	A1	1.1b
(iii)		(3)	
	Initial juvenile population $=\frac{" 6144 "}{\text { "0.48" }}=12800$	M1	3.4
	So change of 2560 juvenile chimpanzees	A1	1.1 b
		(2)	

(c)	As the number of juveniles has increased, the model is not initially predicting a decline, so is not suitable in the short term. (Follow through their answer to (b) - but they must have made an attempt at it to find at least a value for J_{0})	B1ft	3.5a
		(1)	
(d)	Third category needs to be introduced for chimpanzees aged 40 and above, mature chimpanzees M_{n}, and a matrix multiplication of increased dimension set up. Accept $3 \times 3,3 \times 2$ or 2×3 matrices including all three categories in the column vector.	M1	3.5c
	The corresponding matrix model will have the form $\left(\begin{array}{c} J_{n+1} \\ A_{n+1} \\ M_{n+1} \end{array}\right)=\left(\begin{array}{ccc} a & b & \underline{0} \\ 0.08 & c & 0 \\ 0 & d & e \end{array}\right)\left(\begin{array}{c} J_{n} \\ A_{n} \\ M_{n} \end{array}\right)$ (The underlined zero must be correct but do not be concerned about any values used in the other entries.)	A1	3.3
		(2)	
	(12 marks)		

Appendix: Alternatives to (b)

Note that variations may occur with the line equation chosen in part (a), but mark as follows:

Question		Scheme	Marks	AOs
$\begin{aligned} & \text { Alt } 1 \\ & \text { (b)(i) } \end{aligned}$	As per main scheme.		$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$	$\begin{aligned} & \hline 2.2 \mathrm{a} \\ & 3.1 \mathrm{~b} \\ & \hline \end{aligned}$
	$\begin{aligned} d^{2} & =(-400+600 \lambda)^{2}+(200-100 \lambda)^{2}+(-250+100 \lambda)^{2} \\ & =380000 \lambda^{2}-570000 \lambda+262500 \\ & =380000\left(\lambda-\frac{3}{4}\right)^{2}+48750 \Rightarrow \lambda=\ldots \end{aligned}$		dM1	1.1b
	As per main scheme.		$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} \hline 3.4 \\ 1.1 \mathrm{~b} \\ \hline \end{gathered}$
(ii)			(5)	
	Length of tunnel is $\sqrt{" 48750 "}=\ldots$ Awrt 221 m from correct working, so completion of square must have been correct. (Must include units)		M1	1.1 b
			A1	1.1b
			(2)	
	Notes			
(i)	$\begin{gathered} \hline \text { B1M } \\ 1 \\ \text { M1 } \\ \\ \text { dM1 } \end{gathered}$	As per main scheme. Realises the need to find the distance from the point on the mountain to a general point on the line. Attempts the distance or distance squared of $\overrightarrow{M X}$, expands and completes the square to find the value of λ for which distance is minimum. May obtain other forms for the completed square. Look for $A(B \lambda-C)^{2}-D+" 262500 "$ where $A, B, C, D \neq 0$ but B may be 1 .		

$\begin{aligned} & \text { Alt } 2 \\ & \text { (b)(i) } \end{aligned}$	As per main scheme.	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \mathrm{a} \\ & 3.1 \mathrm{~b} \end{aligned}$
	$\begin{aligned} & d^{2}=(-400+600 \lambda)^{2}+(200-100 \lambda)^{2}+(-250+100 \lambda)^{2} \\ &=380000 \lambda^{2}-570000 \lambda+262500 \\ & \frac{\mathrm{~d}}{\mathrm{~d} x}\left(d^{2}\right)=0 \Rightarrow 760000 \lambda-570000=0 \Rightarrow \lambda=\ldots \end{aligned}$	dM1	1.1b
	As per main scheme.	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 3.4 \\ 1.1 \mathrm{~b} \end{gathered}$
(ii)		(5)	
	Length of tunnel is $\sqrt{(150-100)^{2}+(325-200)^{2}+(-75-100)^{2}}=\ldots$	M1	1.1b
	Awrt 221 m from correct working, differentiation etc must have been correct. (Must include units)	A1	1.1b
		(2)	

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Notes}

\hline (i)

(ii) \& \begin{tabular}{l}
B1
M1

M1

dM1

M1

A1

M1

A1

 \&

Correct value of k deduced. Finds $\overrightarrow{M P}$ (or $\overrightarrow{M Q}$) and attempts of the line to find the angle or cosin Uses their angle with the cosine to equivalent trigonometric methods or Pythagoras.

Uses the length of and $\overrightarrow{P X}$ (or at shortest distance from M.

Correct point.

Correct method for the distance. M with their angle between the line a trigonometric methods.

Correct distance, including units. A

 \&

lar product formula with this and the direction f the angle between line and $\overrightarrow{M P}$ (or $\overrightarrow{M Q}$) d the length of $\overrightarrow{P X}$ (or $\overrightarrow{Q X}$). Accept finding opposite side first and using tangent to find the coordinates of the point on the line

be as per main scheme, or use of sine ratio and $\overrightarrow{M P}$ (or $\overrightarrow{M Q}$). Accept equivalent

pt awrt 221 m or $25 \sqrt{78} \mathrm{~m}$
\end{tabular}

\hline \multicolumn{3}{|l|}{Useful diagram:} \& $$
\begin{aligned}
& \text { Note for } P, \cos \theta= \pm \frac{57}{\sqrt{38} \sqrt{105}}, \\
& \theta=25.5 \ldots \circ \text { and }|\overrightarrow{P X}|=75 \sqrt{38} \\
& \text { For } Q \cos \theta= \pm \frac{19}{\sqrt{38} \sqrt{29}}, \\
& \theta=55.08 \ldots,|\overrightarrow{Q X}|=25 \sqrt{38}
\end{aligned}
$$

\hline
\end{tabular}

Q4.

Question	Scheme	Marks	AOs
(a)	$\operatorname{det}(\boldsymbol{M})=a(6)-2(4)-3(2 a-12)$	M1	1.1b
	$\operatorname{det}(\boldsymbol{M})=28 \neq 0$ therefore, non-singular for all values of a	A1	2.4
		(2)	
(b)	Finds the matrix of minors $\left(\begin{array}{ccc} 6 & 4 & 2 a-12 \\ 4+3 a & 2 a+12 & a^{2}-8 \\ 9 & 6 & 3 a-4 \end{array}\right)$	M1	1.1b
	Finds the matrix of cofactors and transposes. $\left(\begin{array}{ccc} 6 & -4-3 a & 9 \\ -4 & 2 a+12 & -6 \\ 2 a-12 & 8-a^{2} & 3 a-4 \end{array}\right)$	M1	1.1b
	$\frac{1}{28}\left(\begin{array}{ccc}6 & -4-3 a & 9 \\ -4 & 2 a+12 & -6 \\ 2 a-12 & 8-a^{2} & 3 a-4\end{array}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{gathered} 1.1 \mathrm{~b} \\ 2.1 \end{gathered}$
		(4)	

(6 marks)

Notes:

(a)

M1: Finds the determinant of the matrix M. Must be seen in part (a). Allow one slip if no method shown.
Al: Correct value for determinant, states doesn't equal 0 (accept >0) and draws the conclusion that the matrix is non-singular. If non-singular meaning determinant is non-zero is given in a preamble then accept a minimal conclusion (e.g. "hence shown"), but there must be a conclusion.
(b)

M1: Finds the matrix of minors, at least 5 correct values.
M1: Finds the matrix of cofactors and transposes (in either order). Note: some will do all these steps in one go, which is fine as long as it is clear what they have done. Allow minor slips if the process is clearly correct.
M1: Completes the process to find the inverse matrix, divides by the determinant.
Al: Correct matrix.

Q5.

Question	Scheme	Marks	AOs
(a)	$\mathbf{M N}=\left(\begin{array}{ccc}2 k-24 & 0 & 0 \\ k^{2}-7 k+10 & 6 k-44 & -10 k+50 \\ 4 k-20 & 0 & -14\end{array}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(2)	
(b)(i)	$\mathbf{M N}=\left(\begin{array}{rrr}-14 & 0 & 0 \\ 0 & -14 & 0 \\ 0 & 0 & -14\end{array}\right)$	B1ft	1.1b
(ii)	$\mathbf{M}^{-1}=-\frac{1}{14}\left(\begin{array}{rrr}-2 & 6 & -10 \\ 2 & -20 & 24 \\ -3 & 2 & -1\end{array}\right)$	B1	1.1b
		(2)	
(c)	$\mathbf{M}^{-1}=-\frac{1}{14}\left(\begin{array}{rrr}-2 & 6 & -10 \\ 2 & -20 & 24 \\ -3 & 2 & -1\end{array}\right)\left(\begin{array}{r}2 \\ 3 \\ -1\end{array}\right)=\ldots$	M1	1.1b
	$\left(-\frac{12}{7}, \frac{40}{7},-\frac{1}{14}\right)$	A1	1.1b
		(2)	
(d)	The coordinates of the only point at which the planes represented by the equations in (c) meet.	B1	2.2a
		(1)	
(7 marks)			

Notes
(a)
B1: For 2 correct rows or 2 correct columns (allow unsimplified)
B1: Fully correct simplified matrix
(b)(i)
B1ft: Correct matrix (follow through from part (a)). If an error with part (a) allow the correct
matrix stated, restart use of calculator.
(ii)
B1: Deduces the correct inverse matrix, may use calculator
(c)
M1: Any complete method to find the values of x, y and z (Must be using their inverse if using
the method in the main scheme)
Allow use of a calculator
A1: Correct exact coordinates (allow as a vector or $x=\ldots, y=\ldots, z=\ldots$)
(d)
B1: Describes the correct geometrical configuration of the planes

Q6.

Question	Scheme	Marks	AOS
(a)	(i) $\mathbf{A B}=\left(\begin{array}{rr} 4 & -1 \\ 7 & 2 \\ -5 & 8 \end{array}\right)\left(\begin{array}{ccc} 2 & 3 & 2 \\ -1 & 6 & 5 \end{array}\right)=\left(\begin{array}{ccc} 8+1 & 12-6 & 8-5 \\ 14-2 & 21+12 & 14+10 \\ -10-8 & -15+48 & -10+40 \end{array}\right)=\left(\begin{array}{ccc} 9 & 6 & 3 \\ 12 & 33 & 24 \\ -18 & 33 & 30 \end{array}\right)$	M1	1.1 b
	$\text { So } \mathbf{A B}-3 \mathbf{C}=\left(\begin{array}{rrr} 9 & 6 & 3 \\ 12 & 33 & 24 \\ -18 & 33 & 30 \end{array}\right)-\left(\begin{array}{rrr} -15 & 6 & 3 \\ 12 & 9 & 24 \\ -18 & 33 & 6 \end{array}\right)=\left(\begin{array}{rcc} 24 & 0 & 0 \\ 0 & 24 & 0 \\ 0 & 0 & 24 \end{array}\right)$ or $\mathbf{A B}-3 \mathbf{C}=\left(\begin{array}{rrr} 9 & 6 & 3 \\ 12 & 33 & 24 \\ -18 & 33 & 30 \end{array}\right)+\left(\begin{array}{rrr} 15 & -6 & -3 \\ -12 & -9 & -24 \\ 18 & -33 & -6 \end{array}\right)=\left(\begin{array}{ccc} 24 & 0 & 0 \\ 0 & 24 & 0 \\ 0 & 0 & 24 \end{array}\right)$ and states a value for k	M1	1.1 b
	Hence $\mathbf{A B}-3 \mathbf{C}-24 \mathrm{I}=\mathbf{0}$ so $k=-24$	A1	1.1 b
	(ii) Need two things One of: - $\mathbf{B A}$ is a 2×2 matrix - Finds the matrix BA (must be a 2×2 matrix) AND One of: - cannot subtract a 3×3 matrix - finds matrix 3 C and comments that they have different dimensions / can't be done - can't subtract matrices of different sizes - 3 C or C is a 3×3 matrix - BA needs to be a 3×3 matrix	B1	2.4
		(4)	

(b)(i)
$\left(\begin{array}{ccc}-5 & 2 & 1 \\ 4 & 3 & 8 \\ -6 & 11 & 2\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-14 \\ 3 \\ 7\end{array}\right) \Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}-5 & 2 & 1 \\ 4 & 3 & 8 \\ -6 & 11 & 2\end{array}\right)^{-1}\left(\begin{array}{c}-14 \\ 3 \\ 7\end{array}\right)$
Or states $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\mathbf{C}^{-1}\left(\begin{array}{c}-14 \\ 3 \\ 7\end{array}\right)$
Or states $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\frac{1}{360}\left(\begin{array}{rrr}-82 & 7 & 13 \\ -56 & -4 & 44 \\ 62 & 43 & -23\end{array}\right)\left(\begin{array}{c}-14 \\ 3 \\ 7\end{array}\right)$
(ii)
$=\frac{1}{360}\left(\begin{array}{rrr}-82 & 7 & 13 \\ -56 & -4 & 44 \\ 62 & 43 & -23\end{array}\right)\left(\begin{array}{c}-14 \\ 3 \\ 7\end{array}\right)=\ldots \quad$ M1 $\quad 1.1 \mathrm{~b}$

$=\left(\begin{array}{ccc}-\frac{41}{180} & \frac{7}{360} & \frac{13}{360} \\ -\frac{7}{45} & -\frac{1}{90} & \frac{11}{90} \\ \frac{31}{180} & \frac{43}{360} & -\frac{23}{360}\end{array}\right)\left(\begin{array}{c}-14 \\ 3 \\ 7\end{array}\right)=\ldots$			
$\mathrm{C}^{-1}\left(\begin{array}{c}-14 \\ 3 \\ 7\end{array}\right)=\ldots$	A		
	So solution is $x=\frac{7}{2}, y=3, z=-\frac{5}{2}$ or $(3.5,3,-2.5)$	1.1 b	
		(3)	

Notes:

(a) (i)

M1: Attempts to find AB. Usually this will be done on calculator so answer implies the method. If answer is incorrect allow for at least 6 correct entries or calculations shown.

This mark can be implied by a correct matrix for $A B-3 C$ gives the first M1
M1: Uses their $\mathbf{A B}$ and 3C matrices to find a multiple I and states a value for k
A1: Correct proof with $k=-24$ seen explicitly (may be in equation).
Minimum working required is $\mathbf{A B}-3 \mathbf{C}=\left(\begin{array}{ccc}24 & 0 & 0 \\ 0 & 24 & 0 \\ 0 & 0 & 24\end{array}\right)$ gets M1 then states a value for k M1
then $k=-24$ gets A1
Special case: If minimum working required is not seen and just $k=-24$ stated then M1 M0 A0 as they have not shown that the value of k works.
(ii)

B1: Correct explanation referring to the dimensions of BA and C (or 3C) and that they do not match in the equation. They can find both these matrices and then comment they cannot be subtracted.
(b) Mark (i) and (ii) altogether

M1: States or implies use of the correct method of using the inverse matrix.
M1: Carries out the process of multiplying after finding the inverse. May find inverse long hand first. Finding the inverse matrix then writes down an answer gains M1.
Note: There is no need to find the inverse matrix. If the inverse matrix is not stated just answers written down then two out of the three correct ordinates imply the M1.
A1: Correct solution. Must be clear that $x=\frac{7}{2}, y=3, z=-\frac{5}{2}$ allow $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}3.5 \\ 3 \\ -2.5\end{array}\right)$
Note: If they solve using simultaneous equations only this is M0 M0 A0
If there is no reference to the inverse matrix and correct answers stated this is M0 M0 A0

Q7.

Question	Scheme	Marks	AOs
(a)	$\|\mathbf{M}\|=2(-k-8)+1(-3-12)+1(6-3 k)=0 \Rightarrow k=\ldots$	M1	1.1b
	$k \neq-5$	A1	2.4
		(2)	
(b)$\text { Way } 1$	$\mathbf{M}=\left(\begin{array}{rrr}2 & -1 & 1 \\ 3 & -6 & 4 \\ 3 & 2 & -1\end{array}\right) \Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\mathbf{M}^{-1}\left(\begin{array}{l}p \\ 1 \\ 0\end{array}\right)$	M1	3.1a
	$\mathbf{M}^{-1}=\frac{1}{5}\left(\begin{array}{ccc}-2 & 1 & 2 \\ 15 & -5 & -5 \\ 24 & -7 & -9\end{array}\right)$	B1	1.1b
	$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\frac{1}{5}\left(\begin{array}{ccc}-2 & 1 & 2 \\ 15 & -5 & -5 \\ 24 & -7 & -9\end{array}\right)\left(\begin{array}{l}p \\ 1 \\ 0\end{array}\right) \Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\ldots$	M1	2.1
	$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\frac{1}{5}\left(\begin{array}{l}-2 p+1 \\ 15 p-5 \\ 24 p-7\end{array}\right)$	A1	1.1b
	$\left(\frac{-2 p+1}{5}, 3 p-1, \frac{24 p-7}{5}\right)$	A1ft	2.5
		(5)	
(b) Way 2	$\begin{gathered} 2 x-y+z=p \\ 3 x-6 y+4 z=1 \Rightarrow \text { e.g. } \\ 3 x+2 y-z=0 \quad 9 y-5 z=-1 \\ \quad \Rightarrow x=\ldots, z=\ldots \end{gathered}$	M1	3.1a
	$y=3 p-1\left(\right.$ or $x=\frac{-2 p+1}{5}$ or $z=\frac{24 p-7}{5}$)	B1	1.1b
	$8(3 p-1)-5 z=-1 \Rightarrow z=\ldots \Rightarrow x=\ldots$	M1	2.1
	$z=\frac{24 p-7}{5}, x=\frac{-2 p+1}{5}$	A1	1.1b
	$\left(\frac{-2 p+1}{5}, 3 p-1, \frac{24 p-7}{5}\right)$	A1ft	2.5

(c)(i)	For consistency: $\text { E.g. } 5 x+y=4-q \text { and } 15 x+3 y=q$	M1	3.1a
	$4-q=\frac{q}{3} \Rightarrow q=\ldots$	M1	2.1
	$q=3$	A1	1.1b
	Alternative for (c)(i): $x=1 \Rightarrow 2-y+z=1,3+2 y-z=0 \Rightarrow y=\ldots, z=\ldots$ M1 for allocating a number to one variable and solves for the other 2 $x=1, y=-4, z=-5 \Rightarrow 3+20-20=q$ M1 substitutes into the second equation and solves for q $\mathrm{A} 1: q=3$		
(ii)	Three planes that intersect in a line Or Three planes that form a sheaf allow sheath!	B1	2.4
		(4)	
(11 marks)			

(a)
M1: Attempts determinant, equates to zero and attempts to solve for k in order to establish the
restriction for k. For the determinant, at least 2 of the 3 "elements" should be correct.
May see rule of Sarrus used for determinant e.g.
$\|\mathbf{M}\|=(2)(k)(-1)+(4)(3)(-1)+(3)(2)(1)-(3)(k)(-1)-(2)(4)(2)-(-1)(3)(-1)=0 \Rightarrow k=\ldots$
A1: Describes the correct condition for k with no contradictions. Allow e.g. $k<-5, k>-5$
(b)Way l
M1: A complete strategy for solving the given equations. Need to see an attempt at the inverse
followed by a correct method for finding x, y and z
B1: Correct inverse matrix
M1: Uses their inverse and attempts the multiplication with the correct vector
A1: Correct values for x, y and z in any form
A1ft: Correct values given in coordinate form only. Follow through their x, y and z.
Way 2
M1: A complete strategy for solving the given equations. Need to see an attempt at eliminating
one variable followed by a correct method for finding x, y and z
B1: One correct value
M1: Uses the equations to find values for the other 2 variables
A1: Correct values for x, y and z in any form
A1ft: Correct values given in coordinate form only. Follow through their x, y and z.
(c)(i)
M1: Uses a correct strategy that will lead to establishing a value for q. E.g. eliminating one of x, y
or z
M1: Solves a suitable equation to obtain a value for q
A1: Correct value
(ii)
B1: Describes the correct geometrical configuration.
Must include the two ideas of planes and meeting in a line or forming a sheaf with no
contradictory statements.

Q8.

Question	Scheme	Marks	${ }^{\text {A }}$ Os
	It is possible as the number of columns of matrix \mathbf{A} matches the number of rows of matrix B.	B1	2.4
(b)	It is not possible as matrix \mathbf{A} and matrix \mathbf{B} have different dimensions o.e. different number of columns	B1	2.4
		(2)	
(ii) (a)	$\lambda=5$	B1	2.2a
	$a=1, b=2$	B1	2.2a
(b)	Inverse matrix $=\frac{1}{5}\left(\begin{array}{rrr}0 & 5 & 0 \\ 2 & 12 & -1 \\ -1 & -11 & 3\end{array}\right)$	B1 ft	3.1a
		(3)	
(iii)	A complete method to find the determinant of the matrix and set equal to zero.	M1	1.1b
	Determinant $=1(\sin \theta \sin 2 \theta-\cos \theta \cos 2 \theta)-1(0)+1(0)=0$	A1	1.1b
	Uses compound angle formula to achieve $\cos 3 \theta=0$ leading to $\theta=\ldots$. or use of $\sin 2 q=2 \sin q \cos q$ and $\cos 2 q=1-2 \sin ^{2} q$ (e.g. to achieve $\left.\cos q\left(4 \sin ^{2} q-1\right)=0\right)$ leading to $\theta=\ldots$ or use of $\sin 2 q=2 \sin q \cos q$ and $\cos 2 q=2 \cos ^{2} q-1$ (e.g. to achieve $4 \cos ^{3} q-3 \cos q=0$) leading to $\theta=\ldots$	M1	3.1a
	$\theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}$	A1	1.1b
		(4)	
(9 marks)			

Notes:

(i)(a)

B1: Comments that the number of columns of matrix \mathbf{A} (2) equals the number of rows of matrix B (2) therefore it is possible. Accept other terminology that is clear in intent e.g. "length of \mathbf{A} " and "height of B"
(b)

B1: Comments that matrix A and matrix B have different dimensions therefore it is not possible.
(ii)(a)

B1: Deduces the correct value for $\lambda=5$
B1: Deduces the correct values for a and b
(b)

Blft: Identifies and applies a correct method find the inverse matrix. May multiply from the given equation, in which case follow through on their value of lambda. Alternatively, award for a correct matrix found by calculator or long hand having found a and b and using these values in the matrix.
(iii)

M1: A complete method to find the determinant of the matrix and sets it equal to 0
Al: Correct equation
M1: Uses appropriate correct trig identities to solve the equation and finds a value for q
Al: All three correct values $\theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}$ and no others in the range.

