Matrix Algebra

Questions

Q1.

The matrix **A** is given by

$$\mathbf{A} = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$$

(a) Show that 2 is a repeated eigenvalue of **A** and find the other eigenvalue.

(5)

(b) Hence find three non-parallel eigenvectors of **A**.

(c) Find a matrix **P** such that $P^{-1}AP$ is a diagonal matrix.

(2)

(4)

(Total for question = 11 marks)

Q2.

$$\mathbf{A} = \begin{pmatrix} 5 & -2 & 5 \\ 0 & 3 & p \\ -6 & 6 & -4 \end{pmatrix} \quad \text{where } p \text{ is a constant}$$

 $\begin{pmatrix} 2\\1\\2 \end{pmatrix}$

Given that $\begin{pmatrix} -2 \end{pmatrix}$ is an eigenvector for **A**

(a) (i) determine the eigenvalue corresponding to this eigenvector

	(1)
(ii) hence show that $p = 2$	

- (iii) determine the remaining eigenvalues and corresponding eigenvectors of **A**
- (b) Write down a matrix **P** and a diagonal matrix **D** such that $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$

(1)

(7)

(c) (i) Solve the differential equation $\vec{u} = k\vec{u}$, where k is a constant.

(2)

With respect to a fixed origin O, the velocity of a particle moving through space is modelled by

$$\begin{pmatrix} x \\ \dot{y} \\ \dot{z} \end{pmatrix} = \mathbf{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \mathbf{P}^{-1} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ so that } \begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix} = \mathbf{P}^{-1} \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix}$$
By considering

(ii) determine a general solution for the displacement of the particle.

(4)

(Total for question = 17 marks)

Q3.

Given that

$$\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$$

(a) find the characteristic equation for the matrix **A**, simplifying your answer.

(2)

(b) Hence find an expression for the matrix \mathbf{A}^{-1} in the form $\lambda \mathbf{A} + \mu \mathbf{I}$, where λ and μ are constants to be found.

(3)

(Total for question = 5 marks)

Q4.

Matrix **M** is given by

$$\mathbf{M} = \begin{pmatrix} 1 & 0 & a \\ -3 & b & 1 \\ 0 & 1 & a \end{pmatrix}$$

where a and b are integers, such that a < b

Given that the characteristic equation for ${\bf M}$ is

$$\lambda^3 - 7\lambda^2 + 13\lambda + c = 0$$

where c is a constant,

- (a) determine the values of *a*, *b* and *c*.
- (b) Hence, using the Cayley–Hamilton theorem, determine the matrix M⁻¹

(3)

(Total for question = 8 marks)

Q5.

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$$

Find a matrix **P** and a diagonal matrix **D** such that $\mathbf{D} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$

(7)

(Total for question = 7 marks)

Q6.

Given that

$$\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 6 & 4 \end{pmatrix}$$

(a) find the characteristic equation of the matrix **A**.

(2)

(b) Hence show that $\mathbf{A}^3 = 43\mathbf{A} - 42\mathbf{I}$.

(3)

(Total for question = 5 marks)

Q7.

The matrix ${\boldsymbol{\mathsf{M}}}$ is given by

1	(2	1	0)
M =	1	2	0
	-1	0	4)

(a) Show that 4 is an eigenvalue of **M**, and find the other two eigenvalues.

		(4)
(b)	For each of the eigenvalues find a corresponding eigenvector.	
		(4)

(c) Find a matrix \mathbf{P} such that $\mathbf{P}^{-1}\mathbf{M}\mathbf{P}$ is a diagonal matrix.

(2)

(Total for question = 10 marks)

Q8.

(i)

$$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$$

(a) Show that the characteristic equation for **A** is
$$\lambda^2 - 5\lambda + 6 = 0$$

(b) Use the Cayley-Hamilton theorem to find integers *p* and *q* such that

$$A^3 = pA + qI$$
(3)

(ii) Given that the 2×2 matrix **M** has eigenvalues -1 + i and -1 - i,

with eigenvectors $\binom{1}{2-i}$ and $\binom{1}{2+i}$ respectively, find the matrix **M**. (5)

(Total for question = 10 marks)

Q9.

$$\mathbf{M} = \begin{pmatrix} 1 & k & -2 \\ 2 & -4 & 1 \\ 1 & 2 & 3 \end{pmatrix}$$

where k is a constant.

(a) Show that, in terms of k, a characteristic equation for **M** is given by

$$\lambda^3 - (2k+13)\lambda + 5(k+6) = 0$$

Given that det $\mathbf{M} = 5$

- (b) (i) find the value of k
 - (ii) use the Cayley-Hamilton theorem to find the inverse of M.

(7)

(3)

(Total for question = 10 marks)

$$\left(\begin{array}{rrrr}
2 & -4 & 1 \\
1 & 2 & 3
\end{array}\right)$$

)

Mark Scheme – Matrix Algebra

Q1.

Question	Scheme	Marks	AOs
(a)	$ \mathbf{A} - \lambda \mathbf{I} = \begin{vmatrix} 6 - \lambda & -2 & 2 \\ -2 & 3 - \lambda & -1 \\ 2 & -1 & 3 - \lambda \end{vmatrix} = (6 - \lambda)[] - (-2)[] + 2[] =$	M1	1.1b
	$(6-\lambda)((3-\lambda)^2-1)+2(2(\lambda-3)+2)+2(2-2(3-\lambda))(=0)$ ($\lambda^3-12\lambda^2+36\lambda-32=0$)	A1	1.1b
	$= (\lambda - 2) (\lambda^2 + \lambda +)$	M1	2.1
	$= (\lambda - 2)(\lambda^2 - 10\lambda + 16) = (\lambda - 2)^2(\lambda - 8) \Rightarrow \lambda = 2 \text{ is a repeated}$ eigenvalue *	A1*	2.2a
	$\lambda = 8$	B1	1.1b
		(5)	
(b)	$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix} \mathbf{v} = 2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ or } \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix} \mathbf{v} = 8 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Rightarrow \mathbf{v} = \dots$	M1	1.1b
	Obtains any multiple of $\begin{pmatrix} 2\\ -1\\ 1 \end{pmatrix}$ for $\lambda = 8$	A1	1.1b
	Obtains any (non-zero) multiple or linear combination of $\begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} \text{ or } \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \text{ or } \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \text{ for } \lambda = 2$	A1	1.1b
	Obtains a different linear combination or (non-zero) multiple of different vector from $\begin{pmatrix} -1\\0\\2 \end{pmatrix}$ or $\begin{pmatrix} 1\\2\\0 \end{pmatrix}$ or $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$ for $\lambda = 2$	A1	3.1a
		(4)	
(c)	Forms a matrix with their eigenvectors as columns	M1	1.2
	E.g. $\begin{pmatrix} -1 & 1 & 2 \\ 0 & 2 & -1 \\ 2 & 0 & 1 \end{pmatrix}$	A1ft	1.1b
		(2)	5
		(11	marks)

Notes (a) M1: Attempts to expand the determinant to find the characteristic polynomial. Note: other methods of expanding the determinant are possible. If unsure send to review. A1: Correct expansion need not be simplified. (Need not see set equal to zero) Allow recovery of missing brackets if indicated by later working. M1: Attempts to take out a factor of $(\lambda - 2)$ of their equation (may first expand to cubic or may spot the factor and take out without full expansion). E.g. $(6-\lambda)\left((3-\lambda)^2-1\right)+2\left(2(\lambda-3)+2\right)+2\left(2-2(3-\lambda)\right)=(6-\lambda)\left(4-\lambda\right)\left(2-\lambda\right)+4(\lambda-2)+4(\lambda$ $= (\lambda - 2)((6 - \lambda)(4 - \lambda) + 4 + 4)$ This is for a method that will allow λ to be shown as a repeated eigenvalue, so just stating two solutions is not sufficient, factorisation must be seen. A1*: Obtains a correct factor of $(\lambda - 2)^2$ and deduces that 2 is a repeated eigenvalue. Must see statement about 2 being repeated. (Just listing 2 twice is not sufficient.) B1: (Note this is A1 on ePEN) Obtains and identifies 8 as the other eigenvalue (B0 if not identified in (a) but full marks can be scored in (b) and (c) for use of 8 as eigenvalue) (b) M1: Uses a correct method to find at least one eigenvector A1: Obtains one correct eigenvector for $\lambda = 8$ A1: Obtains one correct eigenvector for $\lambda = 2$ A1: Obtains two correct linearly independent eigenvectors for $\lambda = 2$ Note some other common eigenvectors for $\lambda = 2$ are $\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$ (c) M1: Forms a matrix with their three different non-zero eigenvectors as columns or with their normalised (or any scaled version) of their eigenvectors. A1ft: Correct matrix with the eigenvectors (normalised/scaled) as columns in any order (follow through their three different vectors which are not multiples of any other)

Q2.

Question	Scheme	Marks	AOs
(a)(i)	$ \begin{pmatrix} 5 & -2 & 5 \\ 0 & 3 & p \\ -6 & 6 & -4 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -2 \\ 3-2p \\ 2 \end{pmatrix} = -1 \times \begin{pmatrix} 2 \\ 2p-3 \\ -2 \end{pmatrix} $		
	Corresponding eigenvalue is -1	B1	1.1b
		(1)	
(a)(ii)	$2p-3=1 \Rightarrow p=$	Ml	1.1b
	<i>p</i> = 2 *	Al*	1.1b
		(2)	
(a)(iii)	$det \begin{pmatrix} 5-\lambda & -2 & 5\\ 0 & 3-\lambda & p\\ -6 & 6 & -4-\lambda \end{pmatrix} = 0$ $\Rightarrow (5-\lambda)((3-\lambda)(-4-\lambda)-12) - (-2)(12) + 5(6(3-\lambda)) = 0$	Ml	1.16
	$\Rightarrow \lambda^3 - 4\lambda^2 + \lambda + 6 = 0$	Al	1.1b
	$(\Rightarrow (\lambda+1)(\lambda^2-5\lambda+6)=0 \Rightarrow (\lambda+1)(\lambda-2)(\lambda-3)=0)$ Eigenvalues are (-1), 2 and 3	Al	1.1b
	$ \begin{array}{c c} 3x-2y+5z=0 \\ \text{Either} & y+2z=0 \\ -6x+6y-6z=0 \end{array} \xrightarrow{2x-2y+5z=0} \sigma x/y/z = \dots \\ -6x+6y-7z=0 \end{array} $	Ml	2.1
	Either $k \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}$ (for $\lambda = 2$) or $m \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ (for $\lambda = 3$)	Al	1.1b
	$ \begin{vmatrix} 3x - 2y + 5z = 0 \\ Both & y + 2z = 0 \\ -6x + 6y - 6z = 0 \end{vmatrix} \xrightarrow{2x - 2y + 5z = 0} and & 2z = 0 \\ -6x + 6y - 7z = 0 \end{vmatrix} \Rightarrow x/y/z = \dots $	Ml	2.1
	Both $k \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}$ (for $\lambda = 2$) and $m \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ (for $\lambda = 3$)	Al	1.1b
		(7)	

(b)	E.g. $\mathbf{P} = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 1 \\ -2 & -1 & 0 \end{pmatrix}$ and $\mathbf{D} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$	Blft	2.2a
		(1)	
(c)(i)	$\dot{u} = ku \Rightarrow \int \frac{1}{u} du = k \int dt \Rightarrow \ln u = kt(+c)$	Ml	1.16

	So $u = Ae^{kt}$ or $u = e^{kt+c}$	Al	1.1b
		(2)	
(ii)	$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Longrightarrow \begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix} = \mathbf{P}^{-1} \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \mathbf{D} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} -u \\ 2v \\ 3w \end{pmatrix}$	Ml	3.1b
	$\Rightarrow \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} A e^{-t} \\ B e^{2t} \\ C e^{3t} \end{pmatrix}$	Ml	2.2a
$\Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{P} \begin{pmatrix} Ae^{-t} \\ Be^{2t} \\ Ce^{3t} \end{pmatrix} = \dots$ $\Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2Ae^{-t} + 3Be^{2t} + Ce^{3t} \\ Ae^{-t} + 2Be^{2t} + Ce^{3t} \\ -2Ae^{-t} - Be^{2t} \end{pmatrix}$	$\Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{P} \begin{pmatrix} A e^{-t} \\ B e^{2t} \\ C e^{3t} \end{pmatrix} = \dots$	M1	3.4
	$\Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2Ae^{-t} + 3Be^{2t} + Ce^{3t} \\ Ae^{-t} + 2Be^{2t} + Ce^{3t} \\ -2Ae^{-t} - Be^{2t} \end{pmatrix}$	Al	1.1b
		(4)	

Notes:

(a)(i)

B1: For the correct eigenvalue of -1

(ii)

M1: Correct equation with their eigenvalue set up - need only see middle equation for this.

A1*: Correct proof (full matrix calculation not necessary).

(iii)

M1: Applies det $(\mathbf{A} - \lambda \mathbf{I}) = 0$ to achieve a cubic in λ (or other variable, simplification not

required). Allow with p used instead of 2, and look for two correct "terms" in the expansion leading to a cubic as evidence of the expansion.

A1: Correct simplified cubic. Note this may be implied by correct answers from a calculator following a correct expansion seen for the M.

Al: Correct eigenvalues

M1: Forms and solves eigenvector equations for at least one (other than -1) eigenvalue.

A1: One correct (other) eigenvector

M1: Both eigenvectors attempted.

A1: Both (other) eigenvectors correct.

(b)

Blft: A correct corresponding P and D, follow through on their answer to (a). Columns may be in different order, but should be consistent for their P and D.

(c)(i)

M1: Separates variables and attempts the integration (constant not required).

A1: Correct answer for u = ..., either form, including constant of integration

(ii)

- NB different orderings of the columns of P and D will give the terms in different orders here.
- M1: Uses their P and D to transform system into equation in u, v and w (may be implied).

M1: Forms the solution for u, v and w using their eigenvalues.

- M1: Reverses the substitution (multiplies by their P) to get solution for x, y and z.
- A1: Correct answer, in matrix form or as separate equations award when first seen and isw.

Q3.

Question	Scheme	Marks	AOs
(a)	$\det \begin{pmatrix} 3-\lambda & 2\\ 2 & 2-\lambda \end{pmatrix} = (3-\lambda)(2-\lambda) - 4(=0)$	M1	1.1b
	$\lambda^2 - 5\lambda + 2 = 0$	Al	1.1b
		(2)	
(b)	$\mathbf{A}^2 - 5\mathbf{A} + 2\mathbf{I} = 0$	B1ft	1.1b
	Multiplies through by \mathbf{A}^{-1} $\mathbf{A} - 5\mathbf{I} + 2\mathbf{A}^{-1} = 0$ and rearranges to get $\mathbf{A}^{-1} = \dots$ OR Rearranges to make I the subject, takes out a factor of A and rearranges to get $\mathbf{A}^{-1} = \dots$ $\mathbf{I} = \frac{(5\mathbf{A} - \mathbf{A}^2)}{2} = \mathbf{A}\frac{(5\mathbf{I} - \mathbf{A})}{2} \Rightarrow \mathbf{A}^{-1} = \dots$ OR Rearranges to make I the subject and multiplies through by \mathbf{A}^{-1} $\mathbf{I} = \frac{5}{2}\mathbf{A} - \frac{1}{2}\mathbf{A}^2 \Rightarrow \mathbf{A}^{-1} = \frac{5}{2}\mathbf{A}\mathbf{A}^{-1} - \frac{1}{2}\mathbf{A}^2\mathbf{A}^{-1}$	M1	3.1a
	Identifies $\mathbf{A}^{-1} = -\frac{1}{2}\mathbf{A} + \frac{5}{2}\mathbf{I}$	A1 (3)	1.1b
	1	(5 n	narks)

Notes
(a)
M1: Complete method to find the characteristic equation, condone missing = 0
A1: Obtains a correct three term quadratic equation - may use any variable.
(b)
B1ft: Uses Cayley Hamilton Theorem to produce equation replacing λ with A and constant term with constant multiple of the identity matrix I
M1: A complete method using part (a) to find A^{-1}
Multiplies through by A^{-1} and rearranges to get $A^{-1} =$
Or rearranges to make I the subject, takes out a factor of A, and rearranges to get $A^{-1} =$
Or rearranges to make I the subject and multiplies through by A^{-1} to get $A^{-1} =$
A1: Correct expression for A^{-1} , must be using their answer to part (a).

Q4.

Question	Scheme	Marks	AOs
(a)	$\begin{vmatrix} 1-\lambda & 0 & a \\ -3 & b-\lambda & 1 \\ 0 & 1 & a-\lambda \end{vmatrix} = (1-\lambda)[(b-\lambda)(a-\lambda)-1] + a(-3)(=0)$	M1	1.1b
	$\lambda^{3} - (a+b+1)\lambda^{2} + (a+b+ab-1)\lambda + (3a+1-ab)(=0)$ o.e. $-\lambda^{3} + (a+b+1)\lambda^{2} - (a+b+ab-1)\lambda + (ab-3a-1)(=0)$ o.e.	A1	1.1b
	$\lambda^2 \Rightarrow a+b+1 = 7 \text{ and } \lambda \Rightarrow a+b+ab-1 = 13$ Solves simultaneously e.g. $a+b=6$, $ab=8$ For example: leading to $a^2-6a+8=0 \Rightarrow a=$	M1	3.1a
	a = 2, b = 4	A1	1.1b
	c = -1	A1	2.2a
		(5)	
(b)	$M^3 - 7M^2 + 13M + $ 'their c' $I = 0$	B1ft	1.1b
	$I = M^{3} - 7M^{2} + 13M \Rightarrow M^{-1} = M^{2} - 7M + 13I$ $\Rightarrow M^{-1} = \begin{pmatrix} 1 & 0 & 2 \\ -3 & 4 & 1 \\ 0 & 1 & 2 \end{pmatrix}^{2} - 7\begin{pmatrix} 1 & 0 & 2 \\ -3 & 4 & 1 \\ 0 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 13 & 0 & 0 \\ 0 & 13 & 0 \\ 0 & 0 & 13 \end{pmatrix} = \dots$ $= \begin{pmatrix} 1 & 2 & 6 \\ -15 & 17 & 0 \\ -3 & 6 & 5 \end{pmatrix} - 7\begin{pmatrix} 1 & 0 & 2 \\ -3 & 4 & 1 \\ 0 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 13 & 0 & 0 \\ 0 & 13 & 0 \\ 0 & 0 & 13 \end{pmatrix} = \dots$	M1	3.1a
	$M^{-1} = \begin{pmatrix} 7 & 2 & -8 \\ 6 & 2 & -7 \\ -3 & -1 & 4 \end{pmatrix}$	A1	1.1b
		(3)	
	•	(8 n	narks)

Notes:

(a)

M1: Correct method to find the characteristic equation for M, condone missing = 0, and one slip as long as the intention is clear

A1: Multiplies out to achieve a correct characteristic equation, condone missing = 0

M1: A complete method to find the values of the constants *a* or *b*. Equates their coefficients for λ^2 and λ and solves simultaneously to find values for *a* or *b*.

A1: Deduces the correct values for a and b. (a < b) following correct simultaneous equations

A1: Deduces the correct value for c.

(b)

Blft: Uses Cayley-Hamilton theorem to produce equation replacing λ with M and constant term with constant multiple of the identity matrix I. Follow through on their value for c. This mark may be implied by the M mark.

M1: A complete method to find M^{-1} using the Cayley-Hamilton theorem. The minimum is for writing an expression for M^{-1} from their characteristic equation, for example $M^{-1} = M^2 - 7M + 13I$ and then stating an answer for M^{-1} , they may have used their calculator, there is no need to check.

Al: Correct M⁻¹

Q5.

Question	Scheme	Marks	AOs	
	$\begin{vmatrix} \mathbf{A} - \lambda \mathbf{I} \end{vmatrix} = 0 \Longrightarrow \begin{vmatrix} 1 - \lambda & 1 \\ -2 & 4 - \lambda \end{vmatrix} = 0 \Longrightarrow (1 - \lambda)(4 - \lambda) + 2 = 0$	M1	3.1a	
	$\lambda_1 = 2, \lambda_2 = 3$	A1	1.1b	
	$ \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 2 \begin{pmatrix} x \\ y \end{pmatrix} \text{or} \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 3 \begin{pmatrix} x \\ y \end{pmatrix} $	M1	2.1	
	$2, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ or $3, \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	A1	1.1b	
	$2, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $3, \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	A 1	1.1b	
	$\mathbf{D} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$	B1ft	1.1b	
	$\mathbf{P} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$	B1ft	2.2a	
		(7)		
	(7 mark			
M1: Correct strategy for finding eigenvalues A1: Correct eigenvalues M1: Uses at least one of their eigenvalues correctly to find a corresponding eigenvector A1: One correct eigenvalue/eigenvector pair A1: Both pairs correct B1ft: Correct follow through D or P clearly identified as D or P B1ft: P and D both correct and consistent and identified as D and P Note that the correct matrices may be implied by e.g. $\binom{* \ *}{* \ *} \binom{1 \ 1}{-2 \ 4} \binom{1 \ 1}{1 \ 2} = \binom{2 \ 0}{0 \ 3}$				

Q6.

Question	Scheme	Marks	AOs
(a)	Consider det $\begin{pmatrix} 3-\lambda & 1\\ 6 & 4-\lambda \end{pmatrix} = (3-\lambda)(4-\lambda) - 6$	M1	1.1b
	So $\lambda^2 - 7\lambda + 6 = 0$ is characteristic equation	A1	1.1b
		(2)	
(b)	So $A^2 = 7A - 6I$	B1ft	1.1b
	Multiplies both sides of their equation by A so $A^3 = 7A^2 - 6A$	M1	3.1a
	Uses $A^3 = 7(7A - 6I) - 6A$ So $A^3 = 43A - 42I^*$	A1*cso	1.1b
		(3)	
		(5	marks)
Notes:			
(a) M1: Comple A1: Obtains	te method to find characteristic equation a correct three term quadratic equation – may use variable other than λ	L :	
(b)			Med and

Blft: Uses Cayley Hamilton Theorem to produce equation replacing λ with A and constant term with constant multiple of identity matrix, I
Ml: Multiplies equation by A
Al*: Replaces A² by linear expression in A and achieves printed answer with no errors

Q7.

Question	Scheme	Marks	AOs
(a)	Finds the characteristic equation $(2-\lambda)^2(4-\lambda)-(4-\lambda)=0$	M1	2.1
	so $(4 - \lambda)(\lambda^2 - 4\lambda + 3) = 0$ so $\lambda = 4 *$	A1*	2.2a
	Solves quadratic equation to give	M1	1.1b
	$\lambda = 1$ and $\lambda = 3$	A1	1.1b
		(4)	
(b)	Uses a correct method to find an eigenvector	M1	1.1b
	Obtains a vector parallel to one of $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ or $\begin{pmatrix} 1\\1\\1 \\1 \end{pmatrix}$ or $\begin{pmatrix} 3\\-3\\1 \end{pmatrix}$	A1	1.1b
	Obtains two correct vectors	A1	1.1b
	Obtains all three correct vectors	A1	1.1b
		(4)	
(c)	Uses their three vectors to form a matrix	M1	1.2
	$\left(\begin{array}{ccc} 0 & 1 & 3 \\ 0 & 1 & -3 \\ 1 & 1 & 1 \end{array}\right) \text{ or other correct answer with columns in a different order.}$	A1	1.1b
	12 12 12 12 12 12 12 12 12 12 12 12 12 1		

Notes:

(a)

M1: Attempts to find the characteristic equation (there may be one slip)

A1*: Deduces that $\lambda = 4$ is a solution by the method shown or by checking that $\lambda = 4$ satisfies the characteristic equation

M1: Solves their quadratic equation

A1: Obtains the two correct answers as shown above

⁽b)

MI. Oses a concer memore to much an elective to	M1:	Uses a correct	method to	find an	eigenvector
---	-----	----------------	-----------	---------	-------------

A1: Obtains one correct vector (may be a multiple of the given vectors)

A1: Obtains two correct vectors (may be multiples of the given vectors)

A1: Obtains all three correct vectors (may be multiples of the given vectors)

Note	s: (d	con	tin	ued)	10								
(c) M1:	Fo	rms	a n	atrix	with t	heir	vec	tors	as coli	umns			
	(0	1	3)		(1	0	3)		(3	1	0)	
A1:		0	1	-3	or	1	0	-3	or	- 3	1	0	or other correct alternative
		1	1	1)		1	1	1		1	1	1	

Question	Scheme	Marks	AOs
(i)(a)	$\begin{vmatrix} 1-\lambda & -2\\ 1 & 4-\lambda \end{vmatrix} = (1-\lambda)(4-\lambda)+2 = 0$	M1	1.1b
	$\Rightarrow 4 - 5\lambda + \lambda^2 + 2 = 0 \Rightarrow \lambda^2 - 5\lambda + 6 = 0 *$	A1*	1.1b
		(2)	
(b)	$A^2 - 5A + 6I = 0$	M1	1.1b
	$\mathbf{A}^3 - 5\mathbf{A}^2 + 6\mathbf{A} = 0 \implies \mathbf{A}^3 = 5(5\mathbf{A} - 6\mathbf{I}) - 6\mathbf{A}$	M1	3.1a
	$A^3 = 19A - 30I$	A1	1.1b
		(3)	
	Alternative to part (b)		
	$\lambda^2 - 5\lambda + 6 = 0 \Longrightarrow \lambda^3 - 5\lambda^2 + 6\lambda = 0 \Longrightarrow \lambda^3 = 5(5\lambda - 6) - 6\lambda$	M1	3.1a
	$\mathbf{A}^3 = 5(5\mathbf{A} - 6\mathbf{I}) - 6\mathbf{A}$	M1	1.1b
	$A^3 = 19A - 30I$	A1	1.1b
		(3)	

(ii)	$\mathbf{M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 2-i \end{pmatrix} = (-1+i) \begin{pmatrix} 1 \\ 2-i \end{pmatrix}$ or $\mathbf{M} = \begin{pmatrix} a & b \\ -1-i \end{pmatrix} \Rightarrow \begin{pmatrix} a & b \\ -1-i \end{pmatrix} \begin{pmatrix} 1 \\ -1-i \end{pmatrix}$	M1	1.1b
8-	$\frac{(c \ d) \ (c \ d)(2+i) \ (2+i)}{a+b(2-i)=-1+i \ a+b(2+i)=-1-i}$ $c+d(2-i)=-1+3i \ c+d(2+i)=-1-3i$	A1	1.1b
	$a+b(2-i) = -1+i, a+b(2+i) = -1-i \Rightarrow a = 1, b = -1$ or $c+d(2-i) = -1+3i, c+d(2+i) = -1-3i \Rightarrow c = 5, d = -3$	M1 A1	3.1a 1.1b
	$\mathbf{M} = \begin{pmatrix} 1 & -1 \\ 5 & -3 \end{pmatrix}$	A1	2.2a
		(5)	
	Alternative to part (ii)		
	$\mathbf{P} = \begin{pmatrix} 1 & 1 \\ 2-i & 2+i \end{pmatrix} \Rightarrow \mathbf{P}^{-1} = \frac{1}{2i} \begin{pmatrix} 2+i & -1 \\ i-2 & 1 \end{pmatrix}$	M1 A1	1.1b 1.1b
	$\mathbf{D} = \mathbf{P}^{-1}\mathbf{M}\mathbf{P} \Longrightarrow \mathbf{M} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ $\mathbf{M} = \frac{1}{2i} \begin{pmatrix} 1 & 1 \\ 2-i & 2+i \end{pmatrix} \begin{pmatrix} -1+i & 0 \\ 0 & -1-i \end{pmatrix} \begin{pmatrix} 2+i & -1 \\ i-2 & 1 \end{pmatrix} = \dots$	M1	3.1a
	$\mathbf{M} = \begin{pmatrix} 1 & -1 \\ 5 & -3 \end{pmatrix}$	A1 A1	1.1b 2.2a
		(5)	
		(10	marks)

Notes
(i)(a)
M1: Attempts the determinant of $\mathbf{A} - \lambda \mathbf{I}$
A1*: Fully correct proof
(i)(b)
M1: Applies the Cayley-Hamilton theorem to the equation given in (a)(i)
M1: A full method leading to A^3 by multiplying by A and substituting for A^2
A1: Deduces the correct expression or correct values for p and q
Alternative
M1: A full method leading to λ^3 in terms of λ
M1: Applies the Cayley-Hamilton theorem
A1: Deduces the correct expression or correct values for p and q
(ii)
M1: Uses a general matrix and sets up at least one matrix equation using the information given in
the question
A1: Correct equations in terms of a, b, c and d
M1: Solves simultaneously to find values for all of a, b, c and d
A1: One correct pair of values
A1: Deduces the correct matrix M
Alternative:
M1: Attempts to find the inverse of the matrix of eigenvectors
A1: Correct matrix
M1: Attempts PDP-1 where D is the diagonal matrix of eigenvalues
A1: At least 2 elements correct
A1: Deduces the correct matrix M

Question	Scheme	Marks	AOs
(a)	Sight of det $(\mathbf{M} - \lambda \mathbf{I}) = 0$	B1	1.1a
	$\begin{vmatrix} 1-\lambda & k & -2\\ 2 & -4-\lambda & 1\\ 1 & 2 & 3-\lambda \end{vmatrix} = 0 \Rightarrow$ (1-\lambda)[(-4-\lambda)(3-\lambda)-2]-k[2(3-\lambda)-1]+(-2)[4-(-4-\lambda)]=0	Ml	1.1b
	$\Rightarrow (1-\lambda)(\lambda^2 + \lambda - 14) - k(5-2\lambda) - 16 - 2\lambda = 0$ $\Rightarrow \lambda^3 - (2k+13)\lambda + 5(k+6) = 0*$	Al*	2.1
		(3)	
(b)	(i) $\pm 5(k+6) = 5 \Rightarrow k =$ or $(-12-2) - k(6-1) - 2(4+4) = 5 \Rightarrow k =$	M1	1.1b
	<i>k</i> = -7	Al	2.2a
	(ii) Hence by the C-H theorem $M^3 + M - 5I = 0$	M1	2.1
	Multiplying by \mathbf{M}^{-1} gives $\mathbf{M}^2 + \mathbf{I} - 5\mathbf{M}^{-1} = 0 \Rightarrow \mathbf{M}^{-1} =$	M1	3.1a
	So $\mathbf{M}^{-1} = \frac{1}{5} \left(\mathbf{M}^2 + \mathbf{I} \right)$	Al	1.1b
	$=\frac{1}{5}\left(\begin{pmatrix}-15 & 17 & -15\\ -5 & 4 & -5\\ 8 & -9 & 9\end{pmatrix}+\begin{pmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{pmatrix}\right)=\dots$	Ml	1.1b
	$=\frac{1}{5} \begin{pmatrix} -14 & 17 & -15 \\ -5 & 5 & -5 \\ 8 & -9 & 10 \end{pmatrix} \text{ or } \begin{pmatrix} -\frac{14}{5} & \frac{17}{5} & -3 \\ -1 & 1 & -1 \\ \frac{8}{5} & -\frac{9}{5} & 2 \end{pmatrix}$	Al	1.1b
		(7)	
		(10 n	narks)

Notes:

(a)

B1: Recalls characteristic equation is found using $det(\mathbf{M} - \lambda \mathbf{I}) = 0$

M1: Attempts to expand the determinant

Al*: Achieves the correct equation with no errors and at least one intermediate step following the expansion.

(b)(i)

M1: Attempts to use determinant equals 5 to find k. May be attempted by finding determinant from original matrix, or attempt at using the "-5(k+6)" from the expansion in (a) (allow \pm for the method mark).

A1: k = -7

(ii)

M1: Attempts to use the Cayley-Hamilton theorem to set up a matrix equation. The equation should be correct for their k, including correct use of I.

M1: Realises the need to multiply the equation through (either side) by M^{-1} and rearrange to make M^{-1} the subject.

A1: $M^{-1} = \frac{1}{5} (M^2 + I)$

M1: Proceeds to find M^{-1} from their equation. A1: Correct answer.