## Matrix Algebra

## Questions

Q1.

The matrix $\mathbf{A}$ is given by

$$
\mathbf{A}=\left(\begin{array}{rrr}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right)
$$

(a) Show that 2 is a repeated eigenvalue of $\mathbf{A}$ and find the other eigenvalue.
(b) Hence find three non-parallel eigenvectors of $\mathbf{A}$.
(c) Find a matrix $\mathbf{P}$ such that $\mathbf{P}^{-1} \mathbf{A P}$ is a diagonal matrix.

Q2.

$$
A=\left(\begin{array}{rrr}
5 & -2 & 5 \\
0 & 3 & p \\
-6 & 6 & -4
\end{array}\right) \quad \text { where } p \text { is a constant }
$$

Given that $\left(\begin{array}{r}2 \\ 1 \\ -2\end{array}\right)$ is an eigenvector for $\mathbf{A}$
(a) (i) determine the eigenvalue corresponding to this eigenvector
(ii) hence show that $p=2$
(iii) determine the remaining eigenvalues and corresponding eigenvectors of $\mathbf{A}$
(b) Write down a matrix $\mathbf{P}$ and a diagonal matrix $\mathbf{D}$ such that $\mathbf{A}=\mathbf{P D P}^{-1}$
(c) (i) Solve the differential equation $\dot{u}=k u$, where $k$ is a constant.

With respect to a fixed origin $O$, the velocity of a particle moving through space is modelled by

$$
\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right)=\mathbf{A}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

By considering $\left(\begin{array}{c}u \\ v \\ w\end{array}\right)=\mathrm{P}^{-1}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ so that $\left(\begin{array}{c}\dot{u} \\ \dot{v} \\ \dot{w}\end{array}\right)=\mathrm{P}^{-1}\left(\begin{array}{c}\dot{x} \\ \dot{y} \\ \dot{z}\end{array}\right)$
(ii) determine a general solution for the displacement of the particle.

Q3.
Given that

$$
\mathbf{A}=\left(\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right)
$$

(a) find the characteristic equation for the matrix $\mathbf{A}$, simplifying your answer.
(b) Hence find an expression for the matrix $\mathbf{A}^{-1}$ in the form $\lambda \mathbf{A}+\mu \mathbf{l}$, where $\lambda$ and $\mu$ are constants to be found.

Q4.

Matrix $\mathbf{M}$ is given by

$$
\mathbf{M}=\left(\begin{array}{rrr}
1 & 0 & a \\
-3 & b & 1 \\
0 & 1 & a
\end{array}\right)
$$

where $a$ and $b$ are integers, such that $a<b$
Given that the characteristic equation for $\mathbf{M}$ is

$$
\lambda^{3}-7 \lambda^{2}+13 \lambda+c=0
$$

where $c$ is a constant,
(a) determine the values of $a, b$ and $c$.
(b) Hence, using the Cayley-Hamilton theorem, determine the matrix $\mathbf{M}^{-1}$

Q5.

$$
\mathbf{A}=\left(\begin{array}{rr}
1 & 1 \\
-2 & 4
\end{array}\right)
$$

Find a matrix $\mathbf{P}$ and a diagonal matrix $\mathbf{D}$ such that $\mathbf{D}=\mathbf{P}^{-1} \mathbf{A} \mathbf{P}$

Q6.

Given that

$$
A=\left(\begin{array}{ll}
3 & 1 \\
6 & 4
\end{array}\right)
$$

(a) find the characteristic equation of the matrix $\mathbf{A}$.
(b) Hence show that $A^{3}=43 A-421$.

Q7.

The matrix $\mathbf{M}$ is given by

$$
\mathbf{M}=\left(\begin{array}{rrr}
2 & 1 & 0 \\
1 & 2 & 0 \\
-1 & 0 & 4
\end{array}\right)
$$

(a) Show that 4 is an eigenvalue of $\mathbf{M}$, and find the other two eigenvalues.
(b) For each of the eigenvalues find a corresponding eigenvector.
(c) Find a matrix $\mathbf{P}$ such that $\mathbf{P}^{-1} \mathbf{M P}$ is a diagonal matrix.

Q8.
(i)

$$
\mathbf{A}=\left(\begin{array}{rr}
1 & -2 \\
1 & 4
\end{array}\right)
$$

(a) Show that the characteristic equation for $\mathbf{A}$ is $\lambda^{2}-5 \lambda+6=0$
(b) Use the Cayley-Hamilton theorem to find integers $p$ and $q$ such that

$$
\begin{equation*}
\mathbf{A}^{3}=p \mathbf{A}+q \mathbf{l} \tag{2}
\end{equation*}
$$

(ii) Given that the $2 \times 2$ matrix $\mathbf{M}$ has eigenvalues $-1+i$ and $-1-i$,
with eigenvectors $\binom{1}{2-i}$ and $\binom{1}{2+i}$ respectively, find the matrix $\mathbf{M}$.

## (Total for question = 10 marks)

Q9.

$$
\mathbf{M}=\left(\begin{array}{rrr}
1 & k & -2 \\
2 & -4 & 1 \\
1 & 2 & 3
\end{array}\right)
$$

where $k$ is a constant.
(a) Show that, in terms of $k$, a characteristic equation for $\mathbf{M}$ is given by

$$
\lambda^{3}-(2 k+13) \lambda+5(k+6)=0
$$

Given that $\operatorname{det} \mathbf{M}=5$
(b) (i) find the value of $k$
(ii) use the Cayley-Hamilton theorem to find the inverse of $\mathbf{M}$.

## Mark Scheme - Matrix Algebra

Q1.

| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| (a) | $\|\mathbf{A}-\lambda \mathbf{I}\|=\left\|\begin{array}{ccc}6-\lambda & -2 & 2 \\ -2 & 3-\lambda & -1 \\ 2 & -1 & 3-\lambda\end{array}\right\|=(6-\lambda)[\ldots]-(-2)[\ldots]+2[\ldots]=\ldots$ | M1 | 1.1b |
|  | $\begin{gathered} (6-\lambda)\left((3-\lambda)^{2}-1\right)+2(2(\lambda-3)+2)+2(2-2(3-\lambda))(=0) \\ \left(\lambda^{3}-12 \lambda^{2}+36 \lambda-32=0\right) \end{gathered}$ | A1 | 1.1b |
|  | $=(\lambda-2)\left(\lambda^{2}+\ldots \lambda+\ldots\right)$ | M1 | 2.1 |
|  | $\begin{aligned} =(\lambda-2)\left(\lambda^{2}-10 \lambda+16\right) & =(\lambda-2)^{2}(\lambda-8) \Rightarrow \lambda=2 \text { is a repeated } \\ & \text { eigenvalue * } \end{aligned}$ | A1* | 2.2a |
|  | $\lambda=8$ | B1 | 1.1b |
|  |  | (5) |  |
| (b) | $\left(\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right) \mathbf{v}=2\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ or $\left(\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right) \mathbf{v}=8\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \Rightarrow \mathbf{v}=\ldots$ | M1 | 1.1b |
|  | Obtains any multiple of $\left(\begin{array}{r}2 \\ -1 \\ 1\end{array}\right)$ for $\lambda=8$ | A1 | 1.1b |
|  | Obtains any (non-zero) multiple or linear combination of $\left(\begin{array}{r} -1 \\ 0 \\ 2 \end{array}\right) \text { or }\left(\begin{array}{l} 1 \\ 2 \\ 0 \end{array}\right) \text { or }\left(\begin{array}{l} 0 \\ 1 \\ 1 \end{array}\right) \text { for } \lambda=2$ | A1 | 1.1b |
|  | Obtains a different linear combination or (non-zero) multiple of different vector from $\left(\begin{array}{r}-1 \\ 0 \\ 2\end{array}\right)$ or $\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$ ㅇ $\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ for $\lambda=2$ | A1 | 3.1a |
|  |  | (4) |  |
| (c) | Forms a matrix with their eigenvectors as columns | M1 | 1.2 |
|  | E.g. $\left(\begin{array}{rrr}-1 & 1 & 2 \\ 0 & 2 & -1 \\ 2 & 0 & 1\end{array}\right)$ | A1ft | 1.1b |
|  |  | (2) |  |
| (11 marks) |  |  |  |

## Notes

(a)

M1: Attempts to expand the determinant to find the characteristic polynomial.
Note: other methods of expanding the determinant are possible. If unsure send to review.
A1: Correct expansion need not be simplified. (Need not see set equal to zero) Allow recovery of missing brackets if indicated by later working.
M1: Attempts to take out a factor of $(\lambda-2)$ of their equation (may first expand to cubic or may spot the factor and take out without full expansion). E.g
$(6-\lambda)\left((3-\lambda)^{2}-1\right)+2(2(\lambda-3)+2)+2(2-2(3-\lambda))=(6-\lambda)(4-\lambda)(2-\lambda)+4(\lambda-2)+4(\lambda-2)$
$=(\lambda-2)((6-\lambda)(4-\lambda)+4+4)$
This is for a method that will allow $\lambda$ to be shown as a repeated eigenvalue, so just stating two solutions is not sufficient, factorisation must be seen.
$\mathrm{A} 1^{*}$ : Obtains a correct factor of $(\lambda-2)^{2}$ and deduces that 2 is a repeated eigenvalue. Must see statement about 2 being repeated. (Just listing 2 twice is not sufficient.)
B 1 : (Note this is A1 on ePEN) Obtains and identifies 8 as the other eigenvalue ( B 0 if not identified in (a) but full marks can be scored in (b) and (c) for use of 8 as eigenvalue)
(b)

M1: Uses a correct method to find at least one eigenvector
A1: Obtains one correct eigenvector for $\lambda=8$
A1: Obtains one correct eigenvector for $\lambda=2$
A1: Obtains two correct linearly independent eigenvectors for $\lambda=2$
Note some other common eigenvectors for $\lambda=2$ are $\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 5 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$
(c)

M1: Forms a matrix with their three different non-zero eigenvectors as columns or with their normalised (or any scaled version) of their eigenvectors.
A1ft: Correct matrix with the eigenvectors (normalised/scaled) as columns in any order (follow through their three different vectors which are not multiples of any other)

Q2.

| Question | Scheme | Marks | Aos |
| :---: | :---: | :---: | :---: |
| (a)(i) | $\left(\begin{array}{ccc}5 & -2 & 5 \\ 0 & 3 & p \\ -6 & 6 & -4\end{array}\right)\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right)=\left(\begin{array}{c}-2 \\ 3-2 p \\ 2\end{array}\right)=-1 \times\left(\begin{array}{c}2 \\ 2 p-3 \\ -2\end{array}\right)$ |  |  |
|  | Corresponding eigenvalue is -1 | B1 | 1.1b |
|  |  | (1) |  |
| (a)(ii) | $2 p-3=1 \Rightarrow p=\ldots$ | M1 | 1.1 b |
|  | $p=2$ * | Al* | 1.1b |
|  |  | (2) |  |
| (a)(iii) | $\begin{aligned} & \operatorname{det}\left(\begin{array}{rrr} 5-\lambda & -2 & 5 \\ 0 & 3-\lambda & p \\ -6 & 6 & -4-\lambda \end{array}\right)=0 \\ & \Rightarrow(5-\lambda)((3-\lambda)(-4-\lambda)-12)-(-2)(12)+5(6(3-\lambda))=0 \end{aligned}$ | M1 | 1.1b |
|  | $\Rightarrow \lambda^{3}-4 \lambda^{2}+\lambda+6=0$ | A1 | 1.1b |
|  | $\left(\Rightarrow(\lambda+1)\left(\lambda^{2}-5 \lambda+6\right)=0 \Rightarrow(\lambda+1)(\lambda-2)(\lambda-3)=0\right)$ <br> Eigenvalues are $(-1), 2$ and 3 | Al | 1.1b |
|  | Either $\left.\begin{array}{c}3 x-2 y+5 z=0 \\ y+2 z=0 \\ -6 x+6 y-6 z=0\end{array}\right\}$ or $\left.\begin{array}{c}2 x-2 y+5 z=0 \\ 2 z=0 \\ -6 x+6 y-7 z=0\end{array}\right\} \Rightarrow x / y / z=\ldots$ | M1 | 2.1 |
|  | Either $k\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right)$ (for $\lambda=2$ ) or $m\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)($ for $\lambda=3)$ | Al | 1.1b |
|  | Both $\left.\left.\begin{array}{c}3 x-2 y+5 z=0 \\ y+2 z=0 \\ -6 x+6 y-6 z=0\end{array}\right\} \begin{array}{c}2 x-2 y+5 z=0 \\ 2 z=0 \\ -6 x+6 y-7 z=0\end{array}\right\}$ and ${ }^{2}$ | M1 | 2.1 |
|  | Both $k\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right)($ for $\lambda=2)$ and $m\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)($ for $\lambda=3)$ | A1 | 1.1b |
|  |  | (7) |  |


| (b) | E.g. $\mathbf{P}=\left(\begin{array}{ccc}2 & 3 & 1 \\ 1 & 2 & 1 \\ -2 & -1 & 0\end{array}\right)$ and $\mathbf{D}=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$ | Blft | 2.2 a |
| :---: | :--- | :---: | :---: |
|  |  | (1) |  |
| (c)(i) | $\dot{u}=k u \Rightarrow \int \frac{1}{u} \mathrm{~d} u=k \int \mathrm{~d} t \Rightarrow \ln u=k t(+c)$ | $\mathbf{M l}$ | 1.1 b |


|  | So $u=A \mathrm{e}^{k}$ or $u=\mathrm{e}^{k+c}$ | Al | 1.1 b |
| :---: | :---: | :---: | :---: |
|  |  | (2) |  |
| (ii) | $\left(\begin{array}{l}\dot{x} \\ \dot{y} \\ \dot{z}\end{array}\right)=\mathrm{PDP}^{-1}\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \Rightarrow\left(\begin{array}{c}\dot{u} \\ \dot{v} \\ \dot{w}\end{array}\right)=\mathrm{P}^{-1}\left(\begin{array}{l}\dot{x} \\ \dot{y} \\ \dot{z}\end{array}\right)=\mathbf{D}\left(\begin{array}{c}u \\ v \\ w\end{array}\right)=\left(\begin{array}{c}-u \\ 2 v \\ 3 w\end{array}\right)$ | M1 | 3.1 b |
|  | $\Rightarrow\left(\begin{array}{l}u \\ v \\ w\end{array}\right)=\left(\begin{array}{l}\text { Ae }{ }^{-t} \\ \mathrm{Be}^{2 t} \\ C \mathrm{e}^{3 t}\end{array}\right)$ | M1 | 2.2a |
|  | $\Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\mathbf{P}\left(\begin{array}{l}A \mathrm{e}^{-t} \\ B \mathrm{e}^{2 t} \\ C \mathrm{e}^{3 t}\end{array}\right)=\ldots$ | M1 | 3.4 |
|  | $\Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}2 A \mathrm{e}^{-t}+3 B \mathrm{e}^{2 t}+C \mathrm{e}^{3 t} \\ A \mathrm{e}^{-t}+2 B \mathrm{e}^{2 t}+C \mathrm{e}^{3 t} \\ -2 A \mathrm{e}^{-t}-B \mathrm{e}^{2 t}\end{array}\right)$ | A1 | 1.1 b |
|  |  | (4) |  |
| (17 marks) |  |  |  |

## Notes:

(a)(i)

Bl: For the correct eigenvalue of -1
(ii)

M1: Correct equation with their eigenvalue set up - need only see middle equation for this.
Al*: Correct proof (full matrix calculation not necessary).
(iii)

M1: Applies $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$ to achieve a cubic in $\lambda$ (or other variable, simplification not required). Allow with $p$ used instead of 2 , and look for two correct "terms" in the expansion leading to a cubic as evidence of the expansion.
Al: Correct simplified cubic. Note this may be implied by correct answers from a calculator following a correct expansion seen for the M.
A1: Correct eigenvalues
M1: Forms and solves eigenvector equations for at least one (other than -1 ) eigenvalue.
Al: One correct (other) eigenvector
M1: Both eigenvectors attempted.
A1: Both (other) eigenvectors correct.
(b)

Blft: A correct corresponding P and $\mathbf{D}$, follow through on their answer to (a). Columns may be in different order, but should be consistent for their $\mathbf{P}$ and $\mathbf{D}$.
(c)(i)

M1: Separates variables and attempts the integration (constant not required).
Al: Correct answer for $u=\ldots$, either form, including constant of integration

## (ii)

NB different orderings of the columns of $P$ and $D$ will give the terms in different orders here.
M1: Uses their $\mathbf{P}$ and $\mathbf{D}$ to transform system into equation in $u, v$ and $w$ (may be implied).
M1: Forms the solution for $u, v$ and $w$ using their eigenvalues.
M1: Reverses the substitution (multiplies by their P ) to get solution for $x, y$ and $z$.
Al: Correct answer, in matrix form or as separate equations - award when first seen and isw.
Q3.

| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| (a) | $\operatorname{det}\left(\begin{array}{cc}3-\lambda & 2 \\ 2 & 2-\lambda\end{array}\right)=(3-\lambda)(2-\lambda)-4(=0)$ | M1 | 1.1b |
|  | $\lambda^{2}-5 \lambda+2=0$ | A1 | 1.1b |
|  |  | (2) |  |
| (b) | $\mathbf{A}^{2}-5 \mathbf{A}+2 \mathbf{I}=0$ | B1ft | 1.1b |
|  | Multiplies through by $\mathrm{A}^{-1}$ <br> $\mathbf{A}-5 \mathbf{I}+2 \mathbf{A}^{-1}=0$ and rearranges to get $\mathbf{A}^{-1}=\ldots$ <br> OR <br> Rearranges to make I the subject, takes out a factor of $\mathbf{A}$ and rearranges to get $\mathrm{A}^{-1}=\ldots$ $\mathbf{I}=\frac{\left(5 \mathbf{A}-\mathbf{A}^{2}\right)}{2}=\mathbf{A} \frac{(5 \mathbf{I}-\mathbf{A})}{2} \Rightarrow \mathbf{A}^{-1}=\ldots$ <br> OR <br> Rearranges to make $\mathbf{I}$ the subject and multiplies through by $\mathrm{A}^{-1}$ $\mathbf{I}=\frac{5}{2} \mathbf{A}-\frac{1}{2} \mathbf{A}^{2} \Rightarrow \mathbf{A}^{-1}=\frac{5}{2} \mathbf{A A}^{-1}-\frac{1}{2} \mathbf{A}^{2} \mathbf{A}^{-1}$ | M1 | 3.1a |
|  | Identifies $\mathbf{A}^{-1}=-\frac{1}{2} \mathbf{A}+\frac{5}{2} \mathbf{I}$ | A1 | 1.1b |
|  |  | (3) |  |
| (5 marks) |  |  |  |


|  |
| :--- |
| Notes |

(a)

M1: Complete method to find the characteristic equation, condone missing $=0$
A1: Obtains a correct three term quadratic equation - may use any variable.
(b)

B1ft: Uses Cayley Hamilton Theorem to produce equation replacing $\lambda$ with $\mathbf{A}$ and constant term with constant multiple of the identity matrix I
M1: A complete method using part (a) to find $A^{-1}$
Multiplies through by $\mathbf{A}^{-1}$ and rearranges to get $\mathbf{A}^{-1}=\ldots$
Or rearranges to make $\mathbf{I}$ the subject, takes out a factor of $\mathbf{A}$, and rearranges to get $\mathbf{A}^{-1}=\ldots$
Or rearranges to make $\mathbf{I}$ the subject and multiplies through by $\mathbf{A}^{-1}$ to get $\mathbf{A}^{-1}=\ldots$
A1: Correct expression for $\mathbf{A}^{-1}$, must be using their answer to part (a).

Q4.

| Question | Scheme | Marks | A0s |
| :---: | :---: | :---: | :---: |
| (a) | $\left\|\begin{array}{ccc} 1-\lambda & 0 & a \\ -3 & b-\lambda & 1 \\ 0 & 1 & a-\lambda \end{array}\right\| \begin{aligned} & (1-\lambda)[(b-\lambda)(a-\lambda)-1]+a(-3)(=0) \end{aligned}$ | M1 | 1.1b |
|  | $\lambda^{3}-(a+b+1) \lambda^{2}+(a+b+a b-1) \lambda+(3 a+1-a b)(=0)$ <br> o.e. $-\lambda^{3}+(a+b+1) \lambda^{2}-(a+b+a b-1) \lambda+(a b-3 a-1)(=0)$ <br> o.e. | A1 | 1.1b |
|  | $\lambda^{2} \Rightarrow a+b+1=7 \text { and } \lambda \Rightarrow a+b+a b-1=13$ <br> Solves simultaneously e.g. $a+b=6, a b=8$ <br> For example: leading to $a^{2}-6 a+8=0 \Rightarrow a=\ldots$ | M1 | 3.1a |
|  | $a=2, b=4$ | A1 | 1.1b |
|  | $c=-1$ | A1 | 2.2a |
|  |  | (5) |  |
| (b) | $\mathbf{M}^{3}-\mathbf{7} \mathbf{M}^{2}+13 \mathbf{M}+{ }^{\text {'their }} \mathbf{c}^{\prime} \mathbf{I}=0$ | B1ft | 1.1b |
|  | $\begin{aligned} & I=M^{3}-7 M^{2}+13 M \Rightarrow M^{-1}=M^{2}-7 M+13 I \\ & \Rightarrow M^{-1}=\left(\begin{array}{ccc} 1 & 0 & 2 \\ -3 & 4 & 1 \\ 0 & 1 & 2 \end{array}\right)^{2}-7\left(\begin{array}{ccc} 1 & 0 & 2 \\ -3 & 4 & 1 \\ 0 & 1 & 2 \end{array}\right)+\left(\begin{array}{ccc} 13 & 0 & 0 \\ 0 & 13 & 0 \\ 0 & 0 & 13 \end{array}\right)=\ldots \\ &=\left(\begin{array}{ccc} 1 & 2 & 6 \\ -15 & 17 & 0 \\ -3 & 6 & 5 \end{array}\right)-7\left(\begin{array}{ccc} 1 & 0 & 2 \\ -3 & 4 & 1 \\ 0 & 1 & 2 \end{array}\right)+\left(\begin{array}{ccc} 13 & 0 & 0 \\ 0 & 13 & 0 \\ 0 & 0 & 13 \end{array}\right)=\ldots \end{aligned}$ | M1 | 3.1a |
|  | $M^{-1}=\left(\begin{array}{crr}7 & 2 & -8 \\ 6 & 2 & -7 \\ -3 & -1 & 4\end{array}\right)$ | A1 | 1.1b |
|  |  | (3) |  |
| (8 marks) |  |  |  |

## Notes:

(a)

M1: Correct method to find the characteristic equation for $\mathbf{M}$, condone missing $=0$, and one slip as long as the intention is clear
Al: Multiplies out to achieve a correct characteristic equation, condone missing $=0$
M1: A complete method to find the values of the constants $a$ or $b$. Equates their coefficients for $\lambda^{2}$ and $\lambda$ and solves simultaneously to find values for $a$ or $b$.
Al: Deduces the correct values for $a$ and $b .(a<b)$ following correct simultaneous equations Al: Deduces the correct value for $c$.
(b)

Blft: Uses Cayley-Hamilton theorem to produce equation replacing $\lambda$ with $\mathbf{M}$ and constant term with constant multiple of the identity matrix I. Follow through on their value for $c$. This mark may be implied by the $M$ mark.
M1: A complete method to find $M^{-1}$ using the Cayley-Hamilton theorem. The minimum is for writing an expression for $M^{-1}$ from their characteristic equation, for example $M^{-1}=M^{2}-7 M+$ $13 I$ and then stating an answer for $M^{-1}$, they may have used their calculator, there is no need to check.
Al: Correct $M^{-1}$

Q5.

| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
|  | $\|\mathbf{A}-\lambda \mathbf{I}\|=0 \Rightarrow\left\|\begin{array}{cc}1-\lambda & 1 \\ -2 & 4-\lambda\end{array}\right\|=0 \Rightarrow(1-\lambda)(4-\lambda)+2=0$ | M1 | 3.1a |
|  | $\lambda_{1}=2, \lambda_{2}=3$ | A1 | 1.1b |
|  | $\left(\begin{array}{rr}1 & 1 \\ -2 & 4\end{array}\right)\binom{x}{y}=2\binom{x}{y}$ or $\left(\begin{array}{rr}1 & 1 \\ -2 & 4\end{array}\right)\binom{x}{y}=3\binom{x}{y}$ | M1 | 2.1 |
|  | 2. $\binom{1}{1}$ or $3,\binom{1}{2}$ | A1 | 1.1b |
|  | $2,\binom{1}{1}$ and $3,\binom{1}{2}$ | A1 | 1.1b |
|  | $\mathbf{D}=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$ | B1ft | 1.1b |
|  | $\mathbf{P}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$ | B1ft | 2.2a |
|  |  | (7) |  |
| (7 marks) |  |  |  |
| Notes |  |  |  |
| M1: Correct strategy for finding eigenvalues <br> A1: Correct eigenvalues <br> M1: Uses at least one of their eigenvalues correctly to find a corresponding eigenvect <br> A1: One correct eigenvalue/eigenvector pair <br> A1: Both pairs correct <br> B1ft: Correct follow through D or P clearly identified as $\mathbf{D}$ or $\mathbf{P}$ <br> B1 ft: P and D both correct and consistent and identified as $\mathbf{D}$ and $\mathbf{P}$ <br> Note that the correct matrices may be implied by e.g. $\left(\begin{array}{ll} * & * \\ * & * \end{array}\right)\left(\begin{array}{rr} 1 & 1 \\ -2 & 4 \end{array}\right)\left(\begin{array}{ll} 1 & 1 \\ 1 & 2 \end{array}\right)=\left(\begin{array}{ll} 2 & 0 \\ 0 & 3 \end{array}\right)$ |  |  |  |

Q6.

| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| (a) | Consider $\operatorname{det}\left(\begin{array}{lc}3-\lambda & 1 \\ 6 & 4-\lambda\end{array}\right)=(3-\lambda)(4-\lambda)-6$ | M1 | 1.1 b |
|  | So $\lambda^{2}-7 \lambda+6=0$ is characteristic equation | A1 | 1.1 b |
|  |  | (2) |  |
| (b) | So $\mathrm{A}^{2}=7 \mathrm{~A}-6 \mathrm{I}$ | B1ft | 1.1 b |
|  | Multiplies both sides of their equation by $A$ so $\mathbf{A}^{3}=7 \mathrm{~A}^{2}-6 \mathrm{~A}$ | M1 | 3.1a |
|  | Uses $\mathbf{A}^{3}=7(7 \mathbf{A}-6 \mathbf{I})-6 \mathbf{A} \quad$ So $\mathbf{A}^{3}=43 \mathbf{A}-42 \mathbf{I}^{*}$ | A1 ${ }^{*}$ cso | 1.1b |
|  |  | (3) |  |

## Notes:

(a)

M1: Complete method to find characteristic equation
A1: Obtains a correct three term quadratic equation - may use variable other than $\lambda$
(b)

Blft: Uses Cayley Hamilton Theorem to produce equation replacing $\lambda$ with $\mathbf{A}$ and constant term with constant multiple of identity matrix, I
M1: Multiplies equation by $A$
$\mathbf{A l}^{*}$ : Replaces $\mathbf{A}^{2}$ by linear expression in $\mathbf{A}$ and achieves printed answer with no errors

Q7.

| Question | Scheme | Marks | AOS |
| :---: | :---: | :---: | :---: |
| (a) | Finds the characteristic equation $(2-\lambda)^{2}(4-\lambda)-(4-\lambda)=0$ | M1 | 2.1 |
|  | so ( $4-\lambda$ ) $\left(\lambda^{2}-4 \lambda+3\right)=0$ so $\lambda=4 *$ | A1* | 2.2a |
|  | Solves quadratic equation to give | M1 | 1.1 b |
|  | $\lambda=1$ and $\lambda=3$ | A1 | 1.1 b |
|  |  | (4) |  |
| (b) | Uses a correct method to find an eigenvector | M1 | 1.1 b |
|  | Obtains a vector parallel to one of $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ or $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ or $\left(\begin{array}{r}3 \\ -3 \\ 1\end{array}\right)$ | A1 | 1.1 b |
|  | Obtains two correct vectors | A1 | 1.1b |
|  | Obtains all three correct vectors | A1 | 1.1b |
|  |  | (4) |  |
| (c) | Uses their three vectors to form a matrix | M1 | 1.2 |
|  | $\left(\begin{array}{ccc}0 & 1 & 3 \\ 0 & 1 & -3 \\ 1 & 1 & 1\end{array}\right) \quad \begin{aligned} & \text { or other correct answer with } \\ & \text { columns in a different order. }\end{aligned}$ | A1 | 1.1 b |
|  |  | (2) |  |
| (10 marks) |  |  |  |

## Notes:

(a)

M1: Attempts to find the characteristic equation (there may be one slip)
$\mathrm{Al}^{*}$ : Deduces that $\lambda=4$ is a solution by the method shown or by checking that $\lambda=4$ satisfies the characteristic equation
M1: Solves their quadratic equation
A1: Obtains the two correct answers as shown above
(b)

M1: Uses a correct method to find an eigenvector
Al: Obtains one correct vector (may be a multiple of the given vectors)
Al: Obtains two correct vectors (may be multiples of the given vectors)
Al: Obtains all three correct vectors (may be multiples of the given vectors)

## Notes: (continued)

(c)

M1: Forms a matrix with their vectors as columns
Al: $\quad\left(\begin{array}{ccc}0 & 1 & 3 \\ 0 & 1 & -3 \\ 1 & 1 & 1\end{array}\right)$ or $\left(\begin{array}{ccc}1 & 0 & 3 \\ 1 & 0 & -3 \\ 1 & 1 & 1\end{array}\right)$ or $\left(\begin{array}{ccc}3 & 1 & 0 \\ -3 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$ or other correct alternative

Q8.

| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| (i)(a) | $\left\|\begin{array}{cc}1-\lambda & -2 \\ 1 & 4-\lambda\end{array}\right\|=(1-\lambda)(4-\lambda)+2=0$ | M1 | 1.1b |
|  | $\Rightarrow 4-5 \lambda+\lambda^{2}+2=0 \Rightarrow \lambda^{2}-5 \lambda+6=0 *$ | A1* | 1.1b |
|  |  | (2) |  |
| (b) | $\mathbf{A}^{2}-5 \mathbf{A}+6 \mathbf{I}=0$ | M1 | 1.1b |
|  | $\mathbf{A}^{3}-5 \mathbf{A}^{2}+6 \mathbf{A}=0 \Rightarrow \mathbf{A}^{3}=5(5 \mathbf{A}-6 \mathbf{I})-6 \mathbf{A}$ | M1 | 3.1a |
|  | $\mathrm{A}^{3}=19 \mathrm{~A}-30 \mathrm{I}$ | A1 | 1.1b |
|  |  | (3) |  |
|  | Alternative to part (b) |  |  |
|  | $\lambda^{2}-5 \lambda+6=0 \Rightarrow \lambda^{3}-5 \lambda^{2}+6 \lambda=0 \Rightarrow \lambda^{3}=5(5 \lambda-6)-6 \lambda$ | M1 | 3.1a |
|  | $\mathbf{A}^{3}=5(5 \mathbf{A}-6 \mathbf{I})-6 \mathbf{A}$ | M1 | 1.1b |
|  | $\mathrm{A}^{3}=19 \mathrm{~A}-30 \mathrm{I}$ | A1 | 1.1b |
|  |  | (3) |  |

(ii)

| $\begin{aligned} & \mathbf{M}=\left(\begin{array}{ll} a & b \\ c & d \end{array}\right) \Rightarrow\left(\begin{array}{ll} a & b \\ c & d \end{array}\right)\binom{1}{2-\mathrm{i}}=(-1+\mathrm{i})\binom{1}{2-\mathrm{i}} \\ & \mathbf{M}=\left(\begin{array}{ll} a & b \\ c & d \end{array}\right) \Rightarrow\left(\begin{array}{ll} a & b \\ c & d \end{array}\right)\binom{1}{2+\mathrm{i}}=(-1-\mathrm{i})\binom{1}{2+\mathrm{i}} \end{aligned}$ | M1 | 1.1b |
| :---: | :---: | :---: |
| $\begin{array}{ll} a+b(2-\mathrm{i})=-1+\mathrm{i} & a+b(2+\mathrm{i})=-1-\mathrm{i} \\ c+d(2-\mathrm{i})=-1+3 \mathrm{i} & c+d(2+\mathrm{i})=-1-3 \mathrm{i} \end{array}$ | A1 | 1.1b |
| $\begin{gathered} a+b(2-\mathrm{i})=-1+\mathrm{i}, a+b(2+\mathrm{i})=-1-\mathrm{i} \Rightarrow a=1, b=-1 \\ \text { or } \\ c+d(2-\mathrm{i})=-1+3 \mathrm{i}, c+d(2+\mathrm{i})=-1-3 \mathrm{i} \Rightarrow c=5, d=-3 \end{gathered}$ | M1 | $\begin{aligned} & \text { 3.1a } \\ & 1.1 \mathrm{~b} \end{aligned}$ |
| $\mathbf{M}=\left(\begin{array}{ll}1 & -1 \\ 5 & -3\end{array}\right)$ | A1 | 2.2a |
|  | (5) |  |
| Alternative to part (ii) |  |  |
| $\mathrm{P}=\left(\begin{array}{cc}1 & 1 \\ 2-\mathrm{i} & 2+\mathrm{i}\end{array}\right) \Rightarrow \mathrm{P}^{-1}=\frac{1}{2 \mathrm{i}}\left(\begin{array}{cc}2+\mathrm{i} & -1 \\ \mathrm{i}-2 & 1\end{array}\right)$ | M1 | $\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$ |
| $\begin{gathered} \mathbf{D}=\mathbf{P}^{-1} \mathbf{M P} \Rightarrow \mathbf{M}=\mathbf{P D P}^{-1} \\ \mathbf{M}=\frac{1}{2 \mathrm{i}}\left(\begin{array}{cc} 1 & 1 \\ 2-\mathrm{i} & 2+\mathrm{i} \end{array}\right)\left(\begin{array}{cc} -1+\mathrm{i} & 0 \\ 0 & -1-\mathrm{i} \end{array}\right)\left(\begin{array}{cc} 2+\mathrm{i} & -1 \\ \mathrm{i}-2 & 1 \end{array}\right)=\ldots \end{gathered}$ | M1 | 3.1a |
| $\mathbf{M}=\left(\begin{array}{ll}1 & -1 \\ 5 & -3\end{array}\right)$ | A1 | $\begin{aligned} & 1.1 \mathrm{~b} \\ & 2.2 \mathrm{a} \end{aligned}$ |
|  | (5) |  |
|  |  | narks) |


| Notes |
| :--- |
| (i)(a) |
| M1: Attempts the determinant of $\mathbf{A}-\lambda \mathbf{I}$ |
| A1*: Fully correct proof |
| (i)(b) |
| M1: Applies the Cayley-Hamilton theorem to the equation given in (a)(i) |
| M1: A full method leading to $\mathbf{A}^{3}$ by multiplying by $\mathbf{A}$ and substituting for $\mathbf{A}^{2}$ |
| A1: Deduces the correct expression or correct values for $p$ and $q$ |
| Alternative |
| M1: A full method leading to $\lambda^{3}$ in terms of $\lambda$ |
| M1: Applies the Cayley-Hamilton theorem |
| A1: Deduces the correct expression or correct values for $p$ and $q$ |
| (ii) |
| M1: Uses a general matrix and sets up at least one matrix equation using the information given in |
| the question |
| A1: Correct equations in terms of $a, b, c$ and $d$ |
| M1: Solves simultaneously to find values for all of $a, b, c$ and $d$ |
| A1: One correct pair of values |
| A1: Deduces the correct matrix $\mathbf{M}$ |
| Alternative: |
| M1: Attempts to find the inverse of the matrix of eigenvectors |
| A1: Correct matrix |
| M1: Attempts PDP ${ }^{-1}$ where $\mathbf{D}$ is the diagonal matrix of eigenvalues |
| A1: At least 2 elements correct |
| A1: Deduces the correct matrix $\mathbf{M}$ |

Q9.

| Question | Scheme | Marks | AOS |
| :---: | :---: | :---: | :---: |
| (a) | Sight of $\operatorname{det}(\mathbf{M}-\lambda \mathbf{I})=0$ | B1 | 1.1a |
|  | $\begin{array}{\|l} \left\|\begin{array}{ccc} 1-\lambda & k & -2 \\ 2 & -4-\lambda & 1 \\ 1 & 2 & 3-\lambda \end{array}\right\|=0 \Rightarrow \\ (1-\lambda)[(-4-\lambda)(3-\lambda)-2]-k[2(3-\lambda)-1]+(-2)[4-(-4-\lambda)]=0 \end{array}$ | M1 | 1.1b |
|  | $\begin{aligned} & \Rightarrow(1-\lambda)\left(\lambda^{2}+\lambda-14\right)-k(5-2 \lambda)-16-2 \lambda=0 \\ & \Rightarrow \lambda^{3}-(2 k+13) \lambda+5(k+6)=0^{*} \end{aligned}$ | Al* | 2.1 |
|  |  | (3) |  |
| (b) | (i) $\pm 5(k+6)=5 \Rightarrow k=\ldots$ or $(-12-2)-k(6-1)-2(4+4)=5 \Rightarrow k=\ldots$ | M1 | 1.1 b |
|  | $k=-7$ | Al | 2.2a |
|  | (ii) Hence by the C-H theorem $\mathbf{M}^{3}+\mathbf{M}-5 \mathbf{I}=0$ | M1 | 2.1 |
|  | Multiplying by $\mathbf{M}^{-1}$ gives $\mathbf{M}^{2}+\mathbf{I}-5 \mathbf{M}^{-1}=0 \Rightarrow \mathbf{M}^{-1}=\ldots$ | M1 | 3.1a |
|  | So $\mathbf{M}^{-1}=\frac{1}{5}\left(\mathbf{M}^{2}+\mathbf{I}\right)$ | A1 | 1.1b |
|  | $=\frac{1}{5}\left(\left(\begin{array}{ccc}-15 & 17 & -15 \\ -5 & 4 & -5 \\ 8 & -9 & 9\end{array}\right)+\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\right)=\ldots$ | M1 | 1.1b |
|  | $=\frac{1}{5}\left(\begin{array}{ccc}-14 & 17 & -15 \\ -5 & 5 & -5 \\ 8 & -9 & 10\end{array}\right)$ or $\left(\begin{array}{ccc}-\frac{14}{5} & \frac{17}{5} & -3 \\ -1 & 1 & -1 \\ \frac{8}{5} & -\frac{9}{5} & 2\end{array}\right)$ | Al | 1.1b |
|  |  | (7) |  |
|  |  | (10 marks) |  |

## Notes:

(a)

B1: Recalls characteristic equation is found using $\operatorname{det}(\mathbf{M}-\lambda \mathbf{I})=0$
Ml: Attempts to expand the determinant
Al*: Achieves the correct equation with no errors and at least one intermediate step following the expansion.
(b)(i)

M1: Attempts to use determinant equals 5 to find $k$. May be attempted by finding determinant from original matrix, or attempt at using the " $-5(k+6$ )" from the expansion in (a) (allow $\pm$ for the method mark).
Al: $k=-7$
(ii)

M1: Attempts to use the Cayley-Hamilton theorem to set up a matrix equation. The equation should be correct for their $k$, including correct use of $\mathbf{I}$.
M1: Realises the need to multiply the equation through (either side) by $\mathbf{M}^{-1}$ and rearrange to make $\mathbf{M}^{-1}$ the subject.
Al: $\mathbf{M}^{-1}=\frac{1}{5}\left(\mathbf{M}^{2}+\mathbf{I}\right)$
M1: Proceeds to find $\mathbf{M}^{-1}$ from their equation.
Al: Correct answer.

