Central Limit Theorem

Questions

Q1.

A courier delivers parcels. The random variable X represents the number of parcels delivered successfully each day by the courier where $X \sim B(400,0.64)$

A random sample $X_{1}, X_{2}, \ldots X_{100}$ is taken.
Estimate the probability that the mean number of parcels delivered each day by the courier is greater than 257
(Total for question = 4 marks)

Q2.

A biased spinner can land on the numbers 1,2,3, 4 or 5 with the following probabilities.

Number on spinner	1	2	3	4	5
Probability	0.3	0.1	0.2	0.1	0.3

The spinner will be spun 80 times and the mean of the numbers it lands on will be calculated.
Find an estimate of the probability that this mean will be greater than 3.25 .

$$
\text { (Total for question = } 6 \text { marks) }
$$

Q3.

A random sample of 100 observations is taken from a Poisson distribution with mean 2.3
Estimate the probability that the mean of the sample is greater than 2.5

Mark Scheme - Central Limit Theorem

Q1.

Question	Scheme	Marks	AOS
	$\bar{X} \approx \mathrm{~N}(256, \ldots)$ oe	M1	3.1a
	$\bar{X} \approx \mathrm{~N}(256,0.9216)$	A1	1.1b
	$\mathrm{P}(\bar{X}>257)=\mathrm{P}\left(Z>\frac{257-256}{\sqrt{\text { "0.9216" }}}\right)[=$ awrt 1.04$]$	dM1	3.4
	$p=0.1492 \ldots$	A1	1.1 b
		(4)	
(4 marks)			
Notes:			
M1:	For realising the need to use the CLT with correct mean		
A1:	For a correct normal stated		
dM1:	Dep on previous Method mark. Use of the normal model to find $\mathrm{P}(\bar{X}>257)$ If final answer is incorrect then we need to see the standardisation using their σ.		
A1:	awrt 0.149 (0.14878 ... from calculator)		
	NB Allow awrt 0.148 if a continuity correction is used.		

Q2.

Qu	Scheme	Mar	AO
	beer when the spinner is spun\}	B1	1.1 b
	$\left[\mathrm{E}\left(X^{2}\right)=\right] 0.3+4 \times 0.1+9 \times 0.2+16 \times 0.1+25 \times 0.3 \quad[=11.6$ or	M1	1.1b
	$\left[=11.6-3^{2}=\right] \underline{\mathbf{2 . 6}}$	A1	1.1b
	$\bar{X} \approx \sim N\left(33^{\prime \prime}, \sqrt{\frac{2.6^{12}}{80}}\right)$	M1	2.1
	$\mathrm{P}(\bar{X}>3.25)=[\mathrm{P}(Z>1.3867 \ldots)=10.0827589 \ldots$ (calc) awrt 0.0828		${ }_{3.4}^{1.16}$
		(6 marks)	
	Notes		
ALT	B 1 for stating or using mean $=3$ $1^{\text {st }} \mathrm{M} 1$ for using the given model to attempt $\mathrm{E}\left(X^{2}\right)$ with at least 3 correct products seen $1^{\text {st }} \mathrm{A} 1$ for $\operatorname{Var}(X)=2.6$ or $\sigma=\sqrt{2.6}=1.6124 \ldots \quad$ (awrt 1.61)		
	$\begin{aligned} \mathrm{G}(t) & =0.3 t+0.1 t^{2}+0.2 t^{3}+0.1 t^{4}+0.3 t^{5} \\ \mathrm{G}^{\prime}(t) & =0.3+0.2 t+0.6 t^{2}+0.4 t^{3}+1.5 t^{4} \\ \mathrm{G}^{\prime \prime}(t) & =0.2+1.2 t+1.2 t^{2}+6 t^{3} \text { leading to } \mathrm{G}^{\prime \prime}(1)=8.6 \end{aligned}$		
	$2^{\text {nd }}$ M1 for use of CLT - must use \bar{X} and normal or sight of N $\left(3 " \sqrt{\frac{2^{\frac{2 "^{6}}{80}}}{}{ }^{2}}\right)$ with any letter		
	$2^{\text {nd }}$ A1ft for a correct mean and variance, ft their 3 and their 2.6 This M1A1ft may be implied by sight of correct st. dev. used in a st leading to $\mathrm{P}(Z>1.39)$ Must see correct use of Z NB $\frac{2.6}{80}=0.0325$ and $\sqrt{\frac{2.6}{80}}=0.18027 \ldots$ so allow e.g. $\mathrm{N}(3$, awrt $(0$. $3^{\text {rd }} \mathrm{A} 1$ for using the normal model to find probability awrt 0.0828	NB $\frac{2.6}{80}=0.0325$ and $\sqrt{\frac{2.6}{80}}=0.18027 \ldots$ so allow e.g. $\mathrm{N}\left(3, \operatorname{awrt}(0.180)^{2}\right)$ $3^{\text {rd }} \mathrm{A} 1$ for using the normal model to find probability awrt 0.0828	on
ALT	$2^{\text {nd }} \mathrm{M} 1$ for $\Sigma X \sim \mathrm{~N}(\ldots)$ or any letter $\sim \mathrm{N}\left(" 240^{\prime \prime}, \sqrt{\sqrt{20.6}^{2} \times 80^{2}}\right.$) $2^{\text {nd }}$ Alft for mean $=" 3 " \times 80=240$ and variance $=" 2.6 " \times 80=208$ May see $\mathrm{P}(\Sigma X>260.5)=0.077597 \ldots$ but it will only score $2^{\text {nd }} \mathrm{M} 12^{\text {nd }}$ A1ft and $3^{\text {rd }} \mathbf{A} 0$		

Q3.

Question	Scheme	Marks	AOs
	$\operatorname{Po}(2.3) \quad n=100 \mu=2.3 \sigma^{2}=2.3$		
	CLT $\Rightarrow \bar{X} \approx \mathrm{~N}\left(2.3, \frac{2.3}{100}\right)$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \hline 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\mathrm{P}(\bar{X}>2.5)=\mathrm{P}\left(Z>\frac{2.5-2.3}{\sqrt{0.023}}\right)$	M1	3.4
	$=\mathrm{P}(\mathrm{Z}>1.318 .$.		
	= $0.09632 \ldots$	A1	1.1b
		(4)	

	M1: For realising the need to use the CLT to set $\bar{X} \approx$ normal with correct mean. May be implied by using the correct normal distribution. A1: For fully correct normal stated or used M1: Use of the normal model to find $\mathrm{P}(\bar{X}>2.5)$. Can be awarded for $\frac{2.5-2.3}{\sqrt{0.023}}$ or awrt 1.32 A1: awrt 0.0963

