## Volumes of Revolution (CP2)

## Questions

Q1.


Figure 2
Figure 2 shows the image of a gold pendant which has height 2 cm . The pendant is modelled by a solid of revolution of a curve $C$ about the $y$-axis. The curve $C$ has parametric equations

$$
x=\cos \theta+\frac{1}{2} \sin 2 \theta, \quad y=-(1+\sin \theta) \quad 0 \leqslant \theta \leqslant 2 \pi
$$

(a) Show that a Cartesian equation of the curve $C$ is

$$
x^{2}=-\left(y^{4}+2 y^{3}\right)
$$

(b) Hence, using the model, find, in $\mathrm{cm}^{3}$, the volume of the pendant.

Q2.


Figure 2
The finite region $S$, shown shaded in Figure 2, is bounded by the $y$-axis, the $x$-axis, the line with equation $x=\ln 4$ and the curve with equation

$$
y=\mathrm{e}^{x}+2 \mathrm{e}^{-x}, \quad x \geq 0
$$

The region $S$ is rotated through $2 \pi$ radians about the $x$-axis.
Use integration to find the exact value of the volume of the solid generated.
Give your answer in its simplest form.
[Solutions based entirely on graphical or numerical methods are not acceptable.]

Q3.


Figure 1


Figure 2

Figure 1 shows the central vertical cross section $A B C D$ of a paddling pool that has a circular horizontal cross section. Measurements of the diameters of the top and bottom of the paddling pool have been taken in order to estimate the volume of water that the paddling pool can contain.

Using these measurements, the curve $B D$ is modelled by the equation

$$
y=\ln (3.6 x-k) \quad 1 \leqslant x \leqslant 1.18
$$

as shown in Figure 2.
(a) Find the value of $k$.
(b) Find the depth of the paddling pool according to this model.

The pool is being filled with water from a tap.
(c) Find, in terms of $h$, the volume of water in the pool when the pool is filled to a depth of $h$ m.

Given that the pool is being filled at a constant rate of 15 litres every minute,
(d) find, in $\mathrm{cm} \mathrm{h}^{-1}$, the rate at which the water level is rising in the pool when the depth of the water is 0.2 m .

Q4.


Figure 3
Figure 3 shows a sketch of part of the curve $C$ with equation

$$
y=3^{x}
$$

The point $P$ lies on $C$ and has coordinates $(2,9)$.
The line / is a tangent to $C$ at $P$. The line / cuts the $x$-axis at the point $Q$.
(a) Find the exact value of the $x$ coordinate of $Q$.

The finite region $R$, shown shaded in Figure 3, is bounded by the curve $C$, the $x$-axis, the $y$-axis and the line $l$. This region $R$ is rotated through $360^{\circ}$ about the $x$-axis.
(b) Use integration to find the exact value of the volume of the solid generated.

Give your answer in the form $\frac{p}{q}$ where $p$ and $q$ are exact constants.
[You may assume the formula $V=\frac{1}{3} \pi r^{2} h$ for the volume of a cone.]

## Mark Scheme - Volumes of Revolution (CP2)

Q1.

| Question | Scheme | Marks | AOS |
| :---: | :---: | :---: | :---: |
| (a) | $x=\cos \theta+\sin \theta \cos \theta=-y \cos \theta$ | M1 | 2.1 |
|  | $\sin \theta=-y-1$ | M1 | 2.1 |
|  | $\left(\frac{x}{-y}\right)^{2}=1-(-y-1)^{2}$ | M1 | 2.1 |
|  | $x^{2}=-\left(y^{4}+2 y^{3}\right)^{*}$ | A1* | 1.1b |
|  |  | (4) |  |
| (b) | $V=\pi \int x^{2} \mathrm{~d} y=\pi \int-\left(y^{4}+2 y^{3}\right) \mathrm{d} y$ | M1 | 3.4 |
|  | $=\pi\left[-\left(\frac{y^{5}}{5}+\frac{y^{4}}{2}\right)\right]$ | A1 | 1.1 b |
|  | $=-\pi\left[\left(\frac{(0)^{5}}{5}+\frac{(0)^{4}}{2}\right)-\left(\frac{(-2)^{5}}{5}+\frac{(-2)^{4}}{2}\right)\right]$ | M1 | 3.4 |
|  | $=1.6 \pi \mathrm{~cm}^{3}$ or awt $5.03 \mathrm{~cm}^{3}$ | A1 | 1.1b |
|  |  | (4) |  |
| (8 marks) |  |  |  |
| Notes: |  |  |  |
| (a) <br> M1: Obtains $x$ in terms of $y$ and $\cos \theta$ <br> M1: Obtains an equation connecting $y$ and $\sin \theta$ <br> M1: Uses Pythagoras to obtain an equation in $x$ and $y$ only <br> $\mathrm{Al}^{*}$ : Obtains printed answer |  |  |  |
| (b) <br> M1: Uses the correct volume of revolution formula with the given expression <br> A1: Correct integration <br> M1: Correct use of correct limits <br> Al: Correct volume |  |  |  |

Q2.

| Question <br> Number | Scheme |  | Notes | Marks |
| :---: | :---: | :---: | :---: | :---: |
| Way 1 | $y=\mathrm{e}^{\mathrm{x}}+2 \mathrm{e}^{-x}, x \geq 0$ |  |  |  |
|  | $\{V=\} \pi \int_{0}^{\ln 4}\left(\mathrm{e}^{x}+2 \mathrm{e}^{-x}\right)^{2} \mathrm{~d} x$ | $\text { For } \pi \int\left(\mathrm{e}^{x}+2 \mathrm{e}^{-x}\right)^{2}$ <br> Ignore limits and $\mathrm{d} x$. Can be implied. |  | B1 |
|  | $=\{\pi\} \int_{0}^{\ln 4}\left(\mathrm{e}^{2 x}+4 \mathrm{e}^{-2 x}+4\right) \mathrm{d} x$ | Expands $\left(\mathrm{e}^{\mathrm{x}}+2 \mathrm{e}^{-\mathrm{x}}\right)^{2} \rightarrow \pm \alpha \mathrm{e}^{2 \mathrm{x}} \pm \beta \mathrm{e}^{-2 \mathrm{x}} \pm \delta$ where $\alpha, \beta, \delta \neq 0$. Ignore $\pi$, integral sign, limits and $\mathrm{d} x$. This can be implied by later work. |  | M1 |
|  | $=\{\pi\}\left[\frac{1}{2} \mathrm{e}^{2 x}-2 \mathrm{e}^{-2 x}+4 x\right]_{0}^{\ln 4}$ | Integrates at least one of either $\pm \alpha \mathrm{e}^{2 x}$ to give $\pm \frac{\alpha}{2} \mathrm{e}^{2 x}$ or $\pm \beta \mathrm{e}^{-2 \mathrm{x}}$ to give $\pm \frac{\beta}{2} \mathrm{e}^{-2 x} \alpha, \beta \neq 0$ |  | M1 |
|  |  | dependent on the $2^{\text {nd }} M$ mark $\mathrm{e}^{2 x}+4 \mathrm{e}^{-2 x} \rightarrow \frac{1}{2} \mathrm{e}^{2 x}-2 \mathrm{e}^{-2 x}$ <br> which can be simplified or un-simplified |  | A1 |
|  |  | $4 \rightarrow 4 x$ or $4 \mathrm{e}^{0} x$ |  | B1 cao |
|  | $\left.=\{\pi\}\left(\left(\frac{1}{2} \mathrm{e}^{2(n n)}-2 \mathrm{e}^{-2(\ln t)}+4(\ln 4)\right)-\left(\frac{1}{2} \mathrm{e}^{0}-2 \mathrm{e}^{0}+4(0)\right)\right\}\right) \quad$dependent on the previous <br> method mark. Some evidence of <br> applying limits of $\ln 40 . \mathrm{e}$. and 0 <br> to a changed function in $x$ and <br> subtracts the correct way round. <br> Note: A proper consideration of <br> the limit of 0 is required. |  |  | $\mathrm{dM1}$ |
|  | $=\{\pi\}\left(\left(8-\frac{1}{8}+4 \ln 4\right)-\left(\frac{1}{2}-2\right)\right)$ |  |  |  |
|  | $\begin{aligned} & =\frac{75}{8} \pi+4 \pi \ln 4 \text { or } \frac{75}{8} \pi+8 \pi \ln 2 \text { or } \pi\left(\frac{75}{8}+4 \ln 4\right) \text { or } \pi\left(\frac{75}{8}+8 \ln 2\right) \\ & \text { or } \frac{75}{8} \pi+\ln 2^{8 \pi} \text { or } \frac{75}{8} \pi+\pi \ln 256 \text { or } \ln \left(2^{8 x} \mathrm{e}^{\frac{75}{8}}\right) \text { or } \frac{1}{8} \pi(75+32 \ln 4) \text {, etc } \end{aligned}$ |  |  | A1 isw |
|  |  |  |  | [7] |
|  |  |  |  | 7 |


|  | Question Notes |  |
| :---: | :---: | :---: |
|  | Note | $\pi$ is only required for the $1^{\text {st }} \mathrm{B} 1$ mark and the final A 1 mark. |
|  | Note | Give $1^{\text {st }} \mathrm{B} 0$ for writing $\pi \int y^{2} \mathrm{~d} x$ followed by $2 \pi \int\left(\mathrm{c}^{x}+2 \mathrm{c}^{-x}\right)^{2} \mathrm{~d} x$ |
|  | Note | Give $1^{\text {st }} \mathrm{M} 1$ for $\left(\mathrm{e}^{\mathrm{x}}+2 \mathrm{e}^{-\mathrm{s}}\right)^{2} \rightarrow \mathrm{e}^{2 \mathrm{x}}+4 \mathrm{e}^{-2 \mathrm{x}}+2 \mathrm{e}^{0}+2 \mathrm{e}^{0}$ because $\delta=2 \mathrm{e}^{\mathrm{p}}+2 \mathrm{e}^{0}$ |
|  | Note | A decimal answer of 46.8731... or $\pi$ (14.9201...) (without a correct exact answer) is A0 |
|  | Note | $\pi\left[\frac{1}{2} \mathrm{e}^{2 x}-2 \mathrm{e}^{-2 x}+4 x\right]_{0}^{\text {h. }}$ followed by awrt 46.9 (without a correct exact answer) is final dM1A0 |
|  | Note | Allow exact equivalents which should be in the form $a \pi+b \pi \ln c$ or $\pi(a+b \ln c)$, where $a=\frac{75}{8}$ or $9 \frac{3}{8}$ or 9.375 . Do not allow $a=\frac{150}{16}$ or $9 \frac{6}{16}$ |
|  | Note | Give B1M0M1A1B0M1A0 for the common response $\pi \int_{0}^{\ln x}\left(\mathrm{e}^{x}+2 \mathrm{e}^{-x}\right)^{2} \mathrm{~d} x \rightarrow \pi \int_{0}^{\mathrm{hx}}\left(\mathrm{e}^{2 x}+4 \mathrm{e}^{-2 x}\right) \mathrm{d} x=\pi\left[\frac{1}{2} \mathrm{e}^{2 x}-2 \mathrm{e}^{-2 x}\right]_{0}^{\ln -4}=\frac{75}{8} \pi$ |



Q3.

| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| (a) | $k=2.6$ | B1 | 3.4 |
|  |  | (1) |  |
| (b) | $x=1.18 \Rightarrow \ln \left(3.6 \times 1.18-" 2.6^{\prime \prime}\right)=\ldots$ | M1 | 1.1b |
|  | $h=0.4995 \ldots \mathrm{~m}$ | A1 | 2.2b |
|  |  | (2) |  |
| (c) | $y=\ln (3.6 x-2.6) \Rightarrow x=\frac{\mathrm{e}^{y}+2.6}{3.6}$ or $\frac{5 \mathrm{e}^{y}+13}{18}$ | B1ft | 1.1a |
|  | $\begin{gathered} V=\pi \int\left(\frac{\mathrm{e}^{y}+2.6}{3.6}\right)^{2} \mathrm{~d} y=\frac{\pi}{3.6^{2}} \int\left(\mathrm{e}^{2 y}+5.2 \mathrm{e}^{y}+6.76\right) \mathrm{d} y \\ \text { or } \frac{\pi}{324} \int\left(25 \mathrm{e}^{2 y}+130 \mathrm{e}^{y}+169\right) \mathrm{d} y \end{gathered}$ | M1 | 3.3 |
|  | $=\frac{\pi}{3.6^{2}}\left[\frac{1}{2} \mathrm{e}^{2 y}+5.2 \mathrm{e}^{y}+6.76 y\right]\left(\right.$ or $\left.\frac{\pi}{324}\left[\frac{25}{2} \mathrm{e}^{2 y}+130 \mathrm{e}^{y}+169 y\right]\right)$ | A1 | 1.1b |
|  | $\begin{aligned} & =\frac{\pi}{3.6^{2}}\left\{\left(\frac{1}{2} \mathrm{e}^{2 h}+5.2 \mathrm{e}^{h}+6.76 h\right)-\left(\frac{1}{2} \mathrm{e}^{0}+5.2 \mathrm{e}^{0}+6.76(0)\right)\right\} \\ & =\frac{\pi}{324}\left\{\left(\frac{25}{2} \mathrm{e}^{2 h}+130 \mathrm{e}^{h}+169 h\right)-\left(\frac{25}{2} \mathrm{e}^{0}+130 \mathrm{e}^{0}+6.76(0)\right)\right\} \end{aligned}$ | M1 | 2.1 |
|  | $=\frac{\pi}{3.6}{ }^{2}\left(\frac{1}{2} \mathrm{e}^{2 h}+5.2 \mathrm{e}^{h}+6.76 h-5.7\right)$ | A1 | 1.1b |
|  |  | (5) |  |


| (d) | $\frac{\mathrm{d} V}{\mathrm{~d} h}=\frac{\pi}{3.6^{2}}\left(\mathrm{e}^{2 h}+5.2 \mathrm{e}^{h}+6.76\right)=\frac{\pi}{3.6^{2}}\left(\mathrm{e}^{0.4}+5.2 \mathrm{e}^{02}+6.76\right)$ | M1 | 3.1a |
| :---: | :---: | :---: | :---: |
|  | $\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} h}{\mathrm{~d} V} \frac{\mathrm{~d} V}{\mathrm{~d} t}=\frac{1}{3.539 \ldots} \times 0.015 \times 60$ | M1 | 1.1b |
|  | $\frac{\mathrm{d} h}{\mathrm{~d} t}=25.4 \mathrm{~cm} \mathrm{~h}^{-1}$ | A1 | 3.2a |
|  |  | (3) |  |
| $\begin{gathered} \text { (d) } \\ \text { Way } 2 \end{gathered}$ | $y=0.2 \Rightarrow x=\frac{2.6+\mathrm{e}^{0.2}}{3.6} \Rightarrow A=\pi\left(\frac{2.6+\mathrm{e}^{0.2}}{3.6}\right)^{2}(=3.54)$ | M1 | 3.1a |
|  | $\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{0.015 \times 60}{3.54}$ | M1 | 1.1b |
|  | $\frac{\mathrm{d} h}{\mathrm{~d} t}=25.4 \mathrm{~cm} \mathrm{~h}^{-1}$ | A1 | 3.2a |
|  |  |  |  |
| (11 marks) |  |  |  |

## Notes

(a)

B1: Uses the model to obtain a correct value for $k$. Must be 2.6 not -2.6
(b)

M1: Substitutes their value of $k$ and $x=1.18$ into the given model to find a value for $y$
A1: Infers that the depth of the pool could be awrt 0.5 m
(c)

B1f: Uses the model to obtain $x$ correctly in terms of $y$ (follow through their $k$ )
M1: Uses the model to obtain an expression for the volume of the pool using
$\pi \int(\text { their } f(y))^{2} \mathrm{~d} y$-must expand in order to reach an integrable form (allow poor squaring e.g.
$(a+b)^{2}=a^{2}+b^{2}$. Note that the $\pi$ may be recovered later.
A1: Correct integration
M1: Selects limits appropriate to the model ( $h$ and 0 ) substitutes and clearly shows the use of both limits (i.e. including zero)
A1: Correct expression (allow unsimplified and isw if necessary)
(d)

Way 1
M1: Recognises that $\frac{\mathrm{d} V}{\mathrm{~d} h}$ is required and attempts to find $\frac{\mathrm{d} V}{\mathrm{~d} h}$ or $\frac{\mathrm{d} h}{\mathrm{~d} V}$ from their integration or using the earlier result (before integrating). Must clearly be identified as $\frac{\mathrm{d} V}{\mathrm{~d} h}$ or $\frac{\mathrm{d} h}{\mathrm{~d} V}$ unless this implied by subsequent work.
M1: Evidence of the correct use of the chain rule (ignore any confusion with units). Look for an attempt to divide 15 or their converted 15 by their $\frac{\mathrm{d} V}{\mathrm{~d} h}$ or to multiply 15 or their converted 15 by $\frac{\mathrm{d} h}{\mathrm{~d} V}$ but must reach a value for $\frac{\mathrm{d} h}{\mathrm{~d} t}$ but you do not need to check their value.
A1: Interprets their solution correctly to obtain the correct answer (awrt 25.4) with the correct units
Way 2
M1: Uses $y=0.2$ to find $x$ and the surface area of the water at that instant
M1: Attempts to divide the rate by their area (ignore any confusion with units)
A1: Interprets their solution correctly to obtain the correct answer (awrt 25.4 ) with the correct units

Q4.

| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| (a) | $\left\{y=3^{x} \Rightarrow\right\} \frac{\mathrm{d} y}{\mathrm{dx}}=3^{x} \ln 3 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=3^{x} \ln 3$ or $\ln 3\left(\mathrm{e}^{x \ln 3}\right)$ or $y \ln 3$ | B1 |
|  | Either T: $y-9=3^{2} \ln 3(x-2)$ <br> or T: $y=\left(3^{2} \ln 3\right) x+9-18 \ln 3$, where $9=\left(3^{2} \ln 3\right)(2)+c$ | M1 |
|  | \{Cuts $x$-axis $\Rightarrow y=0 \Rightarrow$ \} |  |
|  | $-9=9 \ln 3(x-2)$ or $0=\left(3^{2} \ln 3\right) x+9-18 \ln 3, \quad$ Sets $y=0$ in their tangent equation $\begin{aligned} & \text { and progresses to } x=\ldots\end{aligned}$ | M1 |
|  | So, $x=2-\frac{1}{\ln 3}$ | A1 cso |
|  |  | 1. |
| (b) | $V=\pi \int\left(3^{x}\right)^{2}\{\mathrm{~d} x\}$ or $\pi \int 3^{2 x}\{\mathrm{~d} x\}$ or $\pi \int 9^{x}\{\mathrm{~d} x\} \quad V=\pi \int\left(3^{x}\right)^{2}$ with or without $\mathrm{d} x$, | B1 o.e. |
|  | $\left.\begin{array}{l} \text { Eg: either } 3^{2 x} \rightarrow \frac{3^{2 x}}{ \pm \alpha(\ln 3)} \text { or } \pm \alpha(\ln 3) 3^{2 x} \\ 2 \ln 3 \end{array}\right) \text { or }=\{\pi\}\left(\frac{9^{2 x}}{\ln 9}\right) \quad \text { or } 9^{x} \rightarrow \frac{9^{x}}{ \pm \alpha(\ln 9)} \text { or } \pm \alpha(\ln 9) 9^{x}, \alpha \in$ | M1 |
|  | $3^{2 x} \rightarrow \frac{3^{2 x}}{2 \ln 3}$ or $9^{x} \rightarrow \frac{9^{x}}{\ln 9}$ or $\mathrm{e}^{2 \times \ln 3} \rightarrow \frac{1}{2 \ln 3}\left(\mathrm{e}^{2 \times \ln 3}\right)$ | A1 o.e. |
|  | $\left\{V=\pi \int_{0}^{2} 3^{2 x} \mathrm{~d} x=\{\pi\}\left[\frac{3^{2 x}}{2 \ln 3}\right]_{0}^{2}\right\}=\{\pi\}\left(\frac{3^{4}}{2 \ln 3}-\frac{1}{2 \ln 3}\right)\left\{=\frac{40 \pi}{\ln 3}\right\} \quad \begin{array}{r} \text { Dependent on the previous } \\ \text { method mark. Substitutes } \\ x=2 \text { and } x=0 \text { and subtracts } \\ \text { the correct way round } \end{array}$ | dM1 |
|  | $V_{\text {cose }}=\frac{1}{3} \pi(9)^{2}\left(\frac{1}{\ln 3}\right)\left\{=\frac{27 \pi}{\ln 3}\right\} \quad V_{\text {ccco }}=\frac{1}{3} \pi(9)^{2}(2-$ their $(a))$. See notes. | B1ft |
|  | $\left\{\operatorname{Vol}(S)=\frac{40 \pi}{\ln 3}-\frac{27 \pi}{\ln 3}\right\}=\frac{13 \pi}{\ln 3} \quad \frac{13 \pi}{\ln 3}$ or $\frac{26 \pi}{\ln 9}$ or $\frac{26 \pi}{2 \ln 3}$ etc., isw | A1 o.e. |
|  | $\{\mathrm{Eg}: p=13 \pi, q=\ln 3\}$ | [6] |
|  |  | 10 |
| (b) | Alternative Method 1: Use of a substitution $V=\pi \int\left(3^{x}\right)^{2}\{\mathrm{~d} x\}$ | B1 o.e. |
|  | $\left\{u=3^{x} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=3^{x} \ln 3=u \ln 3\right\} V=\{\pi\} \int \frac{u^{2}}{u \ln 3}\{\mathrm{~d} u\}=\{\pi\} \int \frac{u}{\ln 3}\{\mathrm{~d} u\}$ |  |
|  | $=\{\pi\}\left(\frac{u^{2}}{2 \ln 3}\right) \quad \begin{array}{r} \left(3^{x}\right)^{2} \rightarrow \frac{u^{2}}{ \pm \alpha(\ln 3)} \text { or } \pm \alpha(\ln 3) u^{2}, \text { where } u=3^{x} \\ \left(3^{x}\right)^{2} \rightarrow \frac{u^{2}}{2(\ln 3)} \text {, where } u=3^{x} \end{array}$ | M1 |
|  | $\left\{V=\pi \int_{0}^{2}\left(3^{x}\right)^{2} \mathrm{~d} x=\{\pi\}\left[\frac{u^{2}}{2 \ln 3}\right]^{9}\right\}=\{\pi\}\left(\frac{9^{2}}{2 \ln 3}-\frac{1}{2 \ln 3}\right)\left\{=\frac{40 \pi}{\ln 3}\right\} \quad \begin{array}{r}\text { Substitutes limits of } 9 \text { and } \\ 1 \text { in } u \text { (or } 2 \text { and } 0 \text { in } x\end{array}$ | dM1 |
|  | then apply the main scheme. |  |


|  |  | Question Notes |
| :---: | :---: | :---: |
| (a) | B1 <br> M1 | $\frac{\mathrm{d} y}{\mathrm{~d} x}=3^{x} \ln 3$ or $\ln 3\left(\mathrm{e}^{x \ln 3}\right)$ or $y \ln 3$. Can be implied by later working. <br> Substitutes either $x=2$ or $y=9$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ which is a function of $x$ or $y$ to find $m_{T}$ and <br> - either applies $y-9=\left(\right.$ their $\left.m_{T}\right)(x-2)$, where $m_{T}$ is a numerical value. <br> - or applies $y=\left(\right.$ their $\left.m_{T}\right) x+$ their $c$, where $m_{T}$ is a numerical value and $c$ is found by solving $9=\left(\right.$ their $\left.m_{T}\right)(2)+c$ <br> The first M1 mark can be implied from later working. |
|  | M1 | Sets $y=0$ in their tangent equation, where $m_{T}$ is a numerical value, (seen or implied) and progresses to $x=$ |
|  | Al <br> Note <br> Note <br> Note <br> Note | An exact value of $2-\frac{1}{\ln 3}$ or $\frac{2 \ln 3-1}{\ln 3}$ or $\frac{\ln 9-1}{\ln 3}$ by a correct solution only. <br> Allow A1 for $2-\frac{\lambda}{\lambda \ln 3}$ or $\frac{\lambda(2 \ln 3-1)}{\lambda \cdot \ln 3}$ or $\frac{\lambda(\ln 9-1)}{\lambda \ln 3}$ or $2-\frac{\lambda}{\lambda \ln 3}$, where $\lambda$ is an integer, and ignore subsequent working. <br> Using a changed gradient (i.e. applying $\frac{-1}{\text { their } \frac{d}{d x}}$ or $\frac{1}{\text { their } \frac{d y}{d x}}$ ) is M0 M0 in part (a). <br> Candidates who invent a value for $m_{T}$ (which bears no resemblance to their gradient function) cannot gain the $1^{\text {st }} \mathrm{M} 1$ and $2^{\text {nd }} \mathrm{M} 1$ mark in part (a). <br> A decimal answer of $1.089760773 \ldots$ (without a correct exact answer) is A 0 . |
| (b) | B1 Note | A correct expression for the volume with or without $\mathrm{d} x$ <br> Eg: Allow B1 for $\pi \int\left(3^{x}\right)^{2}\{\mathrm{~d} x\}$ or $\pi \int 3^{2 x}\{\mathrm{~d} x\}$ or $\pi \int 9^{x}\{\mathrm{~d} x\}$ or $\pi \int\left(\mathrm{e}^{x \ln 3}\right)^{2}\{\mathrm{~d} x\}$ or $\pi \int\left(\mathrm{e}^{2 x \ln 3}\right)\{\mathrm{d} x\}$ or $\pi \int \mathrm{e}^{x \ln 9}\{\mathrm{~d} x\}$ with or without $\mathrm{d} x$ |
|  | M1 <br> Note <br> Note <br> Note | Either $3^{2 x} \rightarrow \frac{3^{2 x}}{ \pm \alpha(\ln 3)}$ or $\pm \alpha(\ln 3) 3^{2 x} \quad$ or $9^{x} \rightarrow \frac{9^{x}}{ \pm \alpha(\ln 9)}$ or $\pm \alpha(\ln 9) 9^{x}$ $\mathrm{e}^{2 x \ln 3} \rightarrow \frac{\mathrm{e}^{2 \mathrm{x} \ln 3}}{ \pm \alpha(\ln 3)}$ or $\pm \alpha(\ln 3) \mathrm{e}^{2 x \ln 3}$ or $\mathrm{e}^{x \ln 9} \rightarrow \frac{\mathrm{e}^{x \ln 9}}{ \pm \alpha(\ln 9)}$ or $\pm \alpha(\ln 9) \mathrm{e}^{x \ln 9}$, etc where $\alpha \in$ $3^{2 x} \rightarrow \frac{3^{2 x+1}}{ \pm \alpha(\ln 3)}$ or $9^{x} \rightarrow \frac{9^{x+1}}{ \pm \alpha(\ln 3)}$ are allowed for M1 $3^{2 x} \rightarrow \frac{3^{2 x+1}}{2 x+1}$ or $9^{x} \rightarrow \frac{9^{x+1}}{x+1}$ are both M0 <br> M1 can be given for $9^{2 x} \rightarrow \frac{9^{2 x}}{ \pm \alpha(\ln 9)}$ or $\pm \alpha(\ln 9) 9^{2 x}$ |
|  | Al | Correct integration of $3^{2 x}$. Eg: $3^{2 x} \rightarrow \frac{3^{2 x}}{2 \ln 3}$ or $\frac{3^{2 x}}{\ln 9}$ or $9^{x} \rightarrow \frac{9^{x}}{\ln 9}$ or $\mathrm{e}^{2 x \ln 3} \rightarrow \frac{1}{2 \ln 3}\left(\mathrm{e}^{2 x \ln 3}\right)$ |
|  | dM1 Note | dependent on the previous method mark being awarded. <br> Attempts to apply $x=2$ and $x=0$ to integrated expression and subtracts the correct way round. Evidence of a proper consideration of the limit of 0 is needed for M1. So subtracting 0 is M0. |


|  | dM1 <br> Note <br> Blft <br> Note | dependent on the previous method mark being awarded. <br> Attempts to apply $x=2$ and $x=0$ to integrated expression and subtracts the correct way round. Evidence of a proper consideration of the limit of 0 is needed for M1. So subtracting 0 is M0. $V_{\text {cose }}=\frac{1}{3} \pi(9)^{2}(2-$ their answer to part $(a))$. <br> Sight of $\frac{27 \pi}{\ln 3}$ implies the B1 mark. <br> Alternatively they can apply the volume formula to the line segment. They need to achieve the result highlighted by $\approx * \pi *$ on either page 29 or page 30 in order to obtain the B1ft mark. |
| :---: | :---: | :---: |
|  | Al | $\frac{13 \pi}{\ln 3}$ or $\frac{26 \pi}{\ln 9}$ or $\frac{26 \pi}{2 \ln 3}$, etc. , where their answer is in the form $\frac{p}{q}$ |
|  | Note <br> Note <br> Note <br> Note <br> Note | The $\pi$ in the volume formula is only needed for the $1^{\text {st }} \mathrm{B} 1$ mark and the final A 1 mark A decimal answer of $37.17481128 \ldots$ (without a correct exact answer) is A0. <br> A candidate who applies $\int 3^{x} \mathrm{~d} x$ will either get B0M0A0 M0 B 0 A0 or B0 M0 A0 M0B1 A0 $\pi \int 3^{x^{2}} \mathrm{~d} x$ unless recovered is $B 0$. <br> Be careful! A correct answer may follow from incorrect working $V=\pi \int_{0}^{2} 3^{x^{2}} \mathrm{~d} x-\frac{1}{3} \pi(9)^{2}\left(\frac{1}{\ln 3}\right)=\pi\left[\frac{3^{x^{2}}}{2 \ln 3}\right]_{0}^{2}-\frac{27 \pi}{\ln 3}=\frac{\pi 3^{4}}{2 \ln 3}-\frac{\pi}{2 \ln 3}-\frac{27 \pi}{\ln 3}=\frac{13 \pi}{\ln 3}$ <br> would score B 0 M 0 A 0 dM 0 M 1 A 0 . |
| (b) | $2^{\text {nd }} \mathrm{Bl}$ <br> $V_{\text {cons }}=$ <br> $=$ <br> $=$ <br> = <br> $=$ | mark for finding the Volume of a Cone $\begin{aligned} & \int_{2-\frac{1}{\ln 3}}^{2}(9 x \ln 3-18 \ln 3+9)^{2} \mathrm{~d} x \\ & \left.\left.\frac{(9 x \ln 3-18 \ln 3+9)^{3}}{27 \ln 3}\right]_{2-\frac{1}{\ln 3} \pi}^{2}\right) \\ & \left(\left(\frac{(18 \ln 3-18 \ln 3+9)^{3}}{27 \ln 3}\right)-\left(\frac{\left.\left(9\left(2-\frac{1}{\ln 3}\right) \ln 3-18 \ln 3+9\right)^{3}\right)}{27 \ln 3}\right)\right. \end{aligned} \begin{aligned} & \text { Award B1ft here where their } \\ & \text { lower limit is } 2-\frac{1}{\ln 3} \text { or their } \\ & \text { part (a) answer. } \end{aligned}$ |

(b)

## $2^{\text {nd }}$ Blft mark for finding the Volume of a Cone

$$
\begin{aligned}
& V_{\cos }=\pi \int_{2-\frac{1}{\ln 3}}^{2}(9 x \ln 3-18 \ln 3+9)^{2} d x \\
& =\pi \int_{2-\frac{1}{\operatorname{Ln}} 3}^{2}\left(81 x^{2}(\ln 3)^{2}-324 x(\ln 3)^{2}+162 x \ln 3-324 \ln 3+324(\ln 3)^{2}+81\right) d x \\
& \begin{array}{l|l}
=\pi\left[27 x^{3}(\ln 3)^{2}-162 x^{2}(\ln 3)^{2}+81 x^{2} \ln 3-324 x \ln 3+324 x(\ln 3)^{2}+81 x\right]_{2-\frac{1}{\ln 3}}^{2} & \begin{array}{l}
\text { Award B1ft here where } \\
\text { their lower limit is } 2-\frac{1}{\ln 3} \\
\text { or their part (a) answer. }
\end{array}
\end{array} \\
& =\pi\binom{\left(216(\ln 3)^{2}-648(\ln 3)^{2}+324 \ln 3-648 \ln 3+648(\ln 3)^{2}+162\right)}{-\binom{27\left(2-\frac{1}{\ln 3}\right)^{3}(\ln 3)^{2}-162\left(2-\frac{1}{\ln 3}\right)^{2}(\ln 3)^{2}+81\left(2-\frac{1}{\ln 3}\right)^{2} \ln 3}{-324\left(2-\frac{1}{\ln 3}\right) \ln 3+324\left(2-\frac{1}{\ln 3}\right)(\ln 3)^{2}+81\left(2-\frac{1}{\ln 3}\right)}} \\
& =\pi\left(\begin{array}{c}
\left(216(\ln 3)^{2}-324 \ln 3+162\right)-\left(\begin{array}{c}
27\left(8-\frac{12}{\ln 3}+\frac{6}{(\ln 3)^{2}}-\frac{1}{(\ln 3)^{3}}\right)(\ln 3)^{2}-162\left(4-\frac{4}{\ln 3}+\frac{1}{(\ln 3)^{2}}\right)(\ln 3)^{2} \\
+81\left(4-\frac{4}{\ln 3}+\frac{1}{(\ln 3)^{2}}\right) \ln 3-324\left(2-\frac{1}{\ln 3}\right) \ln 3 \\
+324\left(2-\frac{1}{\ln 3}\right)(\ln 3)^{2}+81\left(2-\frac{1}{\ln 3}\right)
\end{array}\right)
\end{array}\right) \\
& =\pi\left(\left(216(\ln 3)^{2}-324 \ln 3+162\right)-\left(\begin{array}{c}
216(\ln 3)^{2}-324 \ln 3+162-\frac{27}{\ln 3}-648(\ln 3)^{2}+648 \ln 3-162 \\
+324 \ln 3-324+\frac{81}{\ln 3}-648 \ln 3+324 \\
+648(\ln 3)^{2}-324 \ln 3+162-\frac{81}{\ln 3}
\end{array}\right)\right) \\
& =\pi\left(\left(216(\ln 3)^{2}-324 \ln 3+162\right)-\left(216(\ln 3)^{2}-324 \ln 3+162-\frac{27}{\ln 3}\right)\right) \\
& =\frac{27 \pi}{\ln 3}
\end{aligned}
$$

