Roots of Polynomials

Questions

Q1.

The cubic equation

$$z^3 - 3z^2 + z + 5 = 0$$

has roots α , β and γ .

Without solving the equation, find the cubic equation whose roots are $(2\alpha + 1)$, $(2\beta + 1)$ and $(2\gamma + 1)$, giving your answer in the form $w^3 + pw^2 + qw + r = 0$, where p, q and r are integers to be found.

(5)

(Total for question = 5 marks)

Q2.

The cubic equation

$$3x^3 + x^2 - 4x + 1 = 0$$

has roots α , β , and γ .

Without solving the cubic equation,

- (a) determine the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$

(3)

(b) find a cubic equation that has roots $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$, giving your answer in the form $x^3 + ax^2 + bx + c = 0$, where *a*, *b* and *c* are integers to be determined.

(3)

(Total for question = 6 marks)

Q3.

The cubic equation

$$x^3 + 3x^2 - 8x + 6 = 0$$

has roots α , β and γ .

Without solving the equation, find the cubic equation whose roots are $(\alpha - 1)$, $(\beta - 1)$ and $(\gamma - 1)$, giving your answer in the form $w^3 + pw^2 + qw + r = 0$, where *p*, *q* and *r* are integers to be found.

(5)

(Total for question = 5 marks)

Q4.

The cubic equation

$$2x^3 + 6x^2 - 3x + 12 = 0$$

has roots α , β and γ .

Without solving the equation, find the cubic equation whose roots are $(\alpha + 3)$, $(\beta + 3)$ and $(\gamma + 3)$, giving your answer in the form $pw^3 + qw^2 + rw + s = 0$, where *p*, *q*, *r* and *s* are integers to be found.

(Total for question = 5 marks)

Q5.

The cubic equation

$$9x^3 - 5x^2 + 4x + 7 = 0$$

has roots α , β and γ .

Without solving the equation, find the cubic equation whose roots are $(3\alpha - 2)$, $(3\beta - 2)$ and $(3\gamma - 2)$, giving your answer in the form $aw^3 + bw^2 + cw + d = 0$, where *a*, *b*, *c* and *d* are integers to be determined.

(Total for question = 5 marks)

Q6.

The roots of the quartic equation

$$3x^4 + 5x^3 - 7x + 6 = 0$$

are α , β , γ and δ

Making your method clear and without solving the equation, determine the exact value of

(i)
$$\alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2}$$

(i) $\frac{2}{\alpha} + \frac{2}{\beta} + \frac{2}{\gamma} + \frac{2}{\delta}$
(ii) $(3 - \alpha)(3 - \beta)(3 - \gamma)(3 - \delta)$
(3)

(3)

(Total for question = 9 marks)

Mark Scheme – Roots of Polynomials

Q1.

Question	Scheme	Marks	AOs
	$w = 2z + 1 \Longrightarrow z = \frac{w - 1}{2}$	B1	3.1a
	$\left(\frac{w-1}{2}\right)^3 - 3\left(\frac{w-1}{2}\right)^2 + \left(\frac{w-1}{2}\right) + 5 = 0$	M1	3.1a
	$\frac{1}{8}(w^3 - 3w^2 + 3w - 1) - \frac{3}{4}(w^2 - 2w + 1) + \frac{w - 1}{2} + 5 = 0$		
	$w^3 - 9w^2 + 19w + 29 = 0$	M1 A1 A1	1.1b 1.1b 1.1b
		(5)	
ALT 1	$\alpha + \beta + \gamma = 3, \alpha\beta + \beta\gamma + \alpha\gamma = 1, \alpha\beta\gamma = -5$	B1	3.1a
	New sum = $2(\alpha + \beta + \gamma) + 3 = 9$		
	New pair sum = $4(\alpha\beta + \beta\gamma + \gamma\alpha) + 4(\alpha + \beta + \gamma) + 3 = 19$	M1	3.1a
	New product = $8\alpha\beta\gamma + 4(\alpha\beta + \beta\gamma + \gamma\alpha) + 2(\alpha + \beta + \gamma) + 1 = -29$	1	
	$w^3 - 9w^2 + 19w + 29 = 0$	M1 A1 A1	1.1b 1.1b 1.1b
		(5)	
	(5	marks)	
B1: Select M1: Appli (Allow z =	is the method of making a connection between z and w by writing $z = \frac{w}{2}$ ies the process of substituting their $z = \frac{w-1}{2}$ into $z^3 - 3z^2 + z + 5 = 0$ z = 2w + 1	$\frac{v-1}{2}$	
M1: Mani	pulates their equation into the form $w^3 + pw^2 + qw + r (= 0)$ having substi	tuted thei	rzin
terms of w A1: At lea A1: Fully The first 4 in terms o	w. Note that the "= 0" can be missing for this mark. ast two of p , q , r correct. Note that the "= 0" can be missing for this mark correct equation including "= 0" a marks are available if another letter is used instead of w but the final a f w .	rk. inswer mi	ust be
ALT1 B1: Select M1: Appl: M1: Appl:	ts the method of giving three correct equations containing α, β and γ ies the process of finding the new sum, new pair sum, new product ies $w^3 - (\text{new sum})w^2 + (\text{new pair sum})w - (\text{new product})(= 0)$		
or identifi A1: At lea A1: Fully	tes p as -(new sum) q as (new pair sum) and r as -(new product) ast two of p , q , r correct. correct equation including "= 0"		

The first 4 marks are available if another letter is used instead of w but the final answer must be in terms of w.

Question	Scheme	Marks	AOs
(a)	$\alpha\beta\gamma = -\frac{1}{3} \operatorname{and} \alpha\beta + \alpha\gamma + \beta\gamma = -\frac{4}{3}$	B1	3.1a
	$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta\gamma + \alpha\gamma + \alpha\beta}{\alpha\beta\gamma} = \frac{-\frac{4}{3}}{-\frac{1}{3}}$	M1	1.1b
	= 4	A1	1.1b
		(3)	
(b)	$\begin{cases} \alpha + \beta + \gamma = -\frac{1}{3} \end{cases}$ New product $= \frac{1}{\alpha} \times \frac{1}{\beta} \times \frac{1}{\gamma} = \frac{1}{\alpha\beta\gamma} = \frac{1}{-\frac{1}{3}} = \dots (-3)$ New pair sum $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\alpha\gamma} = \frac{\gamma + \alpha + \beta}{\alpha\beta\gamma} = \frac{-\frac{1}{3}}{-\frac{1}{3}} = \dots (1)$	M1	3.1a
	$x^{3} - (\text{part } (a))x^{2} + (\text{new pair sum})x - (\text{new product})(=0)$	M1	1.1b
	$x^3 - 4x^2 + x + 3 = 0$	A1	1.1b
		(3)	
	Alternative e.g. $z = \frac{1}{x} \Rightarrow \frac{3}{x^3} + \frac{1}{x^2} - \frac{4}{x} + 1 = 0$	M1	3.1a
	$x^3 - 4x^2 + x + 3 = 0$	M1 A1	1.1b 1.1b
		(3)	
2		(6 n	narks)

Q2.

Notes:

(a)

B1: Correct values for the product and pair sum of the roots

M1: A complete method to find the sum of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$. Must substitute in their values of the

product and pair sum

Al: correct value 4

Note: If candidate does not divide by 3 so that $\alpha\beta\gamma = -1$ and $\alpha\beta + \alpha\gamma + \beta\gamma = -4$ the maximum they can score is B0 M1 A0

(b)

M1: A correct method to find the value of the new pair sum and the value of the new product

M1: Applies $x^3 - (\text{part } (\mathbf{a}))x^2 + (\text{their new pair sum})x - (\text{their new product})(=0)$

A1: Fully correct equation, in any variable, including = 0

(b) Alternative

M1: Realises the connection between the roots and substitutes into the cubic equation

M1: Manipulates their equation into the form $x^3 + ax^2 + bx + c = 0$

A1: Fully correct equation in any variable, including = 0

Q3.

Question	Scheme	Marks	AOs
	$\left\{w = x - 1 \Longrightarrow\right\} x = w + 1$	B1	3.1a
	$(w+1)^3 + 3(w+1)^2 - 8(w+1) + 6 = 0$	M1	3.1a
	$w^{3} + 3w^{2} + 3w + 1 + 3(w^{2} + 2w + 1) - 8w - 8 + 6 = 0$		
		M1	1.1b
	$w^3 + 6w^2 + w + 2 = 0$	A1	1.1b
		A1	1.1b
		(5)	
ALT 1	$\alpha + \beta + \gamma = -3, \alpha\beta + \beta\gamma + \alpha\gamma = -8, \alpha\beta\gamma = -6$	B1	3.1a
	sum roots = $\alpha - 1 + \beta - 1 + \gamma - 1$		3.1a
	$= \alpha + \beta + \gamma - 3 = -3 - 3 = -6$		
	pair sum = $(\alpha - 1)(\beta - 1) + (\alpha - 1)(\gamma - 1) + (\beta - 1)(\gamma - 1)$		
	$= \alpha\beta + \alpha\gamma + \beta\gamma - 2(\alpha + \beta + \gamma) + 3$	N	
	= -8 - 2(-3) + 3 = 1	MI	
	$product = (\alpha - 1)(\beta - 1)(\gamma - 1)$		
	$= \alpha\beta\gamma - (\alpha\beta + \alpha\gamma + \beta\gamma) + (\alpha + \beta + \gamma) - 1$		
	= -6 - (-8) - 3 - 1 = -2		
		M1	1.1b
	$w^3 + 6w^2 + w + 2 = 0$	A1	1.1b
		A1	1.1b
		(5)	
19 29		(5	marks)

		Question Notes
	B1	Selects the method of making a connection between x and w by writing $x = w + 1$
	M1	Applies the process of substituting their $x = w+1$ into $x^3 + 3x^2 - 8x + 6 = 0$
	M1	Depends on previous M mark. Manipulating their equation into the form $w^3 + pw^2 + qw + r = 0$
	A1	At least two of p, q, r are correct.
	A1	Correct final equation.
ALT 1	B1	Selects the method of giving three correct equations each containing α , β and γ .
	M1	Applies the process of finding sum roots, pair sum and product.
	M1	Depends on previous M mark. Applies
		w^3 – (their sum roots) w^2 + (their pair sum) w – their $\alpha\beta\gamma = 0$
	A1	At least two of p, q, r are correct.
	A1	Correct final equation.

Q4.

Question	Scheme	Marks	AOs
	$\{w = x + 3 \Longrightarrow\} x = w - 3$	B1	3.1a
	$2(w-3)^3 + 6(w-3)^2 - 3(w-3) + 12 (= 0)$	M1	1.1b
	$2w^3 - 18w^2 + 54w - 54 + 6(w^2 - 6w + 9) - 3w + 9 + 12(=0)$		
	$2w^3 - 12w^2 + 15w + 21 = 0$ (So $p = 2, q = -12, r = 15$ and $s = 21$)	M1	3.1a
		A1	1.1b
		A1	1.1b
		(5)	

ALT 1	$\alpha + \beta + \gamma = -\frac{6}{2} = -3, \ \alpha\beta + \beta\gamma + \alpha\gamma = -\frac{3}{2}, \ \alpha\beta\gamma = -\frac{12}{2} = -6$	B1	3.1a
	sum roots = $\alpha + 3 + \beta + 3 + \gamma + 3$	10	
	$= \alpha + \beta + \gamma + 9 = -3 + 9 = 6$		
	pair sum = $(\alpha + 3)(\beta + 3) + (\alpha + 3)(\gamma + 3) + (\beta + 3)(\gamma + 3)$		
	$= \alpha\beta + \alpha\gamma + \beta\gamma + 6(\alpha + \beta + \gamma) + 27$		
	$= -\frac{3}{2} + 6 \times -3 + 27 = \frac{15}{2}$	M1	3.1a
	$product = (\alpha + 3)(\beta + 3)(\gamma + 3)$		
	$= \alpha\beta\gamma + 3(\alpha\beta + \alpha\gamma + \beta\gamma) + 9(\alpha + \beta + \gamma) + 27$		
	$= -6 + 3 \times -\frac{3}{2} + 9 \times -3 + 27 = -\frac{21}{2}$		
	$w^3 - 6w^2 + \frac{15}{2}w - \left(-\frac{21}{2}\right) (=0)$	M1	1.1b
	$2w^3 - 12w^2 + 15w + 21 = 0$	A1	1.1b
	(So $p = 2$, $q = -12$, $r = 15$ and $s = 21$)	A1	1.1b
		(5)	
		(5 mar	

		Notes
	B1	Selects the method of making a connection between x and w by writing $x = w - 3$
	M1	Applies the process of substituting their $x = aw \pm b$ into $2x^3 + 6x^2 - 3x + 12$ (= 0)
		So accept e.g. if $x = \frac{w}{3}$ is used.
	MI	Depends on having attempted substituting either $x = w - 3$ or $x = w + 3$ into the
		equation. This mark is for manipulating their resulting equation into the form $pw^3 + qw^2 + rw + s(=0)$ ($p \neq 0$). The "= 0" may be implied for this.
See note	Al	At least three of p , q , r and s are correct in an equation with integer coefficients. (need not have "= 0")
	Al	Correct final equation, including "=0". Accept integer multiples.
	BI	Selects the method of giving three correct equations each containing α , β and γ
ALTI	MI	Applies the process of finding sum roots pair sum and product
	MI	Applies w^3 – (their sum roots) w^2 + (their pair sum) w – (their product) (= 0)
		Must be correct identities, but if quoted allow slips in substitution, but the "=0" may be implied.
See note	Al	At least three of p , q , r and s are correct in an equation with integer coefficients. (need not have "=0")
	Al	Correct final equation, including "=0". Accept multiples with integer coefficients.
Note: may use	another	variable than w for the first four marks, but the final equation must be in terms of w
Notes: Do not answer.	isw the	final two A marks – if subsequent division by 2 occurs then mark the final

Q5.

Question	Scheme	Marks	AOs
	$w = 3x - 2 \Longrightarrow x = \frac{w + 2}{3}$	B1	3.1a
	$9\left(\frac{w+2}{3}\right)^3 - 5\left(\frac{w+2}{3}\right)^2 + 4\left(\frac{w+2}{3}\right) + 7 = 0$	M1	3.1a
	$\frac{1}{3}(w^3 + 6w^2 + 12w + 8) - \frac{5}{9}(w^2 + 4w + 4) + \frac{4}{3}(w + 2) + 7 = 0$		
		dM1	1.1b
	$3w^3 + 13w^2 + 28w + 91 = 0$	A1	1.1b
		A1	1.1b
10 × 10		(5)	
	Alternative:		
	$\alpha + \beta + \gamma = \frac{5}{9}, \alpha\beta + \beta\gamma + \alpha\gamma = \frac{4}{9}, \alpha\beta\gamma = -\frac{7}{9}$	B 1	3.1a
	New sum = $3(\alpha + \beta + \gamma) - 6 = -\frac{13}{3}$		
	New pair sum = $9(\alpha\beta + \beta\gamma + \gamma\alpha) - 12(\alpha + \beta + \gamma) + 12 = \frac{28}{3}$	M1	3.1a
	New product = $27\alpha\beta\gamma - 18(\alpha\beta + \beta\gamma + \gamma\alpha) + 12(\alpha + \beta + \gamma) - 8 = -\frac{91}{3}$	4 33	
	$w^{3} - \left(-\frac{13}{3}\right)w^{2} + \frac{28}{3}w - \left(-\frac{91}{3}\right) = 0$	dM1	1.1b
	$3w^3 + 13w^2 + 28w + 91 = 0$	A1	1.1b
		A1	1.1b
		(5)	
(5			marks)

Notes

B1: Selects the method of making a connection between x and w by writing $x = \frac{w+2}{3}$

Condone the use of a different letter than w

M1: Applies the process of substituting $x = \frac{w+2}{3}$ into $9x^3 - 5x^2 + 4x + 7 = 0$

dM1: Depends on the previous M mark. Manipulates their equation into the form

 $aw^3 + bw^2 + cw + d(=0)$. Condone the use of a different letter then w consistent with B1 mark.

A1: At least two of a, b, c, d correct

A1: Fully correct equation, must be in terms of w

Alternative:

B1: Selects the method of giving three correct equations containing α , β and γ

M1: Applies the process of finding the new sum, new pair sum, new product

dM1: Depends on the previous M mark. Applies

 $w^{3} - (\text{new sum})w^{2} + (\text{new pair sum})w - (\text{new product})(=0)$ condone the use of any letter here.

A1: At least two of a, b, c, d correct

A1: Fully correct equation in term of w

Q6.

Question	Scheme	Marks	AOs
(i)	$\sum_{i} \alpha_{i} = -\frac{5}{3} \text{ and } \sum_{i} \alpha_{i} \alpha_{j} = 0$ This mark can be awarded if seen in part (ii) or part (iii)	B1	3.1a
	So $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = (\alpha + \beta + \gamma + \delta)^2 - 2(\sum \alpha_i \alpha_j) = \dots$	M1	1.1b
	$=\frac{25}{9} - 2 \times 0 = \frac{25}{9}$	A1	1.1b
		(3)	
(ii)	$\sum_{i=1}^{\infty} \alpha_i \alpha_j \alpha_k = \frac{7}{3} \text{ and } \prod_{i=1}^{\infty} \alpha_i = 2 \text{ or for } x = \frac{2}{w} \text{ used in equation}$ This mark can be awarded if seen in part (i) or part (iii)	B1	2.2a
	So $2\left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}\right) = 2 \times \frac{\alpha_i \alpha_j \alpha_k}{\alpha \beta \gamma \delta} = 2 \times \frac{\frac{7}{3}}{\frac{6}{3}}$ or for $3\left(\frac{16}{w^4}\right) + 5\left(\frac{8}{w^3}\right) - 7\left(\frac{2}{w}\right) + 6 = 0 \Rightarrow 6w^4 - 14w^3 + = 0$ leading to $\frac{14}{6}$	M1	1.1b
	$\left(=2\times\frac{\frac{7}{3}}{2}\right)\left(=\frac{14}{6}\right)=\frac{7}{3}$	A1	1.1b
		(3)	

(iii)	$(3-\alpha)(3-\beta)(3-\gamma)(3-\delta) = \dots \text{ expands all four brackets}$ Or equation with these roots is $3(3-x)^4 + 5(3-x)^3 - 7(3-x) + 6 = 0$	M1	3.1a
	$= 81 - 27 \left(\sum \alpha_i\right) + 9 \left(\sum \alpha_i \alpha_j\right) - 3 \left(\sum \alpha_i \alpha_j \alpha_k\right) + \prod \alpha_i$ $= 81 - 27 \left(-\frac{5}{3}\right) + 9 \left(0\right) - 3 \left(\frac{7}{3}\right) + 2$ Or expands to fourth power and constant terms and attempts product of roots $3x^4 + + 3 \times 3^4 + 5 \times 3^3 - 7 \times 3 + 6 \rightarrow \prod \alpha_i = \frac{"363"}{3}$	dM1	1.1b
	=121	A1	1.1b
		(3)	
			1.5

(9 marks)

Notes:

(i)

B1: Correct sum and pair sum of roots seen or implied. Must realise the pair sum is zero.

Note: These values can be seen anywhere in the candidate's solution

M1: Uses correct expression for the sum of squares.

A1: $\frac{25}{9}$. Allow this mark from incorrect sign on sum of squares (but they will score B0 if the sign is incorrect).

(ii)

B1: Correct triple sum and product of roots seen or implied. May be stated in (i). Alternatively, this may be scored for sight of $x = \frac{2}{w}$ used as a transformation in the equation.

Note: These values can be seen anywhere in the candidate's solution

M1: Substitutes their values into $2 \times \frac{\sum \alpha_i \alpha_j \alpha_k}{\alpha \beta \gamma \delta} = \dots$ In the alternative it is for rearranging the

equation to a quartic in w and uses to find the sum of the roots.

A1: $\frac{7}{3}$ Allow this mark from incorrect sign of both triple sum and product (but they will score B0

if the sign is incorrect).

(iii)

- M1: A correct method to find the value used may recognise structure as scheme, may expand the expression in stages, or may attempt to use a linear transformation (3 x) or e.g. (3 w) in original equation. Condone slips as long as the intention is clear.
- dM1: Dependent on previous method mark. Uses at least 2 values of their sum of roots etc. in their expression. If using a linear shift this is for expanding to find the coefficient of x^4 and constant term and attempts product of roots by dividing the constant term by the coefficient of x^4 .

A1: 121.