Roots of Polynomials

Questions

Q1.

The cubic equation

$$
z^{3}-3 z^{2}+z+5=0
$$

has roots α, β and γ.
Without solving the equation, find the cubic equation whose roots are $(2 \alpha+1),(2 \beta+1)$ and $(2 \gamma+1)$, giving your answer in the form $w^{3}+p w^{2}+q w+r=0$, where p, q and r are integers to be found.

Q2.

The cubic equation

$$
3 x^{3}+x^{2}-4 x+1=0
$$

has roots α, β, and γ.
Without solving the cubic equation,
(a) determine the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(b) find a cubic equation that has roots $\frac{1}{\alpha}, \frac{1}{\beta}$ and $\frac{1}{\gamma}$, giving your answer in the form $x^{3}+a x^{2}+b x+c=0$, where a, b and c are integers to be determined.

Q3.

The cubic equation

$$
x^{3}+3 x^{2}-8 x+6=0
$$

has roots α, β and γ.
Without solving the equation, find the cubic equation whose roots are $(\alpha-1),(\beta-1)$ and (γ -1), giving your answer in the form $w^{3}+p w^{2}+q w+r=0$, where p, q and r are integers to be found.

Q4.

The cubic equation

$$
2 x^{3}+6 x^{2}-3 x+12=0
$$

has roots α, β and γ.
Without solving the equation, find the cubic equation whose roots are $(\alpha+3),(\beta+3)$ and $(\gamma+3)$, giving your answer in the form $p w^{3}+q w^{2}+r w+s=0$, where p, q, r and s are integers to be found.

Q5.

The cubic equation

$$
9 x^{3}-5 x^{2}+4 x+7=0
$$

has roots α, β and γ.
Without solving the equation, find the cubic equation whose roots are $(3 \alpha-2),(3 \beta-2)$ and $(3 \gamma-2)$, giving your answer in the form $a w^{3}+b w^{2}+c w+d=0$, where a, b, c and d are integers to be determined.

(Total for question = 5 marks)

Q6.

The roots of the quartic equation

$$
3 x^{4}+5 x^{3}-7 x+6=0
$$

are α, β, γ and δ
Making your method clear and without solving the equation, determine the exact value of
(i) $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$
(ii) $\frac{2}{\alpha}+\frac{2}{\beta}+\frac{2}{\gamma}+\frac{2}{\delta}$
(iii) $(3-\alpha)(3-\beta)(3-\gamma)(3-\delta)$

Mark Scheme - Roots of Polynomials

Q1.

Q2.

Question	Scheme	Marks	AOs
(a)	$\alpha \beta \gamma=-\frac{1}{3}$ and $\alpha \beta+\alpha \gamma+\beta \gamma=-\frac{4}{3}$	B1	3.1a
	$\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma}=\frac{-4 / 3}{-1 / 3}$	M1	1.1b
	$=4$	A1	1.1 b
		(3)	
(b)	$\left\{\alpha+\beta+\gamma=-\frac{1}{3}\right\}$ New product $=\frac{1}{\alpha} \times \frac{1}{\beta} \times \frac{1}{\gamma}=\frac{1}{\alpha \beta \gamma}=\frac{1}{-1 / 3}=\ldots(-3)$ New pair sum $\frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\alpha \gamma}=\frac{\gamma+\alpha+\beta}{\alpha \beta \gamma}=\frac{-1 / 3}{-1 / 3}=\ldots$	M1	3.1a
	$x^{3}-($ part $(\mathrm{a})) x^{2}+($ new pair sum $) x-($ new product $)(=0)$	M1	1.1b
	$x^{3}-4 x^{2}+x+3=0$	A1	1.1b
		(3)	
	Alternative e.g. $z=\frac{1}{x} \Rightarrow \frac{3}{x^{3}}+\frac{1}{x^{2}}-\frac{4}{x}+1=0$	M1	3.1a
	$x^{3}-4 x^{2}+x+3=0$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(3)	
(6 marks)			

Notes:

(a)

B1: Correct values for the product and pair sum of the roots
M1: A complete method to find the sum of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$. Must substitute in their values of the product and pair sum
Al: correct value 4
Note: If candidate does not divide by 3 so that $\alpha \beta \gamma=-1$ and $\alpha \beta+\alpha \gamma+\beta \gamma=-4$ the maximum they can score is B0 M1 A0
(b)

M1: A correct method to find the value of the new pair sum and the value of the new product
M1: Applies $x^{3}-\left(\right.$ part (a)) $x^{2}+($ their new pair sum $) x-($ their new product $)(=0)$
Al: Fully correct equation, in any variable, including $=0$

(b) Alternative

M1: Realises the connection between the roots and substitutes into the cubic equation
M1: Manipulates their equation into the form $x^{3}+a x^{2}+b x+c=0$
A1: Fully correct equation in any variable, including $=0$

Q3.

Question	Scheme	Marks	AOs
	$\{w=x-1 \Rightarrow\} x=w+1$	B1	3.1a
	$(w+1)^{3}+3(w+1)^{2}-8(w+1)+6=0$	M1	3.1a
	$w^{3}+3 w^{2}+3 w+1+3\left(w^{2}+2 w+1\right)-8 w-8+6=0$		
		M1	1.1 b
	$w^{3}+6 w^{2}+w+2=0$	A1	1.1 b
		A1	1.1b
		(5)	
ALT 1	$\alpha+\beta+\gamma=-3, \alpha \beta+\beta \gamma+\alpha \gamma=-8, \alpha \beta \gamma=-6$	B1	3.1a
	sumroots $=\alpha-1+\beta-1+\gamma-1$	M1	3.1a
	$=\alpha+\beta+\gamma-3=-3-3=-6$		
	pairsum $=(\alpha-1)(\beta-1)+(\alpha-1)(\gamma-1)+(\beta-1)(\gamma-1)$		
	$=\alpha \beta+\alpha \gamma+\beta \gamma-2(\alpha+\beta+\gamma)+3$		
	$=-8-2(-3)+3=1$		
	product $=(\alpha-1)(\beta-1)(\gamma-1)$		
	$=\alpha \beta \gamma-(\alpha \beta+\alpha \gamma+\beta \gamma)+(\alpha+\beta+\gamma)-1$		
	$=-6-(-8)-3-1=-2$		
	$w^{3}+6 w^{2}+w+2=0$	M1	1.1b
		A1	1.1b
		A1	1.1 b
		(5)	
	(5 marks)		

	Question Notes	
	B1	Selects the method of making a connection between x and w by writing $x=w+1$
	M1	Applies the process of substituting their $x=w+1$ into $x^{3}+3 x^{2}-8 x+6=0$
	M1	Depends on previous M mark. Manipulating their equation into the form $w^{3}+p w^{2}+q w+r=0$
	A1	At least two of p, q, r are correct.
	A1	Correct final equation.
ALT 1	B1	Selects the method of giving three correct equations each containing α, β and γ.
	M1	Applies the process of finding sum roots, pair sum and product.
	M1	Depends on previous M mark. Applies
		w^{3}-(their sum roots) $w^{2}+$ (their pair sum) $w-$ their $\alpha \beta \gamma=0$
	A1	At least two of p, q, r are correct.
	A1	Correct final equation.

Q4.

Question	Scheme	Marks	AOs
	$\{w=x+3 \Rightarrow\} x=w-3$	B1	3.1 a
	$2(w-3)^{3}+6(w-3)^{2}-3(w-3)+12(=0)$	M1	1.1 b
	$2 w^{3}-18 w^{2}+54 w-54+6\left(w^{2}-6 w+9\right)-3 w+9+12(=0)$		
	$2 w^{3}-12 w^{2}+15 w+21=0$		
	M1	3.1 a	
		A 1	1.1 b
		A1	1.1 b
		(5)	

ALT 1	$\alpha+\beta+\gamma=-\frac{6}{2}=-3, \alpha \beta+\beta \gamma+\alpha \gamma=-\frac{3}{2}, \alpha \beta \gamma=-\frac{12}{2}=-6$	B1	3.1a
	sumroots $=\alpha+3+\beta+3+\gamma+3$	M1	3.1a
	$=\alpha+\beta+\gamma+9=-3+9=6$		
	pair sum $=(\alpha+3)(\beta+3)+(\alpha+3)(\gamma+3)+(\beta+3)(\gamma+3)$		
	$=\alpha \beta+\alpha \gamma+\beta \gamma+6(\alpha+\beta+\gamma)+27$		
	$=-\frac{3}{2}+6 \times-3+27=\frac{15}{2}$		
	product $=(\alpha+3)(\beta+3)(\gamma+3)$		
	$=\alpha \beta \gamma+3(\alpha \beta+\alpha \gamma+\beta \gamma)+9(\alpha+\beta+\gamma)+27$		
	$=-6+3 \times-\frac{3}{2}+9 \times-3+27=-\frac{21}{2}$		
	$w^{3}-6 w^{2}+\frac{15}{2} w-\left(-\frac{21}{2}\right)(=0)$	M1	1.1b
	$2 w^{3}-12 w^{2}+15 w+21=0$	A1	1.1 b
	(So $p=2, q=-12, r=15$ and $s=21$)	A1	1.1 b
		(5)	

| Notes | |
| :---: | :---: | :--- |
| M1 | Selects the method of making a connection between x and w by writing $x=w-3$
 Applies the process of substituting their $x=a w \pm b$ into $2 x^{3}+6 x^{2}-3 x+12(=0)$
 M1So accept e.g. if $x=\frac{w}{3}$ is used.
 See note
 Depends on having attempted substituting either $x=w-3$ or $x=w+3$ into the
 equation. This mark is for manipulating their resulting equation into the form
 $p w^{3}+q w^{2}+r w+s(=0)(p \neq 0)$. The " $=0$ " may be implied for this.
 At least three of p, q, r and s are correct in an equation with integer coefficients.
 $($ need not have " $=0$ ")
 Correct final equation, including " $=0$ ". Accept integer multiples. |

AL1 1 \quad BI \quad Selects the method of giving three correct equations each containing α, β and γ.
M1 Applies the process of finding sum roots, pair sum and product.
M1 Applies w^{3}-(their sum roots) $w^{2}+$ (their pair sum) $w-$ (their product) $(=0)$ Must be correct identities, but if quoted allow slips in substitution, but the " $=0$ " may be implied.
See note
Al At least three of p, q, r and s are correct in an equation with integer coefficients. (need not have " $=0$ ")
Al Correct final equation, including " $=0$ ". Accept multiples with integer coefficients.
Note: may use another variable than w for the first four marks, but the final equation must be in terms of w Notes: Do not isw the final two \mathbf{A} marks - if subsequent division by 2 occurs then mark the final answer.

Q5.

Question	Scheme	Marks	AOs
	$w=3 x-2 \Rightarrow x=\frac{w+2}{3}$	B1	3.1a
	$9\left(\frac{w+2}{3}\right)^{3}-5\left(\frac{w+2}{3}\right)^{2}+4\left(\frac{w+2}{3}\right)+7=0$	M1	3.1a
	$\frac{1}{3}\left(w^{3}+6 w^{2}+12 w+8\right)-\frac{5}{9}\left(w^{2}+4 w+4\right)+\frac{4}{3}(w+2)+7=0$		
		dM1	1.1b
	$3 w^{3}+13 w^{2}+28 w+91=0$	A1	1.1 b
		A1	1.1 b
		(5)	
	Alternative:		
	$\alpha+\beta+\gamma=\frac{5}{9}, \alpha \beta+\beta \gamma+\alpha \gamma=\frac{4}{9}, \alpha \beta \gamma=-\frac{7}{9}$	B1	3.1a
	New sum $=3(\alpha+\beta+\gamma)-6=-\frac{13}{3}$	M1	3.1a
	New pair sum $=9(\alpha \beta+\beta \gamma+\gamma \alpha)-12(\alpha+\beta+\gamma)+12=\frac{28}{3}$		
	New product $=27 \alpha \beta \gamma-18(\alpha \beta+\beta \gamma+\gamma \alpha)+12(\alpha+\beta+\gamma)-8=-\frac{91}{3}$		
	$w^{3}-\left(-\frac{13}{3}\right) w^{2}+\frac{28}{3} w-\left(-\frac{91}{3}\right)=0$	dM1	1.1b
		A1	1.1b
	$3 w^{3}+13 w^{2}+28 w+91=0$	A1	1.1 b
		(5)	

(5 marks)

| Notes |
| :--- | :--- |
| B1: Selects |

B1: Selects the method of making a connection between x and w by writing $x=\frac{w+2}{3}$
Condone the use of a different letter than w
M1: Applies the process of substituting $x=\frac{w+2}{3}$ into $9 x^{3}-5 x^{2}+4 x+7=0$
dM1: Depends on the previous M mark. Manipulates their equation into the form $a w^{3}+b w^{2}+c w+d(=0)$. Condone the use of a different letter then w consistent with B1 mark.
A1: At least two of a, b, c, d correct
A1: Fully correct equation, must be in terms of w

Alternative:

B1: Selects the method of giving three correct equations containing α, β and γ
M1: Applies the process of finding the new sum, new pair sum, new product
dM1: Depends on the previous M mark. Applies
$w^{3}-$ (new sum) $w^{2}+($ new pairsum $) w$-(new product) $(=0)$ condone the use of any letter here.
A1: At least two of a, b, c, d correct
A1: Fully correct equation in term of w

Q6.

Question	Scheme	Marks	AOS
(i)	$\sum \alpha_{i}=-\frac{5}{3} \text { and } \sum \alpha_{i} \alpha_{j}=0$ This mark can be awarded if seen in part (ii) or part (iii)	B1	3.1a
	So $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=(\alpha+\beta+\gamma+\delta)^{2}-2\left(\sum \alpha_{i} \alpha_{j}\right)=\ldots$	M1	1.1b
	$=\frac{25}{9}-2 \times 0=\frac{25}{9}$	A1	1.1b
		(3)	
(ii)	$\sum \alpha_{i} \alpha_{j} \alpha_{k}=\frac{7}{3}$ and $\prod \alpha_{i}=2$ or for $x=\frac{2}{w}$ used in equation This mark can be awarded if seen in part (i) or part (iii)	B1	2.2a
	$\begin{aligned} & \text { So } 2\left(\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}\right)=2 \times \frac{\sum \alpha_{i} \alpha_{j} \alpha_{k}}{\alpha \beta \gamma \delta}=2 \times \frac{'^{\frac{7}{3}} \text { ', }}{\text { ' } \frac{\prime}{3}} \text { or for } \\ & 3\left(\frac{16}{w^{4}}\right)+5\left(\frac{8}{w^{3}}\right)-7\left(\frac{2}{w}\right)+6=0 \Rightarrow 6 w^{4}-14 w^{3}+\ldots=0 \text { leading to } \frac{14}{6} \end{aligned}$	M1	1.1 b
	$\left(=2 \times \frac{7 / 3}{2}\right)\left(=\frac{14}{6}\right)=\frac{7}{3}$	A1	1.1b
		(3)	

(iii)	$(3-\alpha)(3-\beta)(3-\gamma)(3-\delta)=\ldots$ expands all four brackets Or equation with these roots is $3(3-x)^{4}+5(3-x)^{3}-7(3-x)+6=0$	M1	3.1a
	$\begin{aligned} & =81-27\left(\sum \alpha_{i}\right)+9\left(\sum \alpha_{i} \alpha_{j}\right)-3\left(\sum \alpha_{i} \alpha_{j} \alpha_{k}\right)+\prod \alpha_{i} \\ & =81-27\left(-\frac{5}{3}\right)+9(0)-3\left(\frac{7}{3}\right)+2 \end{aligned}$ Or expands to fourth power and constant terms and attempts product of roots $3 x^{4}+\ldots+3 \times 3^{4}+5 \times 3^{3}-7 \times 3+6 \rightarrow \prod \alpha_{i}=\frac{" 363 "}{3}$	dM1	1.1b
	$=121$	A1	1.1b
		(3)	
(9 marks)			
Notes:			
(i) B1: Correct sum and pair sum of roots seen or implied. Must realise the pair sum is zero. Note: These values can be seen anywhere in the candidate's solution M1: Uses correct expression for the sum of squares. A1: $\frac{25}{9}$. Allow this mark from incorrect sign on sum of squares (but they will score B0 if the sign is incorrect). (ii)			

B1: Correct triple sum and product of roots seen or implied. May be stated in (i). Alternatively, this may be scored for sight of $x=\frac{2}{w}$ used as a transformation in the equation.
Note: These values can be seen anywhere in the candidate's solution
M1: Substitutes their values into $2 \times \frac{\sum \alpha_{i} \alpha_{j} \alpha_{k}}{\alpha \beta \gamma \delta}=\ldots$ In the alternative it is for rearranging the equation to a quartic in w and uses to find the sum of the roots.
Al: $\frac{7}{3}$ Allow this mark from incorrect sign of both triple sum and product (but they will score B0 if the sign is incorrect).
(iii)

Ml: A correct method to find the value used - may recognise structure as scheme, may expand the expression in stages, or may attempt to use a linear transformation $(3-x)$ or e.g. $(3-w)$ in original equation. Condone slips as long as the intention is clear.
dM1: Dependent on previous method mark. Uses at least 2 values of their sum of roots etc. in their expression. If using a linear shift this is for expanding to find the coefficient of x^{4} and constant term and attempts product of roots by dividing the constant term by the coefficient of x^{4}.
A1: 121 .

