Hypothesis Testing

Questions

Q1.

The number of heaters, *H*, bought during one day from *Warmup* supermarket can be modelled by a Poisson distribution with mean 0.7

(a) Calculate $P(H \ge 2)$

(1)

The number of heaters, *G*, bought during one day from *Pumraw*supermarket can be modelled by a Poisson distribution with mean 3, where *G* and *H* are independent.

(b) Show that the probability that a total of fewer than 4 heaters are bought from these two supermarkets in a day is 0.494 to 3 decimal places.

(2)

(c) Calculate the probability that a total of fewer than 4 heaters are bought from these two supermarkets on at least 5 out of 6 randomly chosen days.

(3)

December was particularly cold. Two days in December were selected at random and the total number of heaters bought from these two supermarkets was found to be 14

(d) Test whether or not the mean of the total number of heaters bought from these two supermarkets had increased. Use a 5% level of significance and state your hypotheses clearly.

(5)

(Total for question = 11 marks)

Q2.

During the summer, mountain rescue team A receives calls for help randomly with a rate of 0.4 per day.

(a) Find the probability that during the summer, mountain rescue team *A* receives at least 19 calls for help in 28 randomly selected days.

The leader of mountain rescue team A randomly selects 250 summer days from the last few years.

She records the number of calls for help received on each of these days.

(b) Using a Poisson approximation, estimate the probability of the leader finding at least 20 of these days when more than 1 call for help was received by mountain rescue team *A*.

(4)

(2)

Mountain rescue team *A* believes that the number of calls for help per day is lower in the winter than in the summer. The number of calls for help received in 42 randomly selected winter days is 8

(c) Use a suitable test, at the 5% level of significance, to assess whether or not there is evidence that the number of calls for help per day is lower in the winter than in the summer. State your hypotheses clearly.

(4)

During the summer, mountain rescue team *B* receives calls for help randomly with a rate of 0.2 per day, independently of calls to mountain rescue team *A*.

The random variable *C* is the total number of calls for help received by mountain rescue teams *A* and *B* during a period of *n* days in the summer. On a Monday in the summer, mountain rescue teams *A* and *B* each receive a call for help.

Given that over the next *n* days P(C = 0) < 0.001

(d) calculate the minimum value of *n*

(e) Write down an assumption that needs to be made for the model to be appropriate.

(1)

(3)

(Total for question = 14 marks)

Q3.

Rowan and Alex are both check-in assistants for the same airline. The number of passengers, R, checked in by Rowan during a 30-minute period can be modelled by a Poisson distribution with mean 28

(a) Calculate $P(R \ge 23)$

The number of passengers, A, checked in by Alex during a 30-minute period can be modelled by a Poisson distribution with mean 16, where R and A are independent. A randomly selected 30-minute period is chosen.

(b) Calculate the probability that exactly 42 passengers in total are checked in by Rowan and Alex.

(2)

(1)

The company manager is investigating the rate at which passengers are checked in. He randomly selects 150 non-overlapping 60-minute periods and records the total number of passengers checked in by Rowan and Alex, in each of these 60-minute periods.

(c) Using a Poisson approximation, find the probability that for at least 25 of these 60-minute periods Rowan and Alex check in a total of fewer than 80 passengers.

(4)

On a particular day, Alex complains to the manager that the check-in system is working slower than normal. To see if the complaint is valid the manager takes a random 90-minute period and finds that the total number of people **Rowan** checks in is 67

(d) Test, at the 5% level of significance, whether or not there is evidence that the system is working slower than normal. You should state your hypotheses and conclusion clearly and show your working.

(4)

(Total for question = 11 marks)

Q4.

On a weekday, a garage receives telephone calls randomly, at a mean rate of 1.25 per 10 minutes.

(a) Show that the probability that on a weekday at least 2 calls are received by the garage in a 30-minute period is 0.888 to 3 decimal places.

(b) Calculate the probability that at least 2 calls are received by the garage in fewer than 4 out of 6 randomly selected, non-overlapping 30-minute periods on a weekday.

(2)

(2)

The manager of the garage randomly selects 150 non-overlapping 30-minute periods on weekdays.

She records the number of calls received in each of these 30-minute periods.

(c) Using a Poisson approximation show that the probability of the manager finding at least 3 of these 30-minute periods when exactly 8 calls are received by the garage is 0.664 to 3 significant figures.

(4)

(d) Explain why the Poisson approximation may be reasonable in this case.

(1)

The manager of the garage decides to test whether the number of calls received on a Saturday is different from the number of calls received on a weekday. She selects a Saturday at random and records the number of telephone calls received by the garage in the first 4 hours.

(e) Write down the hypotheses for this test.

(1)

The manager found that there had been 40 telephone calls received by the garage in the first 4 hours.

(f) Carry out the test using a 5% level of significance.

(4)

(Total for question = 14 marks)

Q5.

During the morning, the number of cyclists passing a particular point on a cycle path in a 10-minute interval travelling eastbound can be modelled by a Poisson distribution with mean 8

The number of cyclists passing the same point in a 10-minute interval travelling westbound can be modelled by a Poisson distribution with mean 3

- (a) Suggest a model for the total number of cyclists passing the point on the cycle path in
 - a 10-minute interval, stating a necessary assumption.

(2)

Given that exactly 12 cyclists pass the point in a 10-minute interval,

(b) find the probability that at least 11 are travelling eastbound.

(3)

After some roadworks were completed, the total number of cyclists passing the point in a randomly selected 20-minute interval one morning is found to be 14

(c) Test, at the 5% level of significance, whether there is evidence of a decrease in the rate of cyclists passing the point. State your hypotheses clearly.

(3)

(Total for question = 8 marks)

Q6.

Andreia's secretary makes random errors in his work at an average rate of 1.7 errors every 100 words.

(a) Find the probability that the secretary makes fewer than 2 errors in the next 100-word piece of work.

Andreia asks the secretary to produce a 250-word article for a magazine.

(b) Find the probability that there are exactly 5 errors in this article.

(2)

(2)

Andreia offers the secretary a choice of one of two bonus schemes, based on a random sample of 40 pieces of work each consisting of 100 words.

In scheme **A** the secretary will receive the bonus if more than 10 of the 40 pieces of work contain no errors.

In scheme **B** the bonus is awarded if the total number of errors in all 40 pieces of work is fewer than 56.

(c) Showing your calculations clearly, explain which bonus scheme you would advise the secretary to choose.

(5)

Following the bonus scheme, Andreia randomly selects a single 500-word piece of work from

the secretary to test if there is any evidence that the secretary's rate of errors has decreased.

(d) Stating your hypotheses clearly and using a 5% level of significance, find the critical region for this test.

(4)

(Total for question = 13 marks)

Q7.

A company receives telephone calls at random at a mean rate of 2.5 per hour.

(a) Find the probability that the company receives

- (i) at least 4 telephone calls in the next hour,
- (ii) exactly 3 telephone calls in the next 15 minutes.

(b) Find, to the nearest minute, the maximum length of time the telephone can be left unattended so that the probability of missing a telephone call is less than 0.2

The company puts an advert in the local newspaper. The number of telephone calls received in a randomly selected 2 hour period after the paper is published is 10

(c) Test at the 5% level of significance whether or not the mean rate of telephone calls has increased. State your hypotheses clearly.

(5)

(5)

(3)

(Total for question = 13 marks)

Q8.

The number of customers entering Jeff's supermarket each morning follows a Poisson distribution.

Past information shows that customers enter at an average rate of 2 every 5 minutes.

Using this information,

- (a) (i) find the probability that exactly 26 customers enter Jeff's supermarket during a randomly selected 1-hour period one morning,
 - (ii) find the probability that at least 21 customers enter Jeff's supermarket during a randomly selected 1-hour period one morning.

(2)

(2)

A rival supermarket is opened nearby. Following its opening, the number of customers entering Jeff's supermarket over a randomly selected 40-minute period is found to be 10

(b) Test, at the 5% significance level, whether or not there is evidence of a decrease in the rate of customers entering Jeff's supermarket. State your hypotheses clearly.

(4)

A further randomly selected 20-minute period is observed and the hypothesis test is repeated.

Given that the true rate of customers entering Jeff's supermarket is now 1 every 5 minutes,

(c) calculate the probability of a Type II error.

(5) (Total for question = 13 marks) Q9.

Asha, Davinda and Jerry each have a bag containing a large number of counters, some of which are white and the rest are red.

Each person draws counters from their bag one at a time, notes the colour of the counter and returns it to their bag.

The probability of Asha getting a red counter on any one draw is 0.07

(a) Find the probability that Asha will draw at least 3 white counters before a red counter is drawn.

(2)

(b) Find the probability that Asha gets a red counter for the second time on her 9th draw.

(2)

(4)

The probability of Davinda getting a red counter on any one draw is p. Davinda draws counters until she gets n red counters. The random variable D is the number of counters Davinda draws.

Given that the mean and the standard deviation of *D* are 4400 and 660 respectively,

(c) find the value of *p*.

Jerry believes that his bag contains a smaller proportion of red counters than Asha's bag. To test his belief, Jerry draws counters from his bag until he gets a red counter. Jerry defines the random variable *J* to be the number of counters drawn up to and including the first red counter.

(d) Stating your hypotheses clearly and using a 10% level of significance, find the critical region for this test.

Jerry gets a red counter for the first time on his 34th draw.

(e) Giving a reason for your answer, state whether or not there is evidence that Jerry's bag contains a smaller proportion of red counters than Asha's bag.

(2)

(5)

Given that the probability of Jerry getting a red counter on any one draw is 0.011

(f) show that the power of the test is 0.702 to 3 significant figures.

(3)

(Total for question = 18 marks)

Q10.

Bacteria are randomly distributed in a river at a rate of 5 per litre of water. A new factory opens and a scientist claims it is polluting the river with bacteria. He takes a sample of 0.5 litres of water from the river near the factory and finds that it contains 7 bacteria. Stating your hypotheses clearly test, at the 5% level of significance, whether there is evidence that the level of pollution has increased.

(5)

(Total for question = 5 marks)

Mark Scheme – Hypothesis Testing

Q1.

Question	Sch	eme	Marks	AOs
(a)	$P(H \ge 2) = 0.1558$	awrt <u>0.156</u>	B1	1.1b
(b)	$H \sim Po(0.7)$ $G \sim Po(3)$			
	$Y = H + G \rightarrow Y \sim \text{Po}(3.7)$		M1	3.4
	$P(Y \le 3) = 0.494*$		A1cso*	1.1b
			(2)	
(c)	$K \sim B(6, 0.494)$		M1	3.3
	$P(K \ge 5) = 1 - P(K \le 4)$		M1	1.1b
	= 1 - 0.896			
	= 0.1039	awrt <u>0.104</u>	A1	1.1b
			(3)	
(d)	$H_0: \lambda = "3.7"$ $H_1: \lambda > "3.7"$		B1ft	2.5
	$J \sim Po(7.4)$		B1ft	1.1b
	Method 1	Method 2		
	$P(J \ge 14) = 1 - P(J \le 13)$	P(J≥12) = 0.0735	10	1
	= 1 - 0.9804	P(J ≥13) = 0.0391	MI	1.10
	= 0.0195	CR $J \ge 13$	A1	1.1b
	0.0195 < 0.05 or 14≥13 or 14 is in the critical region or 14 is significant or Reject H ₀ . There is evidence at the 5% level of significance that the number of heaters brought in total from the two supermarkets has increased			2.2b
			(5)	
			(11 n	narks)
	n and an	Notes		
(a)B1: awrt	0.156			
(b)Ml: For A1*cso:	combining distributions and use of Po(3 $P(Y \le 3) = 0.494$ we need to see P(.	(.7) $Y \le 3$) or P(Y < 4) allow different let	ters.	
(c) M1: Setti M1: Usin A1: awrt	ng up a new model B(6, 0.494) may be ng $1 - P(K \le 4)$ 0.104	implied by a correct answer or ${}^{6}C_{n}(0.4)$	494) ⁿ (0.50)6) ⁶⁻ⁿ
(d)B1: Both any v B1: Reali M1: writ	hypotheses correct using λ or μ . ft"3. words using that Po(2×"their 3.7") is to be using or using 1-P(J ≤ 13) or 1-P(J < 13)	7" from their 3.7 in part (b) and allow 2 red. This may be stated or used. 4)	×"their 3.7"	Ignore
or if Al: awrt Al: A ful	finding a CR for writing $P(J \ge 12) = 0$. 0.0195 or CR $J \ge 13$ or $J > 12$ ly correct solution and drawing a correct	0735 and $P(J \ge 13) = 0.0391$		

Q2.

Qu	Scheme	Marks	AOs
(a)	$W \sim Po(11.2)$ and $P(W19) = 1 - P(W_{,1}, 18)$ or suitable 3sf probs	M1	<u>3.4</u>
	P(W19) = 0.020776 awrt <u>0.021</u>	A1	1.1b
		(2)	
(b)	$[S = \# \text{ calls per day}, S \sim Po(0.4)] P(S > 1) = 0.061551 \text{ awrt } 0.0616$	B1	1.1b
× /	X~B(250, "0.061551")	M1	3.3
	$Y \sim Po($ "15.3879") [Accept Po(15.4) or better] <u>or</u> suitable 3sf probs	M1	3.4
	= 0.14751 awrt <u>0.148</u>	A1	1.1b
		(4)	
(c)	Ho: $\lambda = 16.8$ H1: $\lambda < 16.8$	B1	2.5
	$U \square$ Po(16.8)	B1	3.3
	$P(U_{,,}, 8) = 0.014$	M1	1.16
	[0.014 < 0.05 or there is sufficient evidence to reject Ho] There is sufficient evidence at the 5% level of significance that the <u>number of calls</u> received per day is <u>lower in winter</u>	A1	2.2b
	or rate of calls is lower in winter or less calls per day in winter (o.e.)	(4)	
(d)	$C \sim Po(0.4 \times n + 0.2 \times n) [= Po(0.6n)]$ or $D \sim B(n, e^{-0.6} \text{ or awrt } 0.549)$	M1	3.1b
	$e^{-0.6n} < 0.001$ or $-0.6n < \ln(0.001)$ or $n > 11.5$	M1	1.1b
	n = 12	A1	1.1b
		(3)	
(e)	The <u>rate of calls</u> per day is <u>constant</u> or the <u>number of calls</u> occurring in non-overlapping time <u>intervals</u> is <u>independent</u> . or <u>number of calls per</u> day is independent (o.e.)	B1 (1)	2.4
		To	tal 14

(a)	M1 A1	For using the model Po(11.2) implied by sight of: 0.02077 or 0.9889 or 0.9792 awrt 0.021
(b)	B1	awrt 0.0616
	1 st M1	Setting up a new model B(250, "0.0616") [condone B("0.0616", 250)]
	2nd M1	Seeing the model Po(their np) implied by sight of: 0.1475 or 0.89975 or 0.8524
	Al	awrt 0.148
SC		if no approximation used(and 1 st M1 not seen) an answer of awrt 0.140 could get B1M1M0A0
(c)	1 st B1	Both hypotheses correct using λ or μ and 16.8 or 0.4 [Accept their ans to 0.4×42]
	2 nd B1	Realising Po(16.8) needs to be used. Sight or use of, implied by correct prob or CR
	M1	For 0.014 or better (0.0141) or CR $X_{,,}$ 9 oe must be CR and not probability.
		[Allow CR X ,, 10 with probability $P(X ,, 10) = 0.054$ or better]
	A1	Indep of 1 st B1 (must see 2 nd B1 and M1 scored) for a correct inference in context
(d)	lstM1	Selecting a suitable model. Sight of Po(0.6n) or $B(n, e^{-0.6})$ or implied by $2^{nd} M1$
	2 nd M1	For a correct inequality or equality involving n [Condone slips in solving]
		Allow MR i.e. misread of 0.01 for 0.001 (or similar) to score M1M1A0
	Al	n = 12 cao [Correct answer with no incorrect working seen scores $3/3$]
(e)	B1	Allow equivalent statements. Underlined words required.

Q3.

Question	Sch	neme	Marks	AOs
(a)	$P(R \ge 23) = 0.8517$	awrt 0.852	B1	1.1b
			(1)	
(b)	$R \sim \text{Po}(28)$ $A \sim \text{Po}(16)$			
	$Y = R + A \rightarrow Y \sim \text{Po}(44)$		M1	3.4
	P(Y = 42) = 0.05866	awrt <u>0.0587</u>	A1	1.1b
			(2)	
(c)	P(less than 80 passengers chec	ked in) = 0.183	B1	1.1b
1964 - C II	$X \sim B(150, "0.183")$ mean = 1	50×"0.183" [= 27.48]	M1	3.3
	$T \sim \text{Po}("27.4")$ and $1 - \text{P}(T \le 2)$	24)	M1	3.4
		= 1 - 0.2922 awrt <u>0.708</u>	A1	2.1
			(4)	
(d)	H0: $\lambda = 84$ H1: $\lambda < 84$ (allow	28 for both)	B1	2.5
-)	$J \sim Po(84)$		M1	1.1b
	Method 1	Method 2		
	$P(J \le 67) = 0.03[246]$	CR $J \le 68$	A1	1.1b
	$0.03 < 0.05$ or $67 \le 68$ or 67 is in the critical region or 67 is significant or Reject H ₀ . There is evidence at the 5% level of significance that the system is working slower than normal.		Alcao	2.2b
			(4)	
			(11 1	narks)

Not	es:	
(a)	B1:	awrt 0.852
(b)	M1:	For combining distributions and sight or use of $Po(28 + 16[=44])$ Condone $28 + 16 = 42$ followed by awrt 0.061
	A1:	awrt 0.0587
(c)	B1:	awrt 0.18 may be implied by awrt 27.5 for the mean
	M1:	Setting up a new model B(150, "0.183") and using np to calculate the mean.
	M1:	Using the model Po(their np) and using or writing $1 - P(T \le 24)$
	A1:	awrt 0.708
(d)	B1:	Both hypotheses correct using λ or μ . Allow 28 instead of 84
	M1:	Writing or using Po(84)
	A1:	awrt 0.03 or $J \le 68$
	A1cao	dep on previous M mark awarded and a probability found. Drawing a correct inference in context – need the word slower or support for Alex's complaint

Q4.

Question	Scheme	Marks	AOs
(a)	$C \sim \text{Poisson}(3.75)$	M1	3.3
	$P(C \ge 2) = 0.88829^*$. awrt 0.8883*	A1*cso	1.1b
		(2)	
(b)	<i>D</i> ~ B(6, "0.888")	M1	3.3
	$P(D \le 3) = 0.02163$ awrt $0.0216 / 0.0215$	A1	1.1b
uestion (a) (b) (c) (d) (e) (f)		(2)	
(c)	P(C=8) = 0.02281	B1	1.1b
	$E \sim B(150, "0.02281") \implies mean = 150 \times "0.02281" [= 3.4215]$	M1	3.3
	$E \sim \operatorname{Po}("3.4215") \Longrightarrow \operatorname{P}(E \ge 3) = [1 - \operatorname{P}(E \le 2)]$	M1	3.4
	= 0.664 *	A1*cso	2.1
		(4)	
(d)	The number of periods is large and the probability of receiving 8 calls	B1	2.4
202020	in 30-minutes is small.	(1)	
(e)	H ₀ : $\lambda = 30$ H ₁ : $\lambda \neq 30$	B1	2.5
41124		(1)	
(f)	$X \sim Po(30)$	B1	3.3
	$P(X \ge 40) = 1 - P(X \le 39)$	M1	1.1b
	= 0.04625	A1	1.1b
	0.046 > 0.025 or no evidence to reject H ₀ There is insufficient evidence at the 5% level of significance that the number of calls received is different on a Saturday	A1 (4)	2.2b

Note	es:		
(a)	M1:	For calculating the mean and setting up the correct model. Poisson may be implied by 0.8883 or better or 1 – awrt 0.1117 but must see 3.75 or 1.25×3	
9 	Al*cso:	$P(C \ge 2) = awrt \ 0.8883 \text{ or } 1 - awrt \ 0.1117 = 0.888 \text{ Must see } P(C \ge 2) \text{ oe}$	
(b)	M1:	Setting up a new model using their answer to (a) Implied by correct answer	
	Al:	awrt 0.0216 or awrt 0.0215	
(c)	B1:	awrt 0.0228	
5 4100-20 2	M1:	Setting up a new model B(150, "0.0228") and using np (working seen if incorrect)	
	M1 :	Using the model Po(their np) Must be clearly stated and $P(E \ge 3)$ oe seen	
	Al*cso:	Only award if the previous 3 marks have been awarded and 0.664 is stated. NB Use of B(150 0.02281) gives 0.668	
(d)	B1:	Idea that $n = 150$ (number of periods selected) is large and p is 0.022 (exactly 8 calls in the time period) is small.	
(e)	B1:	Both hypotheses correct using λ or μ allow 1.25 or 3.75	
(f)	B1 :	Realising Po(30) needs to be used. NB Implied by correct answer or $P(X = 40) = 0.0139$	
	M1 :	Writing or using $1-P(X \leq 39)$ or if CR method for $P(X \geq 42) = 0.0221$	
	Al:	0.04 or awrt 0.05 or CR $X \ge 42$ oe must be CR and not probability	
	A1:	A fully correct solution and correct inference in context. Calls required If put this prob but then give Cr X >= 40 M1A1A0	

Q5.

Question	Scheme	Marks	AOs
(a)	$[X \sim Po(8) \qquad Y \sim Po(3)]$ [X + Y ~] Po (11)	B1	3.3
	The number of cyclists travelling eastbound is independent of the number of cyclists travelling westbound.	B1	3.5b
		(2)	
(b)	$\frac{P(X = 11) \times P(Y = 1) + P(X = 12) \times P(Y = 0)}{P(X + Y = 12)}$	M1 M1	2.1 1.1b
	= 0.1204 awrt <u>0.120</u>	A1 (3)	1.1b
(c)	H ₀ : $\lambda = 11$ or $\mu = 22$ H ₁ : $\lambda < 11$ or $\mu < 22$	B1	2.5
	$(E + W) \sim Po(22) P(E + W \le 14)$ [= awrt 0.048]	M1	3.3
	(Reject H ₀) There is evidence that the rate(oe) of cyclists(oe) has decreased.	A1	2.2b
		(3)	
			8 mark

	Notes			
(a)	B1: Correct model B1: Correct modelling assumption in context (must mention cyclists oe)			
(b)	M1: Attempt at ratio expression with denominator $P(X + Y = 12)$ (may see 0.10942)M1: Probability expression for numerator (may be implied by 0.01317)A1: awrt 0.120 accept 0.12 with correct working seenAlternative use of binomial:M1: Use of $C \sim B(12, \frac{8}{11})$ M1: $P(C \ge 11) = 1 - P(C \le 10)$ A1: awrt 0.120 accept 0.12 with correct working seen			
(c)	B1: Both hypotheses with λ or μ M1: Using Po(22) to calculate P($E + W \le 14$) A1: A fully correct conclusion with awrt 0.048 or CR: $E + W \le 14$ drawing an inference in context.			

Q6.

	Scheme	Marks	AO
(a)	[X = number of errors in 100-word piece] $X \sim Po(1.7)$	M1	3.3
	$P(X \le 2) = P(X \le 1) = 0.49324$ awrt <u>0.493</u>	A1	1.1b
		(2)	
(b)	$[R = \text{number of errors in the article}] R \sim Po(4.25)$	M1	3.3
	P(R = 5) = 0.16482 awrt <u>0.165</u>	A1	1.1b
		(2)	income a
(C)	Scheme A: Let $A \sim B(40, e^{-1.7})$ or $B(40, 0.18268)$	M1	3.3
	$P(A > 10) = 1 - P(A \le 10)$	M1	1.1b
	= 0.0995591 awrt 0.0996	A1	1.1b
	Scheme B : Let $B \sim Po(40 \times 1.7)$ or Po(68)	M1	3.3
	$P(B \le 56) = P(B \le 55) = 0.061133$	·	
	So choose scheme A (since the probability of a bonus is greater)	A1	2.4
		(5)	
(d)	$H_0: \lambda = 1.7$ (or $\mu = 8.5$) $H_1: \lambda < 1.7$ (or $\mu < 8.5$)	B1	2.5
	$[E = no. of errors in the piece of work] E \sim Po(8.5)$	M1	3.3
	$P(E \le 3) = 0.0301$ or $P(E \le 4) = 0.0744$	A1	1.1b
	So critical region is $E \leq 3$	A1	2.2a
		(4)	
		(13 marks)	

Notes

(a)	M1 for selecting the correct Poisson distribution
	A1 for awrt 0.493
(b)	M1 for selecting the correct Poisson distribution
	A1 for awrt 0.165
(c)	1 st M1 for choosing a correct model for scheme A i.e. B(40, P($X=0$)), where $X \sim Po(1.7)$
0.088.00	Allow use of awrt 0.183 for $P(X = 0) \dots 0.183$ gives answer awrt 0.101
	Condone B(0.183, 40) (o.e.) if it leads to a prob rounding to range (0.09~0.1) otherwise M0 2^{nd} M1 for $1 - P(A \leq 10)$
	1st A1 for awrt 0.0996 [NB use of 0.183 will give awrt 0.101 and scores M1M1A0]
	3^{rd} M1 for selecting a correct Poisson model for scheme B i.e. Po(40 × 1.7) or better
	2nd A1 for a correct conclusion based on comparing two probs: awrt 0.1 vs 0.061 or better
	So can allow 0.1 > 0.061 leading to choosing A [Probably scores M1M1A0M1A1]
NB	[Normal approx.(not on spec) leading to 0.06477 might score 3 rd M1 if Po(68) seen but 2 rd A0]
(d)	B1 for both hypotheses in terms of λ or μ (can be interchanged)
1.5-4.5 91.65	M1 for selecting Po(8.5) (sight of or use of e.g. may be implied by 1st A1)
	1 st A1 for some evidence of correct use of Po(8.5) i.e. either of these probs (2dp or better) May be implied by a correct critical region
	2^{nd} A1 for a correct critical region. Allow $E < 4$ and allow any letter for E.
	<u>Two</u> different regions (e.g. from 2 tail test) is 2 nd A0
SC	Use of binomial throughout: (with hypotheses $H_0: p = 0.017$ and $H_1: p < 0.017$ in (d))
	Scores 0 in (a) 0 in (b) possibly just 2 nd M1 in (c) But allow all 4 marks in (d): B1 hypotheses,
	M1 for $Y \sim B(500, 0.017)$, 1 st A1 for $P(Y \le 3) = 0.02913$ or $P(Y \le 4) = 0.072662^{nd}$ A1 $Y \le 3$
	Allow probs to be to 2dp or better so 0.03 and 0.07 as in main scheme.

Q7.

(a)(i) $\frac{X \sim Po(2.5)}{P(X \ge 4) = 1 - P(X \le 3)}$ $\frac{X \sim Po(2.5)}{P(X \ge 4) = 1 - P(X \le 3)}$ $= 1 - 0.7576$ $= 0.2424$ Al avrt 0.242 $= 0.2424$ Al avrt 0.242 Al avrt 0.242 $= 0.2424$ Al avrt 0.242 Al avrt 0.218 Al avrt 0.201 Al	Question Number	Sch	neme	Marks
P(X \ge 4) = 1 - P(X \le 3) = 0.7576MI writing or using $1 - P(X \le 3)$ implied by awrt 0.242MI(ii) $x \sim Po(0.625)$ B1 Using Po(0.625)B1 $P(X = 3) = \frac{e^{-4.625} 0.625^3}{3!}$ B1 Using Po(0.625)B1 $P(X = 3) = \frac{e^{-4.625} 0.625^3}{3!}$ $\frac{e^{-4.3}}{3!}$ or $P(X \le 3) - P(X \le 2)$ - may be implied by awrt 0.0218A1 $= 0.02177$ A1 awrt 0.0218A1 $e^{-2.57} > 0.8$ $e^{-2.57} = 0.8 e^{-3} > 0.8 or byawrt 5.3 for 0.089MIIe^{-2.57} > 0.8e^{-2.57} = 0.8A1 awrt 0.0218e^{-2.57} > 0.8e^{-3} = 0.8 r e^{-3} > 0.8 or byawrt 5.3 for 0.089 Do not allowor by awrt 5.3 for 0.089 Do not allowor e^{-3} = 0.8A1 cso(c)He: \lambda = 2.5 (\lambda = 5)B1 both hypothese using \lambda or \mu = allowawarded. Accept 5 or t = 5 or t < 5(3)(c)He: \lambda = 2.5 (\lambda = 5)B1 both hypothese using \lambda or \mu = allowby a correctz = 1 - 0.9682B1(c)He: \lambda = 2.5 (\lambda = 5)B1 both hypothese using \lambda or \mu < 2.10 or\chi > 9(c)He: \lambda = $	(a)(i)	$X \sim Po(2.5)$	[
Image: transmission of the constraint of the cons		$P(X \ge 4) = 1 - P(X \le 3)$ = 1 - 0.7576	M1 writing or using $1 - P(X \le 3)$ implied by awrt 0.242	мі
(ii) $X \sim Po(0.625)$ B1Using $Po(0.625)$ B1 $P(X = 3) = \frac{e^{-0.635} 0.625^3}{3!}$ HI finding $P(X = 3)$ with any $\lambda \in g$ HI $P(X = 3) = \frac{e^{-0.632} 0.625^3}{3!}$ HI finding $P(X = 3)$ with any $\lambda \in g$ HI $P(X = 0) = 0.2177$ A1 awrt 0.0218A1 $P(X = 0) > 0.8$ H' MI for writing or using $1 - P(X = 0) > 0.8$ oe allow use of = instead of $P \circ r < May$ be implied by $e^{-1} = 0.8$ or $e^{-3} > 0.8$ or by awrt 5.36 or 0.089 HI $e^{-2.5r} > 0.8$ $e^{-4} > 0.8$ using any λ . May be implied by or by awrt 5.36 or 0.089 Do not allow $e^{-3} = 0.8$ HI $t < 0.089$ hours = 5.36 mins $e^{-3} > 0.8$ using any λ . May be implied by 		= 0.2424	A1 awrt 0.242	41
$\frac{X + P(Q, 0, 0, 2)}{P(X = 3)} = \frac{e^{-0.623} 0.625^3}{3!}$ $\frac{P(X = 3) = P(X = 0) = 0.8$ $\frac{P(X = 0) > 0.8}{P(X = 0) > 0.8}$ $\frac{P(X = 0) > 0.8}{1 + P(X = 0) < 0.2 \text{ myr}}$ $\frac{P(X = 0) > 0.8}{P(X = 0) > 0.8}$ $\frac{P(X = 0) > 0.8}{1 + P(X = 0) < 0.2 \text{ myr}}$ $\frac{P(X = 0) > 0.8}{P(X = 0) > 0.8}$ $\frac{P(X = 0) > 0.8}{P(X = 0) > 0.8 \text{ mplied by avrt}}$ $\frac{P(X = 0) > 0.8}{P(X = 0) > 0.8}$ $\frac{P(X = 0) > 0.8}{P(X = 0) > 0.8}$ $\frac{P(X = 0) > 0.8}{P(X = 0) > 0.8}$ $\frac{P(X = 0) > 0.8}{P(X = 0) > 0.8}$ $\frac{P(X = 0) > 0.8}{P(X = 0) > 0.8}$ $\frac{P(X = 0) > 0.8}{P(X = 0) > 0.8}$ $\frac{P(X = 0) > 0.8}{P(X = 0) > 0.8}$ $\frac{P(X = 0) > 0.8}{P(X = 0) > 0.8}$ $\frac{P(X = 0) > 0.8}{P(X = 0) > 0.8}$ $\frac{P(X = 0) > 0.8}{P(X = 0) > 0.8}$ $\frac{P(X = 0) > 0.8}{P(X = 0) > 0.8}$ $\frac{P(X = 0) > 0.8}{P(X = 0) > 0.8}$ $\frac{P(X = 0) > 0.8}{P(X = 0) > 0.8}$ $\frac{P(X = 0) > 0.8}{P(X = 0) = 1 - P(X \le 9)}$ $\frac{P(X = 0) = 1 - P(X \le 9)}{P(X \ge 10) = 1 - P(X \le 9)}$ $\frac{P(X \ge 10) = 1 - P(X \le 9)}{P(X \ge 10) = 1 - P(X \le 9)}$ $\frac{P(X \ge 10) = 1 - P(X \le 9)}{P(X \ge 10) = 1 - P(X \le 9)}$ $\frac{P(X \ge 10) = 1 - P(X \le 9)}{P(X \ge 10) = 1 - P(X \le 9)}$ $\frac{P(X \ge 10) = 1 - P(X \le 9)}{P(X \ge 10) = 1 - P(X \le 9)}$ $\frac{P(X \ge 10) = 1 - P(X \le 9)}{P(X \ge 10) = 1 - P(X \le 9)}$ $\frac{P(X \ge 10) = 1 - P(X \le 9)}{P(X \ge 10) = 1 - P(X \le 9)}$ $\frac{P(X \ge 10) = 1 - P(X \le 9)}{P(X \ge 10) = 1 - P(X \le 9)}$ $\frac{P(X \ge 10) = 1 - P(X \le 9)}{P(X \ge 10) = 1 - P(X \le 9)}$ $\frac{P(X \ge 10) = 1 - P(X \le 9)}{P(X \ge 10) = 1 - P(X \le 9)}$ $\frac{P(X \ge 10) = 1 - P(X \le 9)}{P(X \ge 10) = 1 - P(X \le 9)}$ $\frac{P(X \ge 10) = 1 - P(X \le 9)}{P(X \ge 10) = 1 - P(X \le 9)}$ $\frac{P(X \ge 10) = 1 - P(X \le 9)}{P(X \ge 10) = 1 - P(X \le 9)}$ $\frac{P(X \ge 10) = 1 - P(X \le 9)}{P(X \ge 10) = 1 - P(X \le 9)}$ $\frac{P(X \ge 10) = 1 - P(X \le 9)}{P(X \ge 10) = 1 - P(X \le 9)}$ $\frac{P(X \ge 10) = 1 - P(X \le 9)}{P(X \ge 10) = 1 - P(X \le 9)}$ $\frac{P(X \ge 10) = 1 - P(X \le 9)}{P(X \ge 10) = 1 - P(X \le 9)}$ $P(X \ge 10) = 1 - P(X \le 9$	(ii)	- 0.2424 VovDo(0.625)	Bl Using Po(0.625)	R1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$P(X=3) = \frac{e^{-0.625} 0.625^3}{3!}$	M finding $P(X=3)$ with any λ e.g $\frac{e^{-\lambda}\lambda^3}{3!} \text{ or } P(X\leq 3) - P(X\leq 2) - \text{may be}$ implied by awrt 0.0218	MI
(b) $1 \cdot P(X=0) < 0.2$ $P(X=0) > 0.8$ 1^{4t} M1 for writing or using $1 - P(X=0) < 0.2$ or $P(X=0) > 0.8$ oe allow use of = instead of $> or < May$ be implied by $e^{-\lambda} = 0.8$ or $e^{-\lambda} > 0.8$ or by awrt 5.36 or 0.089M1 $e^{-2.5t} > 0.8$ 2^{-4t} M1 writing an inequality of the form $e^{-\lambda} > 0.8$ using any λ . May be implied by 		= 0.02177	A1 awrt 0.0218	A1 (5)
$e^{-2.5t} > 0.8$ 2^{ud} MI writing an inequality of the form $e^{-\lambda} > 0.8$ using any λ . May be implied by or by awrt 5.36 or 0.089 Do not allow $e^{-\lambda} = 0.8$ All so 0.089 Do not allow $e^{-\lambda} = 0.8$ All so awarded. Accept 5 or $t = 5$ or $t < 5$ All so (3)(c)Ho: $\lambda = 2.5$ ($\lambda = 5$) Hi: $\lambda > 2.5$ ($\lambda > 5$)B1 both hypotheses using λ or μ - allow 5 or 2.5 and it must be clear which is Ho and which is H1B1P(X \ge 10) = 1 - P(X \le 9)1 st MI writing or using Po(5) and $1 - P(X \le 9)$ May be implied by a correct CR. Do not allow for writing $P(X \ge 10)$ MI= 0.03181 st MI awrt 0.0318. Allow CR X \ge 10 or $X \ge 9$ A1Sufficient evidence to reject H0, Accept H1, significant. 10 does lie in the Critical region.2 ^{ud} MI dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non- contextual statements). If their Prob/CR compared with 0.05/10 (0.95 if using 0.968)MIdThere is sufficient evidence that the mean rate of telephone calls has increased (oe)2 ^{ud} A1 A correct contextual statement must include the word calls and the idea the rate has increased. (do not allow "it has changed" on its own oe). All previous marks must be awarded for a correct contextual statement on its own provided previous marks have been awardedAlcso	(b)	1 - P(X=0) < 0.2 P(X=0) > 0.8	1 st M1 for writing or using 1 - P(X=0) < 0.2 or P(X=0) > 0.8 oe allow use of = instead of > or <. May be implied by $e^{-\lambda} = 0.8$ or $e^{-\lambda} > 0.8$ or by awrt 5.36 or 0.089	MI
$t < 0.089$ hours = 5.36 mins $e^{-\lambda} = 0.8$ Alcso both the method marks must be awarded. Accept 5 or $t = 5$ or $t < 5$ Alcso(c)H ₀ : $\lambda = 2.5$ ($\lambda = 5$) H ₁ : $\lambda > 2.5$ ($\lambda > 5$)B1 both hypotheses using λ or μ - allow 5 or 2.5 and it must be clear which is H ₀ and which is H ₁ B1 $P(X \ge 10) = 1 - P(X \le 9)$ $= 1 - 0.9682$ I ¹⁴ MI writing or using Po(5) and $1 - P(X \le 10)$ M1 $= 0.0318$ I ¹⁴ AI awrt 0.0318. Allow CR $X \ge 10$ or $X > 9$ A1Sufficient evidence to reject H ₀ . Accept H ₁ , significant. 10 does lie in the Critical region.P ¹⁴ AI awrt 0.0518. Allow CR $X \ge 10$ or $X > 9$ M1dThere is sufficient evidence that the mean rate of telephone calls has increased (oe)P ²⁴ AI a correct contextual statement must include the word calls and the idea the rash increased. (do not allow "it has changed" on its own oe). All previous marks must be awarded for a correct contextual 		$e^{-2.5t} > 0.8$	2nd M1 writing an inequality of the form $e^{-\lambda} > 0.8$ using any λ . May be implied by or by awrt 5.36 or 0.089 Do not allow	MI
$[t <] 5 mins$ Al cso both the method marks must be awarded. Accept 5 or $t < 5$ Al cso (3)(c)H ₀ : $\lambda = 2.5$ ($\lambda = 5$) H ₁ : $\lambda > 2.5$ ($\lambda = 5$)B1 both hypotheses using λ or μ - allow 5 or 2.5 and it must be clear which is H0 and which is H1B1 $P(X \ge 10) = 1 - P(X \le 9)$ 1 st M1 writing or using Po(5) and $1 - P(X \le 9)$ May be implied by a correct CR. Do not allow for writing $P(X \ge 10)$ M1 $= 0.0318$ 1 st A1 awrt 0.0318. Allow CR X \ge 10 or X > 9A1Sufficient evidence to reject H0, Accept H1, significant. 10 does lie in the Critical region.2 nd M1 dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non- contextual statements). ft their Prob/CR compared with 0.05/10 (0.95 if using 0.968)M1dThere is sufficient evidence that the mean rate of telephone calls has increased (oe)2 nd A1 A correct contextual statement must include the word calls and the idea the rate has increased. (do not allow "it has changed" on its own oe). All previous marks must be awarded for this mark to be awarded. M1A1 is awarded for a correct contextual statement on its own provided previous marks have been awarded(5)		t < 0.089 hours = 5.36 mins	$e^{-\lambda}=0.8$	
(c)H_0: $\lambda = 2.5$ ($\lambda = 5$) H_1: $\lambda > 2.5$ ($\lambda > 5$)B1 both hypotheses using λ or μ - allow 5 or 2.5 and it must be clear which is H0 and which is H1B1 $P(X \ge 10) = 1 - P(X \le 9)$ $= 1 - 0.9682$ I* MI writing or using Po(5) and $1 - P(X \le 9)$ May be implied by a correct CR. Do not allow for writing $P(X \ge 10)$ M1 $= 0.0318$ I* A1 awrt 0.0318. Allow CR $X \ge 10$ or $X > 9$ A1Sufficient evidence to reject H0, Accept H1, significant. 10 does lie in the Critical region.2* MI dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non- contextual statements). If their Prob/CR compared with 0.05/10 (0.95 if using 0.968)M1dThere is sufficient evidence that the mean rate of telephone calls has increased (oe)2* A1 A correct contextual statement must include the word calls and the idea the rate has increased. (do not allow "it has changed" on its own oe). All previous marks must be awarded for a correct contextual statement on its own provided previous marks have been awardedA1 cso		[t <] 5 mins	Alcso both the method marks must be awarded. Accept 5 or $t = 5$ or $t < 5$	Alcso (3)
(c)H_0: $\lambda = 2.5$ ($\lambda = 5$) H_1: $\lambda > 2.5$ ($\lambda > 5$)B1 both hypotheses using λ or μ - allow 5 or 2.5 and it must be clear which is H_0 and which is H_1B1 $P(X \ge 10) = 1 - P(X \le 9)$ $= 1 - 0.9682$ 1^{st} MI writing or using Po(5) and $1 - P(X \le 9)$ May be implied by a correct CR. Do not allow for writing $P(X \ge 10)$ M1 $= 1 - 0.9682$ 1^{st} A1 awrt 0.0318. Allow CR $X \ge 10$ or 				
and which is H_1 $P(X \ge 10) = 1 - P(X \le 9)$ I^{it} MI writing or using Po(5) and $1 - P(X \le 9)$ May be implied by a correct CR. Do not allow for writing $P(X \ge 10)$ MI $= 0.0318$ I^{it} A1 awrt 0.0318. Allow CR $X \ge 10$ or $X > 9$ A1Sufficient evidence to reject H0, Accept H1, significant. 10 does lie in the Critical region. I^{it} A1 awrt 0.968MIdThere is sufficient evidence that the mean rate of telephone calls has increased (oe) 2^{id} A1 correct contextual statement must include the word calls and the idea the rate has increased. (do not allow "it has changed" on its own oe). All previous marks must be awarded for this mark to be awarded. MIA1 is awarded for a correct contextual statement on its own provided previous marks have been awardedA1 cso	(c)	$H_0: \lambda = 2.5 (\lambda = 5)$ $H_1: \lambda > 2.5 (\lambda > 5)$	B1 both hypotheses using λ or μ - allow 5 or 2.5 and it must be clear which is H ₀	B1
$= 1 - 0.9682$ $1 - P(X \le 9)$ May be implied by a correct CR. Do not allow for writing $P(X \ge 10)$ $= 0.0318$ 1^{st} A1 awrt 0.0318. Allow CR $X \ge 10$ or $X > 9$ NB allow M1A1 if not using CR route for $P(X \le 9) = awrt 0.968$ A1Sufficient evidence to reject H0, Accept H1, significant. 10 does lie in the Critical region. 2^{nd} M1 dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non- contextual statements). It their Prob/CR compared with 0.05/10 (0.95 if using 0.968)M1dThere is sufficient evidence that the mean rate of telephone calls has increased (oe) 2^{nd} A1 A correct contextual statement must include the word calls and the idea the rate has increased. (do not allow "it has changed" on its own oe). All previous marks must be awarded for a correct contextual statement on its own provided previous marks have been awardedAlcso		$P(X \ge 10) = 1 - P(X \le 9)$	and which is H ₁ 1 st M1 writing or using Po(5) and	Ml
$= 0.0318$ 1st AI awrt 0.0318. Allow CR $X \ge 10$ or $X > 9$ AINB allow MIA1 if not using CR route for $P(X \le 9) = awrt 0.968$ Sufficient evidence to reject H0, Accept H1, significant. 10 does lie in the Critical 		= 1 - 0.9682	$1 - P(X \le 9)$ May be implied by a correct CR. Do not allow for writing $P(X \ge 10)$	
NB allow M1A1 if not using CR route for $P(X \le 9) = awrt 0.968$ M1dSufficient evidence to reject H0, Accept H1, significant. 10 does lie in the Critical region. 2^{nd} M1 dependent on previous M being 		= 0.0318	1 st A1 awrt 0.0318. Allow CR $X \ge 10$ or $X > 9$	Al
Sufficient evidence to reject H0, Accept H1, significant. 10 does lie in the Critical region. 2nd M1 dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non- contextual statements). If their Prob/CR compared with 0.05/10 (0.95 if using 0.968) M1d There is sufficient evidence that the mean rate of telephone calls has increased (oe) 2nd A1 A correct contextual statement must include the word calls and the idea the rate has increased. (do not allow "it has changed" on its own oe). All previous marks must be awarded for a correct contextual statement on its own provided previous marks have been awarded A1cso			NB allow M1A1 if not using CR route for $P(X \le 9) = awrt 0.968$	
There is sufficient evidence that the mean rate of telephone calls has increased (oe) 2nd A1 A correct contextual statement must include the word calls and the idea the rate has increased. (do not allow "it has changed" on its own oe). All previous marks must be awarded for this mark to be awarded. A1 cso M1A1 is awarded for a correct contextual statement on its own provided previous marks have been awarded (5)		Sufficient evidence to reject H ₀ , Accept H ₁ , significant. 10 does lie in the Critical region.	2 nd M1 dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non- contextual statements). ft their Prob/CR compared with 0.05/10 (0.95 if using 0.968)	Mld
marks have been awarded (5)		There is sufficient evidence that the mean rate of telephone calls has increased (oe)	2 nd A1 A correct contextual statement must include the word calls and the idea the rate has increased. (do not allow "it has changed" on its own oe). All previous marks must be awarded for this mark to be awarded. M1A1 is awarded for a correct contextual statement on its own provided previous	Alcso
	0 0		marks have been awalded	(5)

Q8.

Question	Scheme	Marks	AOs
(a)(i)	<i>X</i> ~ Po (24)	B1	3.4
	P(X=26) = 0.071912 awrt <u>0.0719</u>	B1	1.1b
		(2)	
(ii)	$P(X \ge 21) = 1 - P(X \le 20) [= 1 - 0.24263]$	M1	3.4
	= 0.75736 awrt <u>0.757</u>	A1	1.1b
		(2)	
(b)	$H_0: \lambda = 2$ [$\mu = 16$] $H_1: \lambda < 2$ [$\mu < 16$]	B1	2.5
	$P(Y \le 10 Y \sim Po(16)) = 0.077396$ awrt <u>0.0774</u>	B1	1.1b
	Not significant / Do not reject H_0 / 10 is not in the CR	M1	1.1b
	There is <u>not</u> sufficient evidence to suggest a decrease/change in the rate of <u>customers</u> entering Jeff's supermarket.	A1	2.2b
		(4)	
(c)	Use of Po(8) to attempt critical region	M1	2.1
	Critical region is $Y \le 3/H_0$ is not rejected when $Y \ge 4$	A1	1.1b
	True distribution is $W \sim Po(4)$	B1	2.1
	$P(W \ge 4 W \sim Po(4)) = 1 - P(W \le 3) [= 1 - 0.43347]$	M1	1.1b
	=0.56652 awrt <u>0.567</u>	A1	1.1b
		(5)	

	Notes
(a)(i) (ii)	B1: For realising the distribution is Po(24) (May be seen or implied in part (ii)) B1: awrt 0.0719 M1: Writing or using $1 - P(X \le 20)$ A1: awrt 0.757
(b)	 B1: Both hypotheses correct (must use μ or λ) B1: awrt 0.0774 Allow awrt 0.08 from a correct probability statement. allow CR: X≤9 M1: Correct non-contextual conclusion (may be implied by correct contextual conclusion). Allow a f.t. comparison of 'their p' with 0.05 (Ignore any contradictory contextual comments for this mark) A1: A fully correct solution drawing a correct inference in context with all previous marks in (b) scored.
(c)	M1: Use of Po(8) to attempt critical region $[P(Y \le 3)=0.0423 P(Y \le 4)=0.0996]$ A1: Finding critical region for the test $Y \le 3$ which must come from Po(8). B1: Identifying the need to use Po(4) as the true distribution. Allow Po(4) seen or used for this mark. M1: Writing or using $P(W \ge `4`)$ or $1 - P(W \le `3`)$ from Po(4). Allow f.t. on their identified CR but must be using Po(4) A1: awrt 0.567

Q9.

Question	Scheme	Marks	AOs
(a)	P(at least 3 whites) = $(1-0.07)^3$		
	or $1 - 0.07 - 0.93 \times 0.07 - 0.93^2 \times 0.07$	MI	1.16
	= 0.8043 awrt 0.804	A1	1.1b
		(2)	
(b)	P(2nd red on 9 th draw) = $\binom{8}{1}$ 0.93 ⁷ × 0.07 ²	M1	3.3
	= 0.02358 awrt 0.0236	A1	1.18
		(2)	
(c)	$\frac{n}{2} = 4400$ and $\frac{n(1-p)}{2} = 660^2$	M1	3.1b
	p p^2 p^2	A1	1.1b
	1 - p = 99 p oe	M1	1.1b
	<i>p</i> = 0.01	A1	1.16
		(4)	
(d)	H ₀ : $p = 0.07$ H ₁ : $p < 0.07$	B1	2.5
	J~Geo(0.07)	M1	3.3
	$P(J \ge c) < 0.1 \Longrightarrow (1 - 0.07)^{c-1} < 0.1$	M1	3.4
	$c-1 > \frac{\log 0.1}{\log 0.93}$	M1	1.16
	$c > 32.72 \therefore CR J \ge 33$	A1	1.1b
		(5)	
(e)	34 is in the Critical region	M1	1.1b
	There is evidence to suggest that Jerry's bag contains a smaller proportion of red counters than Asha's bag.	A1	2.2b
		(2)	
(f)	Power of test = $P(J \ge 33 p = 0.011)$	M1	2.1
	$= (1 - 0.011)^{32}$ oe	M1	1.1b
	= 0.70 <mark>1</mark> 9*	A1*	1.1b
		(3)	
		(18 m	narks

Note	es:		
(a)	M1 :	A correct method to find $P(X \ge 3)$	
	Al:	awrt 0.804	
(b)	M1 :	For selecting the appropriate model negative binomial or binomial with an extra trial	
	Al:	awrt 0.0236	
(c)	M1 :	Forming an equation for the mean and variance. At least one correct.	
	Al:	Both equations correct	
		Allow M1 A1 if both equations correct with the same number subst for n	
	M1:	Solving the 2 equations leading to $1-p=99p$ or Allow $p-p^2=99p^2$ ft their	
		4400 and 660 Allow $1 - p = 0.15p$	
	Al:	0.01	
(d)	M1 :	Both hypotheses correct using correct notation allow eg $p > 0.93$	
	M1 :	Realising the need to use Geo(0.07) ft their Hypotheses	
	M1:	Using the model to find $P(J \ge c)$ Condone $(1-0.07)^c < 0.1$ ft their $0.07 \ne 0.93$	
		ALT $P(J \ge 32) = 0.1[054]$ or $P(J \ge 33) = 0.09[8]$ Implied by correct CR	
	M1:	For a valid method to solve the inequality or $P(J \ge 32) = 0.1[054]$ and	
		$P(J \ge 33) = 0.09[81]$ Implied by correct CR	
	Al:	Correct CR(any letter) A0 if given as a probability statement. Must be integer	
(e)	M1 :	Comparing 34 with their CR eg $34 > 33$ $34 \ge 33$ or $P(J \ge 34) = 0.09[12]$	
	Al:	Fully correct conclusion in context. Allow Jerry's belief is true. Allow probability for proportion	
(f)	M1 :	Realising they need to find P(their CR in (d)) Allow $1-P(J \leq 32)$	
	M1:	For a Correct method. Allow $1 - 0.2981$ May be implied by 0.7019 If the CR is incorrect $(1-0.011)^{"CR"-1}$ or $1 - \{1-(1-0.011)^{"CR"-1}\}$ must be seen	
	A1*:	Only award if both method marks awarded.	

Q10.

Question	Sc	heme	Marks	AOs
	$H_0: λ = 5 (λ = 2.5)$ $H_1: λ >$	5 (λ > 2.5)	B1	2.5
	X~Po (2.5)		B1	3.3
	Method 1	Method 2		5
	$ P(X \ge 7) = 1 - P(X \le 6) $ $= 1 - 0.9858 $	$P(X \ge 5) = 0.1088$ $P(X \ge 6) = 0.042$	M1	1.1b
	= 0.0142	$\operatorname{CR} X \ge 6$	A1	1.1b
	$0.0142 < 0.05$ $7 \ge 6$ or 7 is in Reject H ₀ . There is evidence at level of pollution has increased <u>or</u> There is evidence to support th	in critical region or 7 is significant the 5% significance level that the l. e scientists claim is justified	Alcso	2.2b
			(5	marks
		Notes		
	B1: Both hypotheses correct u B1: Realising that the model P M1: Using or writing $1 - P(x \ge 5)$ a correct CR or $P(X \ge 5)$ A1: awrt 0.0142 or CR $X \ge 6$	sing λ or μ and 5 or 2.5 Po(2.5) is to be used. This may be st $X \leq 6$ or $1 - P(X < 7)$ = awrt 0.109 and $P(X \geq 6)$ = awrt 0 or $X > 5$.	ated or use	d.