Hypothesis Testing

Questions

Q1.

The number of heaters, H, bought during one day from Warmup supermarket can be modelled by a Poisson distribution with mean 0.7
(a) Calculate $\mathrm{P}(\mathrm{H} \geq 2)$

The number of heaters, G, bought during one day from Pumrawsupermarket can be modelled by a Poisson distribution with mean 3 , where G and H are independent.
(b) Show that the probability that a total of fewer than 4 heaters are bought from these two supermarkets in a day is 0.494 to 3 decimal places.
(c) Calculate the probability that a total of fewer than 4 heaters are bought from these two supermarkets on at least 5 out of 6 randomly chosen days.

December was particularly cold. Two days in December were selected at random and the total number of heaters bought from these two supermarkets was found to be 14
(d) Test whether or not the mean of the total number of heaters bought from these two supermarkets had increased. Use a 5% level of significance and state your hypotheses clearly.

Q2.

During the summer, mountain rescue team A receives calls for help randomly with a rate of 0.4 per day.
(a) Find the probability that during the summer, mountain rescue team A receives at least 19 calls for help in 28 randomly selected days.

The leader of mountain rescue team A randomly selects 250 summer days from the last few years.
She records the number of calls for help received on each of these days.
(b) Using a Poisson approximation, estimate the probability of the leader finding at least 20 of these days when more than 1 call for help was received by mountain rescue team A.

Mountain rescue team A believes that the number of calls for help per day is lower in the winter than in the summer. The number of calls for help received in 42 randomly selected winter days is 8
(c) Use a suitable test, at the 5% level of significance, to assess whether or not there is evidence that the number of calls for help per day is lower in the winter than in the summer. State your hypotheses clearly.

During the summer, mountain rescue team B receives calls for help randomly with a rate of 0.2 per day, independently of calls to mountain rescue team A.

The random variable C is the total number of calls for help received by mountain rescue teams A and B during a period of n days in the summer.
On a Monday in the summer, mountain rescue teams A and B each receive a call for help.
Given that over the next n days $\mathrm{P}(C=0)<0.001$
(d) calculate the minimum value of n
(e) Write down an assumption that needs to be made for the model to be appropriate.

Q3.

Rowan and Alex are both check-in assistants for the same airline.
The number of passengers, R, checked in by Rowan during a 30 -minute period can be modelled by a Poisson distribution with mean 28
(a) Calculate $\mathrm{P}(R \geq 23)$

The number of passengers, A, checked in by Alex during a 30 -minute period can be modelled by a Poisson distribution with mean 16, where R and A are independent.
A randomly selected 30 -minute period is chosen.
(b) Calculate the probability that exactly 42 passengers in total are checked in by Rowan and Alex.

The company manager is investigating the rate at which passengers are checked in. He randomly selects 150 non-overlapping 60-minute periods and records the total number of passengers checked in by Rowan and Alex, in each of these 60-minute periods.
(c) Using a Poisson approximation, find the probability that for at least 25 of these 60-minute periods Rowan and Alex check in a total of fewer than 80 passengers.

On a particular day, Alex complains to the manager that the check-in system is working slower than normal. To see if the complaint is valid the manager takes a random 90 -minute period and finds that the total number of people Rowan checks in is 67
(d) Test, at the 5% level of significance, whether or not there is evidence that the system is working slower than normal. You should state your hypotheses and conclusion clearly and show your working.

Q4.

On a weekday, a garage receives telephone calls randomly, at a mean rate of 1.25 per 10 minutes.
(a) Show that the probability that on a weekday at least 2 calls are received by the garage in a 30 -minute period is 0.888 to 3 decimal places.
(b) Calculate the probability that at least 2 calls are received by the garage in fewer than 4 out of 6 randomly selected, non-overlapping 30 -minute periods on a weekday.

The manager of the garage randomly selects 150 non-overlapping 30 -minute periods on weekdays.
She records the number of calls received in each of these 30-minute periods.
(c) Using a Poisson approximation show that the probability of the manager finding at least 3 of these 30 -minute periods when exactly 8 calls are received by the garage is 0.664 to 3 significant figures.
(d) Explain why the Poisson approximation may be reasonable in this case.

The manager of the garage decides to test whether the number of calls received on a Saturday is different from the number of calls received on a weekday. She selects a Saturday at random and records the number of telephone calls received by the garage in the first 4 hours.
(e) Write down the hypotheses for this test.

The manager found that there had been 40 telephone calls received by the garage in the first 4 hours.
(f) Carry out the test using a 5% level of significance.

Q5.

During the morning, the number of cyclists passing a particular point on a cycle path in a 10 -minute interval travelling eastbound can be modelled by a Poisson distribution with mean 8

The number of cyclists passing the same point in a 10 -minute interval travelling westbound can be modelled by a Poisson distribution with mean 3
(a) Suggest a model for the total number of cyclists passing the point on the cycle path in a 10 -minute interval, stating a necessary assumption.

Given that exactly 12 cyclists pass the point in a 10-minute interval,
(b) find the probability that at least 11 are travelling eastbound.

After some roadworks were completed, the total number of cyclists passing the point in a randomly selected 20 -minute interval one morning is found to be 14
(c) Test, at the 5% level of significance, whether there is evidence of a decrease in the rate of cyclists passing the point. State your hypotheses clearly.

Q6.

Andreia's secretary makes random errors in his work at an average rate of 1.7 errors every 100 words.
(a) Find the probability that the secretary makes fewer than 2 errors in the next 100-word piece of work.

Andreia asks the secretary to produce a 250 -word article for a magazine.
(b) Find the probability that there are exactly 5 errors in this article.

Andreia offers the secretary a choice of one of two bonus schemes, based on a random sample of 40 pieces of work each consisting of 100 words.

In scheme A the secretary will receive the bonus if more than 10 of the 40 pieces of work contain no errors.

In scheme B the bonus is awarded if the total number of errors in all 40 pieces of work is fewer than 56.
(c) Showing your calculations clearly, explain which bonus scheme you would advise the secretary to choose.

Following the bonus scheme, Andreia randomly selects a single 500-word piece of work from
the secretary to test if there is any evidence that the secretary's rate of errors has decreased.
(d) Stating your hypotheses clearly and using a 5% level of significance, find the critical region for this test.

Q7.

A company receives telephone calls at random at a mean rate of 2.5 per hour.
(a) Find the probability that the company receives
(i) at least 4 telephone calls in the next hour,
(ii) exactly 3 telephone calls in the next 15 minutes.
(b) Find, to the nearest minute, the maximum length of time the telephone can be left unattended so that the probability of missing a telephone call is less than 0.2

The company puts an advert in the local newspaper. The number of telephone calls received in a randomly selected 2 hour period after the paper is published is 10
(c) Test at the 5% level of significance whether or not the mean rate of telephone calls has increased. State your hypotheses clearly.

(Total for question = 13 marks)

Q8.

The number of customers entering Jeff's supermarket each morning follows a Poisson distribution.

Past information shows that customers enter at an average rate of 2 every 5 minutes.
Using this information,
(a) (i) find the probability that exactly 26 customers enter Jeff's supermarket during a randomly selected 1 -hour period one morning,
(ii) find the probability that at least 21 customers enter Jeff's supermarket during a randomly selected 1 -hour period one morning.

A rival supermarket is opened nearby. Following its opening, the number of customers entering Jeff's supermarket over a randomly selected 40-minute period is found to be 10
(b) Test, at the 5% significance level, whether or not there is evidence of a decrease in the rate of customers entering Jeff's supermarket. State your hypotheses clearly.

A further randomly selected 20-minute period is observed and the hypothesis test is repeated.
Given that the true rate of customers entering Jeff's supermarket is now 1 every 5 minutes,
(c) calculate the probability of a Type II error.

Q9.

Asha, Davinda and Jerry each have a bag containing a large number of counters, some of which are white and the rest are red.
Each person draws counters from their bag one at a time, notes the colour of the counter and returns it to their bag.

The probability of Asha getting a red counter on any one draw is 0.07
(a) Find the probability that Asha will draw at least 3 white counters before a red counter is drawn.
(b) Find the probability that Asha gets a red counter for the second time on her 9th draw.

The probability of Davinda getting a red counter on any one draw is p.
Davinda draws counters until she gets n red counters. The random variable D is the number of counters Davinda draws.

Given that the mean and the standard deviation of D are 4400 and 660 respectively,
(c) find the value of p.

Jerry believes that his bag contains a smaller proportion of red counters than Asha's bag. To test his belief, Jerry draws counters from his bag until he gets a red counter. Jerry defines the random variable J to be the number of counters drawn up to and including the first red counter.
(d) Stating your hypotheses clearly and using a 10% level of significance, find the critical region for this test.

Jerry gets a red counter for the first time on his 34th draw.
(e) Giving a reason for your answer, state whether or not there is evidence that Jerry's bag contains a smaller proportion of red counters than Asha's bag.

Given that the probability of Jerry getting a red counter on any one draw is 0.011
(f) show that the power of the test is 0.702 to 3 significant figures.

Q10.

Bacteria are randomly distributed in a river at a rate of 5 per litre of water. A new factory opens and a scientist claims it is polluting the river with bacteria. He takes a sample of 0.5 litres of water from the river near the factory and finds that it contains 7 bacteria. Stating your hypotheses clearly test, at the 5% level of significance, whether there is evidence that the level of pollution has increased.

Mark Scheme - Hypothesis Testing

Q1.

Q2.

Qu	Scheme	Marks	AOs
(a)	$W \sim \operatorname{Po}(11.2)$ and $\mathrm{P}(W \ldots 19)=1-\mathrm{P}\left(W_{n}, 18\right)$ or suitable 3sf probs $\mathrm{P}(W \ldots 19)=0.020776 \ldots$ awrt 0.021	M1 A1 (2)	$\begin{gathered} 3.4 \\ 1.1 \mathrm{~b} \end{gathered}$
(b)		B1 M1 M1 A1 (4)	$\begin{gathered} 1.1 \mathrm{~b} \\ 3.3 \\ 3.4 \\ 1.1 \mathrm{~b} \end{gathered}$
(c)	$\begin{array}{ll} \mathrm{H} 0: \lambda=16.8 \quad \mathrm{H}_{1}: \lambda<16.8 \\ U \square \mathrm{Po}(16.8) & \\ \mathrm{P}(U, 8)=0.014 & \end{array}$ [$0.014<0.05$ or there is sufficient evidence to reject H 0] There is sufficient evidence at the 5% level of significance that the number of calls received per day is lower in winter \qquad	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{gathered} 2.5 \\ 3.3 \\ 1.1 \mathrm{~b} \\ \\ 2.2 \mathrm{~b} \end{gathered}$
(d)	$\begin{aligned} & C \sim \operatorname{Po}(0.4 \times n+0.2 \times n)[=\mathrm{Po}(0.6 n)] \text { or } D \sim \mathrm{~B}\left(n, \mathrm{e}^{-0.6} \text { or awrt } 0.549\right) \\ & \mathrm{e}^{-0.6 n}<0.001 \text { or }-0.6 n<\ln (0.001) \text { or } n>11.5 \ldots \quad n=\underline{12} \end{aligned}$	M1 M1 A1 (3)	$\begin{aligned} & 3.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
(e)	The rate of calls per day is constant or the number of calls occurring in non-overlapping time intervals is independent. or number of calls per day is independent (o.e.)		2.4

Total 14

(a)	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	For using the model $\mathrm{Po}(11.2)$ implied by sight of: $0.02077 \ldots$ or $0.9889 \ldots$ or 0.9792 .. awrt 0.021
(b)	$\begin{array}{r} \mathrm{Bl} \\ 1^{\mathrm{st}} \mathrm{Ml} \\ 2^{\mathrm{ndd}} \mathrm{Ml} \\ \mathrm{Al} \end{array}$	awrt 0.0616 Setting up a new model B(250 , " 0.0616 ") [condone B(" 0.0616 ", 250)] Seeing the model Po(their $n p$) implied by sight of: 0.1475 .. or 0.89975 or $0.8524 \ldots$ awrt 0.148 if no approximation used(and $1^{\text {st }}$ M1 not seen) an answer of awrt 0.140 could get B1M1M0A0
(c)	$\begin{array}{r} 1^{\text {st } \mathrm{Bl}} \\ 2^{\text {nd }} \mathrm{Bl} \\ \mathrm{Ml} \\ \\ \mathrm{Al} \end{array}$	Both hypotheses correct using λ or μ and 16.8 or 0.4 [Accept their ans to 0.4×42] Realising Po(16.8) needs to be used. Sight or use of, implied by correct prob or CR For 0.014 or better (0.0141.) or $\mathrm{CR} X, 9$ oe must be CR and not probability. [Allow $\mathrm{CR} X_{„}, 10$ with probability $\mathrm{P}\left(X_{„}, 10\right)=0.054$ or better] Indep of $1^{\text {st }} \mathrm{Bl}$ (must see $2^{\text {nd }} \mathrm{B} 1$ and M1 scored) for a correct inference in context
(d)	$\begin{array}{r} \mathbf{1}^{\mathrm{s}^{\mathrm{n}} \mathrm{Ml}} \mathrm{C}^{\mathrm{Md}} \mathrm{Ml} \\ \mathrm{Al} \end{array}$	Selecting a suitable model. Sight of $\operatorname{Po}(0.6 n)$ or $\mathrm{B}\left(n, \mathrm{e}^{-0.6}\right)$ or implied by $2^{\text {nd }} \mathrm{M} 1$ For a correct inequality or equality involving n [Condone slips in solving] Allow MR i.e. misread of 0.01 for 0.001 (or similar) to score M1M1A0 $n=12$ cao [Correct answer with no incorrect working seen scores 3/3]
(e)	B1	Allow equivalent statements. Underlined words required.

Q3.

Question	Scheme	Marks	AOs
(a)	$\mathrm{P}(R \geq 23)=0.8517 \ldots \quad$ awrt $\underline{\mathbf{0 . 8 5 2}}$	B1	1.1b
		(1)	
(b)	$R \sim \mathrm{Po}(28) \quad A \sim \mathrm{Po}(16)$		
	$Y=R+A \rightarrow Y \sim \operatorname{Po}(44)$	M1	3.4
	$\mathrm{P}(Y=42)=0.05866 \ldots \quad$ awrt 0.0587	A1	1.1b
		(2)	
(c)	$\mathrm{P}($ less than 80 passengers checked in) $=0.183 \ldots$	B1	1.1b
	$X \sim \mathrm{~B}(150$, "0.183 ...") mean $=150 \times$ "0.183 ..." [=27.48...]	M1	3.3
	$T \sim \mathrm{Po}($ "27.4...") and $1-\mathrm{P}(T \leq 24)$	M1	3.4
	$=1-0.2922 \ldots \quad$ awrt 0.708	A1	2.1
		(4)	
(d)	$\mathrm{H} 0: \lambda=84 \quad \mathrm{H}: \lambda<84 \quad$ (allow 28 for both)	B1	2.5
	$J \sim \operatorname{Po}$ (84)	M1	1.1b
	Method 1 \quad Method 2		
	$\mathrm{P}(J \leq 67)=0.03[246 \ldots] \quad \mathrm{CR} J \leq 68$	A1	1.1 b
	$0.03 \ldots<0.05$ or $67 \leq 68$ or 67 is in the critical region or 67 is significant or Reject H_{0}. There is evidence at the 5% level of significance that the system is working slower than normal.	Alcao	2.2b
		(4)	
(11 marks)			

Notes:

(a)	B1:	awrt 0.852
(b)	M1:	For combining distributions and sight or use of $\operatorname{Po}(28+16[=44])$ Condone $28+16=42$ followed by awrt 0.061
	A1:	awrt 0.0587
(c)	B1:	awrt 0.18 may be implied by awrt 27.5 for the mean
	M1:	Setting up a new model $\mathrm{B}(150$, " 0.183 ") and using $n p$ to calculate the mean.
	M1:	Using the model Po(their $n p)$ and using or writing $1-\mathrm{P}(T \leq 24)$
	A1:	awrt 0.708
(d)	B1:	Both hypotheses correct using λ or μ. Allow 28 instead of 84
	M1:	Writing or using Po(84)
	A1:	awrt 0.03 or $J \leq 68$
	A1cao	dep on previous M mark awarded and a probability found. Drawing a correct inference in context - need the word slower or support for Alex's complaint

Q4.

Question	Scheme	Marks	AOS
(a)	$C \sim$ Poisson (3.75)	M1	3.3
	$\mathrm{P}(C \geqslant 2)=0.88829 \ldots$. awrt 0.8883*	A1* ${ }^{\text {c }}$ co	1.1b
		(2)	
(b)	$D \sim \mathrm{~B}\left(6,{ }^{\text {c }} 0.888\right.$ ")	M1	3.3
	$\mathrm{P}(D \leqslant 3)=0.02163 \ldots$ awrt $0.0216 / 0.0215$	A1	1.1b
		(2)	
(c)	$\mathrm{P}(C=8)=0.02281 \ldots$	B1	1.1b
	$E \sim \mathrm{~B}(150$, " $0.02281 . . \mathrm{"}) \Rightarrow$ mean $=150 \times$ " $0.02281 \ldots$ " $[=3.4215 \ldots]$	M1	3.3
	$E \sim \mathrm{Po}(* 3.4215 \ldots$. $) \Rightarrow \mathrm{P}(E \geq 3)=[1-\mathrm{P}(E \leqslant 2)]$	M1	3.4
	$=0.664^{*}$	A1*cso	2.1
		(4)	
(d)	The number of periods is large and the probability of receiving 8 calls in 30-minutes is small.	B1 (1)	2.4
(e)	$\mathrm{H}_{0}: \lambda=30 \quad \mathrm{H}_{1}: \lambda \neq 30$	B1	2.5
		(1)	
(f)	$X \sim \mathrm{Po}(30)$	B1	3.3
	$\mathrm{P}(X \geqslant 40)=1-\mathrm{P}(X \leqslant 39)$	M1	1.1b
	$=0.04625 \ldots$	A1	1.1b
	$0.046 \ldots>0.025$ or no evidence to reject H_{0} There is insufficient evidence at the 5% level of significance that the number of calls received is different on a Saturday	A1 (4)	2.2b
(14 marks)			

Notes:		
(a)	M1:	For calculating the mean and setting up the correct model. Poisson may be implied by 0.8883 or better or 1 - awrt 0.1117 but must see 3.75 or 1.25×3
	$\mathrm{Al}^{*} \mathrm{cso}$	$\mathrm{P}(C \geqslant 2)=$ awrt 0.8883 or $1-$ awrt $0.1117=0.888$ Must see $\mathrm{P}(C \geqslant 2)$ oe
(b)	M1:	Setting up a new model using their answer to (a) Implied by correct answer
	Al:	awrt 0.0216 or awrt 0.0215
(c)	B1:	awrt 0.0228
	M1:	Setting up a new model $\mathrm{B}(150$, " 0.0228 ") and using $n p$ (working seen if incorrect)
	M1:	Using the model Po(their $n p$) Must be clearly stated and $\mathrm{P}(E \geqslant 3)$ oe seen
	Al*cso:	Only award if the previous 3 marks have been awarded and 0.664 is stated. NB Use of $B(1500.02281)$ gives 0.668
(d)	B1:	Idea that $n=150$ (number of periods selected) is large and p is $0.022 \ldots$ (exactly 8 calls in the time period) is small.
(e)	B1:	Both hypotheses correct using λ or μ allow 1.25 or 3.75
(f)	B1:	Realising $\mathrm{Po}(30)$ needs to be used. NB Implied by correct answer or $\mathrm{P}(X=40)=0.0139 \ldots$
	M1:	Writing or using 1- $\mathrm{P}(X \leqslant 39)$ or if CR method for $\mathrm{P}(X \geqslant 42)=0.0221 \ldots$
	Al:	$0.04 \ldots$ or awrt 0.05 or CR $X \geqslant 42$ oe must be CR and not probability
	A1:	A fully correct solution and correct inference in context. Calls required If put this prob but then give $\mathrm{Cr} \mathrm{X}>=40$ M1A1A0

Q5.

Question	Scheme	Marks	AOs
(a)	$\begin{aligned} & {[X \sim \operatorname{Po}(8) \quad Y \sim \operatorname{Po}(3)]} \\ & {[X+Y \sim] \operatorname{Po}(11)} \end{aligned}$	B1	3.3
	The number of cyclists travelling eastbound is independent of the number of cyclists travelling westbound.	B1	3.5 b
		(2)	
(b)	$\frac{\mathrm{P}(X=11) \times \mathrm{P}(Y=1)+\mathrm{P}(X=12) \times \mathrm{P}(Y=0)}{\mathrm{P}(X+Y=12)}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	$\begin{gathered} 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$
	$=0.1204 \ldots$ awrt 0.120	A1	1.1b
		(3)	
(c)	$\mathrm{H}_{0}: \quad \lambda=11$ or $\mu=22$ $\mathrm{H}_{1}: \lambda<11$ or $\mu<22$	B1	2.5
	$(E+W) \sim \operatorname{Po}(22) \mathrm{P}(E+W \leq 14)[=$ awrt 0.048]	M1	3.3
	(Reject H_{0}.) There is evidence that the rate(oe) of cyclists(oe) has decreased.	A1	2.2 b
		(3)	
(8 marks)			

Notes	
(a)	Bl: Correct model B1: Correct modelling assumption in context (must mention cyclists oe)
(b)	M1: Attempt at ratio expression with denominator $\mathrm{P}(X+Y=12)$ (may see $0.10942 \ldots$) M1: Probability expression for numerator (may be implied by $0.01317 \ldots$) Al: awrt 0.120 accept 0.12 with correct working seen Alternative use of binomial: M1: Use of $C \sim \mathrm{~B}\left(12, \frac{8}{11}\right)$ M1: $\mathrm{P}(C \geq 11)=1-\mathrm{P}(C \leq 10)$ Al: awrt 0.120 accept 0.12 with correct working seen
(c)	Bl: Both hypotheses with λ or μ M1: Using $\mathrm{Po}(22)$ to calculate $\mathrm{P}(E+W \leq 14)$ A1: A fully correct conclusion with awrt 0.048 or $\mathrm{CR}: E+W \leq 14$ drawing an inference in context.

Q6.

	Scheme	Marks	AO
(a)	[$X=$ number of errors in 100-word piece] $X \sim \mathrm{Po}(1.7)$	M1	3.3
	$\mathrm{P}(X<2)=\mathrm{P}(X \leqslant 1)=0.49324 \ldots \quad$ awrt $\underline{0.493}$	A1	1.1 b
		(2)	
(b)	[$R=$ number of errors in the article] $R \sim \mathrm{Po}(4.25)$	M1	3.3
	$\mathrm{P}(R=5)=0.16482 \ldots$ awrt $\underline{0.165}$	A1	1.1 b
		(2)	
(c)	Scheme A: Let $A \sim \mathrm{~B}\left(40, \mathrm{e}^{-1.7}\right)$ or $\mathrm{B}(40,0.18268 \ldots)$	M1	3.3
	$\mathrm{P}(A>10)=1-\mathrm{P}(A \leqslant 10)$	M1	1.1 b
	$=0.0995591 \ldots \quad$ awrt $\underline{0.0996}$	A1	1.1 b
	Scheme B : Let $B \sim \mathrm{Po}(40 \times 1.7)$ or $\mathrm{Po}(68)$	M1	3.3
	$\begin{aligned} & \mathrm{P}(B<56)=\mathrm{P}(B \leqslant 55)=0.061133 \ldots \\ & \text { So choose scheme } \mathbf{A} \text { (since the probability of a bonus is greater) } \end{aligned}$	A1	2.4
		(5)	
(d)	$\mathrm{H}_{0}: \lambda=1.7$ (or $\mu=8.5$) $\mathrm{H}_{1}: \lambda<1.7$ (or $\mu<8.5$)	B1	2.5
	[$E=$ no. of errors in the piece of work] $E \sim \mathrm{Po}(8.5)$	M1	3.3
	$\mathrm{P}(E \leqslant 3)=0.0301$ or $\mathrm{P}(E \leqslant 4)=0.0744$	A1	1.1 b
	So critical region is $E \leqslant 3$	A1	2.2a
		$\begin{array}{r} (4) \\ 3 \text { marks) } \end{array}$	

Q7.

Question Number	Scheme		Marks
(a)(i)	$X \sim \operatorname{Po}(2.5)$		
	$\begin{aligned} \mathrm{P}(X \geq 4) & =1-\mathrm{P}(X \leq 3) \\ & =1-0.7576 \end{aligned}$	Ml writing or using $1-\mathrm{P}(X \leq 3)$ implied by awrt 0.242	M
	$=0.2424$	Al awrt 0.242	A1
(ii)	$X \sim \mathrm{Po}(0.625)$	B1 Using Po(0.625)	B1
	$\mathrm{P}(X=3)=\frac{\mathrm{e}^{-0.625} 0.625^{3}}{3!}$	M1 finding $\mathrm{P}(X=3)$ with any λ e.g $\frac{\mathrm{e}^{-\lambda} \lambda^{3}}{3!}$ or $\mathrm{P}(X \leq 3)-\mathrm{P}(X \leq 2)$ - may be implied by awrt 0.0218	M1
	$=0.02177$.	Al awrt 0.0218	A1 (5)
(b)	$\begin{gathered} 1-\mathrm{P}(X=0)<0.2 \\ \mathrm{P}(X=0)>0.8 \end{gathered}$	$1^{\text {st }} \mathrm{Ml}$ for writing or using $1-\mathrm{P}(X=0)<0.2$ or $\mathrm{P}(X=0)>0.8$ oe allow use of $=$ instead of $>$ or $<$. May be implied by $e^{-\lambda}=0.8$ or $e^{-\lambda}>0.8$ or by awt 5.36 or 0.089	M1
	$\begin{aligned} & \mathrm{e}^{-2.5 t}>0.8 \\ & t<0.089 \ldots \text { hours }=5.36 \mathrm{mins} \end{aligned}$	$\mathbf{2}^{\text {nd }}$ Ml writing an inequality of the form $e^{-\lambda}>0.8$ using any λ. May be implied by or by awrt 5.36 or 0.089 Do not allow $e^{-\lambda}=0.8$	M1
	[$t<$] 5 mins	Alcso both the method marks must be awarded. Accept 5 or $t=5$ or $t<5$	$\begin{array}{\|r\|} \hline \text { Alcso } \\ \hline \end{array}$

(c)	$\begin{aligned} & \mathrm{H}_{0}: \lambda=2.5(\lambda=5) \\ & \mathrm{H}_{1}: \lambda>2.5(\lambda>5) \end{aligned}$	B1 both hypotheses using λ or μ - allow 5 or 2.5 and it must be clear which is H_{0} and which is H_{1}	B1
	$\begin{aligned} \mathrm{P}(X \geq 10) & =1-\mathrm{P}(X \leq 9) \\ & =1-0.9682 \end{aligned}$	$\mathbf{1}^{\text {st }}$ M1 writing or using $\mathrm{Po}(5)$ and $1-\mathrm{P}(X \leq 9)$ May be implied by a correct CR. Do not allow for writing $\mathrm{P}(X \geq 10)$	M1
	$=0.0318$	$1^{\text {st }} \mathrm{Al}$ awrt 0.0318 . Allow CR $X \geq 10$ or $X>9$	A1
		NB allow M1A1 if not using CR route for $\mathrm{P}(X \leq 9)=$ awrt 0.968	
	Sufficient evidence to reject H 0 , Accept H_{1}, significant. 10 does lie in the Critical region.	$\mathbf{2}^{\text {nd }}$ M1 dependent on previous M being awarded. A correct statement (do not allow if there are contradicting noncontextual statements). ft their $\mathrm{Prob} / \mathrm{CR}$ compared with $0.05 / 10$ (0.95 if using 0.968)	M1d
	There is sufficient evidence that the mean rate of telephone calls has increased (oe)	$2^{\text {nd }}$ Al A correct contextual statement must include the word calls and the idea the rate has increased. (do not allow "it has changed" on its own oe). All previous marks must be awarded for this mark to be awarded. M1A1 is awarded for a correct contextual statement on its own provided previous marks have been awarded	Alcso
			(Total 13)

Q8.

Question	Scheme	Marks	AOs
(a)(i)	$X \sim \operatorname{Po}(24)$	B1	3.4
	$\mathrm{P}(X=26)=0.071912 \ldots \quad$ awrt 0.0719	B1	1.1b
		(2)	
(ii)	$\mathrm{P}(X \geq 21)=1-\mathrm{P}(X \leq 20)[=1-0.24263 \ldots]$	M1	3.4
	$=0.75736 \ldots$ awrt $\underline{0.757}$	A1	1.1b
		(2)	
(b)	$\begin{array}{ll} \mathrm{H}_{0}: \lambda=2 & {[\mu=16]} \\ \mathrm{H}_{1}: \lambda<2 & {[\mu<16]} \end{array}$	B1	2.5
	$\mathrm{P}(Y \leq 10 \mid Y \sim \mathrm{Po}(16))=0.077396 \ldots \quad$ awrt $\underline{0.0774}$	B1	1.1b
	Not significant / Do not reject $\mathrm{H}_{0} / 10$ is not in the CR	M1	1.1b
	There is not sufficient evidence to suggest a decrease/change in the rate of customers entering Jeff's supermarket.	A1	2.2b
		(4)	
(c)	Use of Po(8) to attempt critical region	M1	2.1
	Critical region is $Y \leq 3 / \mathrm{H}_{0}$ is not rejected when $Y \geq 4$	A1	1.1 b
	True distribution is $W \sim \mathrm{Po}(4)$	B1	2.1
	$\mathrm{P}(W \geq 4 \mid W \sim \mathrm{Po}(4))=1-\mathrm{P}(W \leq 3)[=1-0.43347 \ldots]$	M1	1.1b
	$=0.56652 \ldots$ awrt $\underline{\underline{0.567}}$	A1	1.1b
		(5)	
(13 marks)			

Notes	
$\underset{\text { (ii) }}{(\text { (a) })}$	B1: For realising the distribution is $\mathrm{Po}(24)$ (May be seen or implied in part (ii)) B1: awrt 0.0719 M1: Writing or using $1-\mathrm{P}(X \leq 20)$ A1: awrt 0.757
(b)	B1: Both hypotheses correct (must use μ or λ) B1: awrt 0.0774 Allow awrt 0.08 from a correct probability statement. allow CR: $X \leq 9$ M1: Correct non-contextual conclusion (may be implied by correct contextual conclusion). Allow a f.t. comparison of 'their p ' with 0.05 (Ignore any contradictory contextual comments for this mark) A1: A fully correct solution drawing a correct inference in context with all previous marks in (b) scored.
(c)	M1: Use of $\mathrm{Po}(8)$ to attempt critical region $[\mathrm{P}(Y \leq 3)=0.0423$.. $\mathrm{P}(Y \leq 4)=0.0996$..] A1: Finding critical region for the test $Y \leq 3$ which must come from Po(8). B1: Identifying the need to use $\mathrm{Po}(4)$ as the true distribution. Allow Po(4) seen or used for this mark. M1: Writing or using $\mathrm{P}\left(W \geq^{\prime} 4^{\prime}\right)$ or $1-\mathrm{P}\left(W \leq^{\prime} 3^{\prime}\right)$ from $\mathrm{Po}(4)$. Allow f.t. on their identified CR but must be using $\operatorname{Po}(4)$ A1: awrt 0.567

Q9.

Question	Scheme	Marks	AOS
(a)	$\mathrm{P}($ at least 3 whites $)=(1-0.07)^{3}$ or $1-0.07-0.93 \times 0.07-0.93^{2} \times 0.07$	M1	1.1 b
	$=0.8043 \ldots$ awrt 0.804	A1	1.1b
		(2)	
(b)	$\mathrm{P}\left(2 \mathrm{nd}\right.$ red on $9^{\text {di }}$ draw $)=\binom{8}{1} 0.93^{7} \times 0.07^{2}$	M1	3.3
	$=0.02358 \ldots$ awrt 0.0236	A1	1.1b
		(2)	
(c)	$\frac{n}{p}=4400 \text { and } \frac{n(1-p)}{p^{2}}=660^{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$\begin{array}{\|l} 3.1 \mathrm{~b} \\ 1.1 \mathrm{~b} \end{array}$
	$1-p=99 p$ oe	M1	1.1b
	$p=0.01$	A1	1.1b
		(4)	
(d)	$\mathrm{H}_{0}: p=0.07 \quad \mathrm{H}_{1}: p<0.07$	B1	2.5
	$J \sim$ Geo(0.07)	M1	3.3
	$\mathrm{P}(J \geq C)<0.1 \Rightarrow(1-0.07)^{c-1}<0.1$	M1	3.4
	$c-1>\frac{\log 0.1}{\log 0.93}$	M1	1.1b
	$c>32.72 \ldots . . \quad \therefore \mathrm{CR} J \geq 33$	A1	1.1b
		(5)	
(e)	34 is in the Critical region	M1	1.1b
	There is evidence to suggest that Jerry's bag contains a smaller proportion of red counters than Asha's bag.	A1	2.2 b
		(2)	
(f)	Power of test $=\mathrm{P}(J \geq 33 \mid p=0.011)$	M1	2.1
	$=(1-0.011)^{32}$ oe	M1	1.1b
	$=0.7019 \ldots$ *	A1*	1.1 b
		(3)	
(18 marks)			

Notes:		
(a)	M1:	A correct method to find $\mathrm{P}(X \geqslant 3)$
	Al:	awrt 0.804
(b)	M1:	For selecting the appropriate model negative binomial or binomial with an extra trial
	Al:	awrt 0.0236
(c)	M1:	Forming an equation for the mean and variance. At least one correct.
	Al:	Both equations correct
		Allow M1 A1 if both equations correct with the same number subst for n
	M1:	Solving the 2 equations leading to $1-p=99 p$ oe Allow $p-p^{2}=99 p^{2} \mathrm{ft}$ their 4400 and 660 Allow $1-p=0.15 p$
	Al:	0.01
(d)	M1:	Both hypotheses correct using correct notation allow eg $p>0.93$
	M1:	Realising the need to use Geo(0.07) ft their Hypotheses
	M1:	Using the model to find $\mathrm{P}(J \geqslant c)$ Condone $(1-0.07)^{c}<0.1 \mathrm{ft}$ their $0.07 \neq 0.93$ ALT $\mathrm{P}(J \geqslant 32)=0.1[054 \ldots\}]$ or $\mathrm{P}(J \geqslant 33)=0.09[8 . .$.$] Implied by correct \mathrm{CR}$
	M1:	For a valid method to solve the inequality or $\mathrm{P}(J \geqslant 32)=0.1[054]$ and $\mathrm{P}(J \geqslant 33)=0.09[81]$ Implied by correct CR
	Al:	Correct CR (any letter) A 0 if given as a probability statement. Must be integer
(e)	M1:	Comparing 34 with their CR eg $34>3334 \geqslant 33$ or $\mathrm{P}(J \geqslant 34)=0.09[12]$
	A1:	Fully correct conclusion in context. Allow Jerry's belief is true. Allow probability for proportion
(f)	M1:	Realising they need to find P (their CR in (d)) Allow 1-P $(J \leqslant 32)$
	M1:	For a Correct method. Allow $1-0.2981 \ldots$ May be implied by $0.7019 \ldots$ If the CR is incorrect $(1-0.011)^{\text {CR }}{ }^{-1-1}$ or $1-\left\{1-(1-0.011)^{\text {CR }}{ }^{\text {CR-1 }}\right\}$ must be seen
	Al^{*} :	Only award if both method marks awarded.

Q10.

Question	Scheme		Marks	AOs
	$\mathrm{H}_{0}: \lambda=5(\lambda=2.5) \quad \mathrm{H}_{1}: \lambda>5(\lambda>2.5)$		B1	2.5
	$X \sim \operatorname{Po}$ (2.5)		B1	3.3
	Method 1	Method 2		
	$\begin{aligned} \mathrm{P}(X \geqslant 7) & =1-\mathrm{P}(X \leqslant 6) \\ & =1-0.9858 \end{aligned}$	$\begin{aligned} & \mathrm{P}(x \geqslant 5)=0.1088 \\ & \mathrm{P}(x \geqslant 6)=0.042 \end{aligned}$	M1	1.1b
	$=0.0142$	CR $X \geqslant 6$	A1	1.1 b
	$0.0142<0.05 \quad 7 \geqslant 6$ or 7 is in critical region or 7 is significant Reject H_{0}. There is evidence at the 5% significance level that the level of pollution has increased. or There is evidence to support the scientists claim is justified		Alcso	2.2 b
(5 marks)				
Notes				
	B1: Both hypotheses correct using λ or μ and 5 or 2.5 B1: Realising that the model $\mathrm{Po}(2.5)$ is to be used. This may be stated or used. M1: Using or writing $1-\mathrm{P}(X \leqslant 6)$ or $1-\mathrm{P}(X<7)$ a correct CR or $\mathrm{P}(X \geqslant 5)=$ awrt 0.109 and $\mathrm{P}(X \geqslant 6)=$ awrt 0.042 A1: awrt 0.0142 or $\mathrm{CR} X \geqslant 6$ or $X>5$. A1: A fully correct solution and drawing a correct inference in context			

