Geometric and NB Distributions

Questions

Q1.

Indre works on reception in an office and deals with all the telephone calls that arrive. Calls arrive randomly and, in a 4-hour morning shift, there are on average 80 calls.

(a) Using a suitable model, find the probability of more than 4 calls arriving in a particular 20-minute period one morning.

(3)

Indre is allowed 20 minutes of break time during each 4-hour morning shift, which she can take in 5-minute periods. When she takes a break, a machine records details of any call in the office that Indre has missed.

One morning Indre took her break time in 4 periods of 5 minutes each.

(b) Find the probability that in exactly 3 of these periods there were no calls.

(2)

On another occasion Indre took 1 break of 5 minutes and 1 break of 15 minutes.

(c) Find the probability that Indre missed exactly 1 call in each of these 2 breaks.

(3)

(Total for question = 8 marks)

Q2.

In a game a spinner is spun repeatedly. When the spinner is spun, the probability of it landing on blue is 0.11

- (a) Find the probability that the spinner lands on blue
 - (i) for the first time on the 6th spin,

(2)

(ii) for the first time before the 6th spin,

(2)

(iii) exactly 4 times during the first 6 spins,

(2)

(iv) for the 4th time on or before the 6th spin.

(4)

Zac and Izana play the game. They take turns to spin the spinner. The winner is the first one to have the spinner land on blue. Izana spins the spinner first.

(b) Show that the probability of Zac winning is 0.471 to 3 significant figures.

(3)

(Total for question = 13 marks)

Q3.

A spinner can land on red or blue. When the spinner is spun, there is a probability of 3 that it

lands on blue. The spinner is spun repeatedly.

The random variable *B* represents the number of the spin when the spinner first lands on blue.

(a) Find (i) P(B = 4)(ii) $P(B \le 5)$

(4)

(b) Find $E(B^2)$

(3)

Steve invites Tamara to play a game with this spinner.

Tamara must choose a colour, either red or blue.

Steve will spin the spinner repeatedly until the spinner first lands on the colour Tamara has chosen. The random variable *X* represents the number of the spin when this occurs.

If Tamara chooses red, her score is e^{X}

If Tamara chooses blue, her score is X^2

(c) State, giving your reasons and showing any calculations you have made, which colour you would recommend that Tamara chooses.

(5)

(Total for question = 12 marks)

Q4.

The probability of Richard winning a prize in a game at the fair is 0.15 Richard plays a number of games.

(a) Find the probability of Richard winning his second prize on his 8th game,

(2)

(b) State two assumptions that have to be made, for the model used in part (a) to be valid.

(2)

Mary plays the same game, but has a different probability of winning a prize. She plays until she has won r prizes. The random variable G represents the total number of games Mary plays.

(c) Given that the mean and standard deviation of *G* are 18 and 6 respectively, determine whether Richard or Mary has the greater probability of winning a prize in a game.

(4)

(Total for question = 8 marks)

Mark Scheme

Q1.

Qu	Scheme	Marks	AO
(a)	{Let $C = \text{no of calls in a 20 min period}}$ $C \sim \text{Po}()$	M1	3.3
	80 calls per 4-hour period gives $\frac{20}{3}$ per 20 mins i.e. $C \sim \text{Po}(\frac{20}{3})$ $[P(C > 4)] = 1 - P(C_{*}, 4)$	M1	3.4
	= 0.79437 awrt <u>0.794</u>	A1 (3)	1.1b
(b)	$\{X = \text{no. of } 5 \text{ min periods with no calls } X \sim B(4, e^{-\frac{5}{3}})$	M1	3.3
	P(X=3) = 0.02186125 awrt <u>0.0219</u>	A1 (2)	1.1b
(c)	P(exactly one call) $e^{-\frac{4}{3}} \times \frac{5}{3}$ or $e^{-5} \times 5$	M1	2.1
	P(exactly one call in each break) = $\left(e^{-\frac{4}{5}} \times \frac{5}{3}\right) \times \left(e^{-5} \times 5\right)$	M1	1.1b
	= 0.0106052 awrt 0.0106	A1 (3)	1.1b
S /		(8 mark	cs)
	Notes		
(a)	1st M1 for selecting a Poisson model – written or used. May be implied by 2nd Answer.	M1 or a c	orrect
	2^{nd} M1 for the correct Poisson Po($\frac{20}{3}$) or Po(6.67) or better seen		
	and writing or using 1	-P(C,	4)
	A1 for awrt 0.794 (correct ans with no incorrect working scores 3/3)		
(b)	M1 for selecting a correct model B(4, 0.189) or better (calc: 0.188875) A1 for using the model to get awrt 0.0219 (correct ans with no incorrect work)	king score	es 2/2)
(c)	1 st M1 for <u>a</u> correct prob of 1 call (expressions in e or values) (allow 0.31479 or awrt 0.315 <u>or</u> 0.033689 or awrt 0.0337)		
	2 nd M1 for a correct probability statement or expression. E.g. $P(S = 1 S \sim Po(\frac{5}{3})) \times P(T = 1 T \sim Po(5))$		
sc	e.g. $F \sim Po(\lambda)$ used in (b) to find $P(F = 0)$		
4000450	Then if we see $Y \sim Po(3\lambda)$ and statement $P(F = 1) \times P(Y = 1)$ award M0M for awrt 0.0106 (correct ans with no incorrect working scores 3/3)	1	

Q2.

Question	Scheme			AOs	
(a) (i)	$[W \sim \text{Geo}(0.11)] P(W = 6) = (0.89)^5 (0.11)$		M1	3.3	
	= 0.0614	2 awrt <u>0.0614</u>	A1 (2)	1.1b	
(ii)	$P(W_{,,} 5) = 1 - (0.89)^5$	i i	M1	3.1b	
	= 0.44159	awrt <u>0.442</u>	A1	1.1b	
		*	(2)		
(iii)	X~B(6, 0.11)		M1	3.3	
	P(X=4)=0.001739	awrt <u>0.00174</u>	A1	1.1b	
		T:	(2)		
(iv)		r V~B(6, 0.11)	M1	3.3	
	1(1,3) 1(1,3) 1(1,3)	ad P(V4) for M2	M1	3.1b	
	$= (0.11)^4 + {4 \choose 3} (0.11)^3 (0.89)^1 \times 0.11 + {5 \choose 3} (0.11)^3 (0.89)^4 \times 0.11 + {5 \choose 3} (0.11)^4 + {5 \choose 3} (0.11)$	$1)^3 (0.89)^2 \times 0.11$	M1	3.4	
	= 0.001827	awrt <u>0.00183</u>	A1 (4)	1.1b	
(b)	P(Zac wins) = $0.89 \times 0.11 + (0.89)^3 \times 0.11 + (0.89)^3$	9) ⁵ ×0.11+	M1	3.1b	
	$=\frac{0.89\times0.11}{1-(0.89)^2}$ oe		M1	1.1b	
	= 0.47089= 0.471*		A1cso*	2.1	
			(3)		
	Total 1				

a)(i)	(i) M1 Correct method to find $P(W=6) eg(p)^5 (1-p)$ for $p=0.11$ or 0.89						
	Al	awrt 0.0614 (Correct ans with no incorrect working 2/2)					
(ii)	Ml	Correct method to find $P(W_{,,} 5)$					
	Al	awrt 0.442 (Correct ans with no incorrect working 2/2)					
(iii)	M1	For using the model B(6, 0.11) allow B(6, 0.89) [Implied by 0.0017 or awrt 0.114]					
	Al	awrt 0.00174 (Correct ans with no incorrect working 2/2)					
(iv)		In part (iv) we can accept correct expressions or values for probabilities					
	1stM1	For using a negative binomial model implied by correct $P(Y = 5)$ or $P(Y = 6)$					
	2 nd M1	Correct method to find P(Y,, 6)	a		4	5	6
	3 rd M1 1 – 0.99817 from 1	At least two correct terms or		= a)	1.46×10 ⁻⁴	5.21×10 ⁻⁴	1.16×10 ⁻³
			P(V	= a)	1.74×10 ⁻³	8.60×10 ⁻⁵	1.77×10 ⁻⁶
	Al	awrt 0.00183	9.	-	<u> </u>		
(b)	1st M1	Forming the correct probability of Zac winning or identify a and r of GP Allow for $p = (0.11) \times 0 + (1-0.11)(1-p)$					
	2 nd M1	Using sum to infinity of a GP			w for $p = \frac{0}{1+}$	0.89	
	A1*	Previous method marks must be seen leading to an answer 0.471 (NOT awrt 0.471)					

Q3.

Qu	Scheme	Marks	AO
(a)(i)	$[B \sim \text{Geo}(\frac{1}{3})] P(B=4) = (\frac{2}{3})^3 \times \frac{1}{3}$	M1	3.3
	$=\frac{8}{81}$	A1	1.1b
(ii)	$P(B_{,,} 5) = 1 - P(B > 5)$ or $1 - (\frac{2}{3})^5$	M1	2.1
	$=\frac{211}{243}$	A1 (4)	1.1b
(b)	$E(B^2) = Var(B) + [E(B)]^2$	M1	2.1
	From formula booklet: $E(B) = \frac{1}{\frac{1}{3}} = 3$ and $Var(B) = \frac{1 - \frac{1}{3}}{\left(\frac{1}{3}\right)^2} = 6$	В1	1.1b
	So $E(B^2) = 6 + 9 = \underline{15}$	A1 (3)	1.1b
(c)	[Let $R = \text{no.}$ of the spin when it first lands on red] $X = R \sim \text{Geo}(\frac{2}{3})$	M1	3.3
	Require $E(e^X) = \sum_{x=1}^{\infty} e^x \left(\frac{1}{3}\right)^{x-1} \frac{2}{3}$	M1	3.1a
	$= \frac{2e}{3} \sum_{x-1}^{\infty} \left(\frac{e}{3}\right)^{x-1}$	M1	2.1
	$= \frac{2e}{3} \times \frac{1}{1 - \frac{e}{3}} \text{ or } \frac{2e}{3 - e}$	A1	1.1b
	$E(e^{x}) = 19.297$ {> 15 = $E(B^{2})$ } so Tamara should choose red since it has the greater expected score	A1	2.2a
		(5) (12	marks)

- 0	Notes
(a)(i)	M1 for selecting the correct model i.e. $Geo(p)$ (May be implied by a correct expression) A1 for $\frac{8}{81}$ (= 0.098765 accept awrt 0.0988)
(ii)	M1 for a suitable strategy to use the geometric model to find a correct expression A1 for $\frac{211}{243}$ (= 0.868312accept awrt 0.868)
(b)	M1 for a suitable strategy to find $E(B^2)$ [allow $G''(1) + G'(1)$]
	B1 for use of the correct formulae to find $E(B) = 3$ and $Var(B) = 6$ or $G''(1) = 12$
	A1 for 15
SC	Formula for E(B ²) Allow M1B1A0 for E(B ²) = $\frac{2-p}{p^2}$ (o.e.)
(c)	1 st M1 for choosing a suitable geometric model (sight of Geo($\frac{2}{3}$) or at least 3 correct probabilities)
	2^{nd} M1 for realising the need for appropriate expected value and using $E(g(X))$ [Need sum and $f(x)$] NB simply finding $e^{E(X)} = e^{1.5} = \text{awrt } 4.48 \text{ is } \text{M0}$ and probably no more marks.
	3rd M1 for a suitable strategy to turn the expression into a sum that can be found
	1st A1 for correct use of sum to infinity of geometric series
	2^{nd} A1 for interpreting the outcome of the calculations in terms of a solution to the problem must choose red and see the awrt 19.3 (and allow ft of their $E(B^2) < 19$)

Q4.

Question	Scheme	Marks	AOs
(a)	$\binom{7}{1}$ × 0.15 ² × (0.85) ⁶	M1	3.3
	= 0.05940 = awrt <u>0.0594</u>	A1	1.1b
		(2)	
(b)	The model is only valid if:		
	the games (trials) are independent	В1	3.5b
	the probability of winning a prize, 0.15, is constant for each game	В1	3.5b
		(2)	
(c)	$18 = \frac{r}{p}$ and $6^2 = \frac{r(1-p)}{p^2}$	M1 A1	3.1b 1.1b
	Solving: $2p = 1 - p$	M1	1.1b
	$p = \frac{1}{3}$ (> 0.15) so Mary has the greater chance of winning a prize	A1	3.2a
		(4)	
3		(8	marks)

	Notes		
(a)	M1: For selecting an appropriate model negative binomial or B(7, 0.15) with an extra success in 8 th trial e.g.		
	$\binom{7}{1}$ 0.15× $(0.85)^6$ ×0.15 Allow $\binom{7}{1}$ 0.85× $(0.15)^6$ ×0.85 may be implied by awrt		
	0.0594		
	A1: awrt 0.0594		
(b)	B1: Stating the first assumption that games are independent		
	B1: Stating the second assumption that the probability remains constant		
(c)	M1: Forming an equation for the mean or for the standard deviation.		
	A1: Both equations correct		
	M1: Solving the 2 equations leading to $2p = 1 - p$		
	A1: For $p = \frac{1}{3}$ followed by a correct deduction		