Groups

Questions

Q1.

A binary operation \star on the set of non-negative integers, \mathbb{Z}_{0}^{+}, is defined by

$$
m \star n=|m-n| \quad m, n \in \mathbb{Z}_{0}^{+}
$$

(a) Explain why \mathbb{Z}_{0}^{+}is closed under the operation \star
(b) Show that 0 is an identity for $\left(\mathbb{Z}_{0}^{+}, \star\right)$
(c) Show that all elements of \mathbb{Z}_{0}^{+}have an inverse under \star
(d) Determine if \mathbb{Z}_{0}^{+}forms a group under \star, giving clear justification for your answer.

Q2.
(i) Let G be a group of order 5291848

Without performing any division, use proof by contradiction to show that G cannot have a subgroup of order 11
(ii) (a) Complete the following Cayley table for the set $X=2,4,8,14,16,22,26,28$ with the operation of multiplication modulo 30

\times_{30}	2	4	8	14	16	22	26	28
2	4	8	16	28	2	14	22	26
4	8		2			28	14	
8	16	2			8			14
14	28		22	16		8	4	
16	2	4		14	16			
22	14		26			4	2	16
26	22	14		4				8
28	26		14		28		8	

(b) Hence determine whether the set X with the operation of multiplication modulo 30 forms a group.
[You may assume multiplication modulo n is an associative operation.]

Q3.
(i) A binary operation * is defined on positive real numbers by

$$
a^{*} b=a+b+a b
$$

Prove that the operation * is associative.
(ii) The set $G=1,2,3,4,5,6$ forms a group under the operation of multiplication modulo 7
(a) Show that G is cyclic.

The set $H=1,5,7,11,13,17$ forms a group under the operation of multiplication modulo 18
(b) List all the subgroups of H.
(c) Describe an isomorphism between G and H.

Q4.

The set e, p, q, r, s forms a group, A, under the operation *
Given that e is the identity element and that

$$
p^{*} p=s \quad s^{*} s=r \quad p^{*} p^{*} p=q
$$

(a) show that
(i) $p^{*} q=r$
(ii) $s^{*} p=q$
(b) Hence complete the Cayley table below.

$*$	e	p	q	r	s
e					
p					
q					
r					
s					

(c) Use your table to find $p^{*} q^{*} r^{*} s$

A student states that there is a subgroup of A of order 3
(d) Comment on the validity of this statement, giving a reason for your answer.

Q5.

The set $G=1,3,7,9,11,13,17,19$ under the binary operation of multiplication modulo 20 forms a group.
(a) Find the inverse of each element of G.
(b) Find the order of each element of G.
(c) Find a subgroup of G of order 4
(d) Explain how the subgroup you found in part (c) satisfies Lagrange's theorem.

(Total for question = 8 marks)

Q6.

Let G be a group of order $46^{46}+47^{47}$
Using Fermat's Little Theorem and explaining your reasoning, determine which of the following are possible orders for a subgroup of G
(i) 11
(ii) 21

Q7.

The group S_{4} is the set of all possible permutations that can be performed on the four numbers $1,2,3$ and 4 , under the operation of composition.

For the group S_{4}
(a) write down the identity element,
(b) write down the inverse of the element a, where

$$
a=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 2 & 1
\end{array}\right)
$$

(c) demonstrate that the operation of composition is associative using the following elements

$$
a=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \tag{2}\\
3 & 4 & 2 & 1
\end{array}\right) \quad b=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 3 & 1
\end{array}\right) \quad \text { and } c=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{array}\right)
$$

(d) Explain why it is possible for the group S_{4} to have a subgroup of order 4 You do not need to find such a subgroup.

Q8.

The operation * is defined on the set $S=0,2,3,4,5,6$ by $x^{*} y=x+y-x y(\bmod 7)$

$*$	0	2	3	4	5	6
0						
2		0				
3					5	
4						
5						
6						

(a) (i) Complete the Cayley table shown above
(ii) Show that S is a group under the operation * (You may assume the associative law is satisfied.)
(b) Show that the element 4 has order 3
(c) Find an element which generates the group and express each of the elements in terms of this generator.

Q9.
(i) A group G contains distinct elements a, b and e where e is the identity element and the group operation is multiplication.

Given $a^{2} b=b a$, prove $a b \neq b a$
(ii) The set $H=1,2,4,7,8,11,13,14$ forms a group under the operation of multiplication modulo 15
(a) Find the order of each element of H.
(b) Find three subgroups of H each of order 4, and describe each of these subgroups.

The elements of another group J are the matrices $\left(\begin{array}{cc}\cos \left(\frac{k \pi}{4}\right) & \sin \left(\frac{k \pi}{4}\right) \\ -\sin \left(\frac{k \pi}{4}\right) & \cos \left(\frac{k \pi}{4}\right)\end{array}\right)$ where $k=1,2,3,4,5,6,7,8$ and the group operation is matrix multiplication.
(c) Determine whether H and J are isomorphic, giving a reason for your answer.

Mark Scheme - Groups

Q1.

Q2.

Question	Scheme										Marks	AOS
(i)	Suppose G has a subgroup of order 11, then (by Lagrange's Theorem) 11 must divide 5291848										M1	2.1
	But 5-2+9-1+8-4+8=23										M1	1.1b
	23 is not divisible by 11 , hence 11 does not divide $\|G\|$, which contradicts Lagrange's Theorem. Hence there is no subgroup of order 11.										A1	2.4
											(3)	
(ii)(a)	$\times 30$	2	4	8	14	16	22	26	28	Completes at least one row or column correctly	M1	1.1 b
	2	4	8	16	28	2	14	22	26			
	4	8	16	2	26	4	28	14	22			
	8	16	2	4	22	8	26	28	14	At least 5 ro	Al	1.1 b
	14	28	26	22	16	14	8	4	2	or columns		
	16	2	4	8	14	16	22	26	28	completed		
	22	14	28	26	8	22	4	2	16			
	26	22	14	28	4	26	2	16	8	Completely	A1	1.1 b
	28	26	22	14	2	28	16	8	4			
(b)	As the row and column for 16 repeat the borders, 16 is an identity element for (X, \times_{30})										B1	2.2a
	Each element has an inverse as follows:										B1	1.1 b
	x	2	4	8	14	16	22	26	28			
	x^{-1}	8	4	2	14	16	28	26	22			
	Since we know \times_{30} is associative and as there are no new elements in the table, so (X, x_{30}) is closed, hence (X, x_{30}) is a group.										B1	2.4
											(6)	
(9 marks)												

Notes:

(i)

M1: Sets up the proof by stating or implying that if there is a subgroup of order 11 then by
Lagrange's Theorem 11 must divide 5291848. May not mention Lagrange's Theorem at this stage.
A formal assumption is not required as long as it is implicit.
M1: Applies the divisibility test for 11 . Look for an attempt at the alternating sum being used.
A1: Alternating sum is 23 , so derives a contradiction as 11 does not divide $|G|$, and conclusion made. Use of Lagrange's Theorem must be clear, though it need not be named.
(ii)(a)

M1: Begins process of completing the table by filling in at least one row or column correctly.
A1: Five or more rows or columns completed correctly.
Al: Completely correct table.
(b)

Bl: Identifies 16 as the identity element. No reason needed.
Bl: Identifies all inverses or gives reason why each element has an inverse (may refer to each row and column containing the identity once only and symmetrically about the diagonal).
Bl : Refers to closure and associativity to deduce $\left(X, \times_{30}\right)$ is a group.
SC Allow B0B0B1ft for deducing not a group with valid reason if identity or inverse checks fail.

Q3.

Question	Scheme					Marks	AOs
(i)	$\left(a^{*} b\right) * c=(a+b+a b) * c=a+b+a b+c+(a+b+a b) c$					M1	2.1
	$a^{*}\left(b^{*} c\right)=a^{*}(b+c+b c)=a+b+c+b c+a(b+c+b c)$					M1	2.1
	$\begin{aligned} a+b+a b+c+(a+b+a b) c & =a+b+c+b c+a b+a c+a b c \\ & =a+b+c+b c+a(b+c+b c) \end{aligned}$					A1	2.2a
	so $\left(a^{*} b\right)^{*} c=a^{*}\left(b^{*} c\right)$ which means * is associative					A1	2.4
						(4)	
(ii)(a)	$\begin{array}{ccccc} 3^{2}=2 & 3^{3}=6 & 3^{4}=4 & 3^{5}=5 & 3^{6}=1 \\ \text { or } & & & \\ 5^{2}=4 & 5^{3}=6 & 5^{4}=2 & 5^{5}=3 & 5^{6}=1 \end{array}$					M1	2.1
	Or special case for M1A0 if powers not shown: 3 has order 6 so generates the group						
	3 (or 5) has order 6 and so generates the group so G is cyclic					A1	2.4
						(2)	
(b)	$\{1\}, H$					B1	1.1b
	$\{1,17\}$ or $\{1,7,13\}$					M1	1.1b
	$\{1,17\}$ and $\{1,7,13\}$ (and no others)					A1	1.1b
						(3)	
(c)	${ }^{-1}$	2	4	5	6		
	${ }_{H}$	7	13		17	M1	3.1a
	or					A1	1.1 b
		2	$1{ }^{3} 4$	5	6	A1	1.1 b
	H 1	13	17	5	17		
						(3)	
(12 marks)							

Notes
(i)
M1: Begins proof by correctly expanding $\left(a^{*} b\right)^{*} c$ or $a^{*}\left(b^{*} c\right)$ to an expression in a, b and c. Note
they may expand as $\left(a^{*} b\right)^{*} c=\left(a^{*} b\right)+c+\left(a^{*} b\right) c=a+b+a b+c+(a+b+a b) c$ which is equally
fine.
M1: Makes progress towards the required result by attempting to expand both $\left(a^{*} b\right)^{*} c$ and
$a^{*}\left(b^{*} c\right)$, but e e generous with the attempts for this method. May achieve this by working from
left to right, so look for arriving at the other expression through a chain of equalities.
A1: For both underlined expressions (but accept eg. $c(a+b+a b)$ for $(a+b+a b) c)$ and a correct
expansion seen for each independently or part of a chain as shown. The expansion may have
terms in different orders.
A1: Explains that $\left(a^{*} b\right)^{*} c=a^{*}\left(b^{*} c\right)$ means that * is associative. Depends on both M marks
and a correct expression having been found.

(ii)(a)

M1: Demonstrates understanding of the term cyclic by either attempting all the powers of 3 or 5 . Accept for this a statement $\langle 3\rangle=\{3,2,6,4,5,1\}$ which shows the elements list in order of powers. A1: Must have evaluated all powers of 3 or 5 correctly and explains why the group is cyclic.
Accept as 3 generates the group, or as 3 has the same order of G as reason. Must refer to cyclic in conclusion.
Special case: Allow M1A0 for a correct explanation of why G is cyclic if the order of 3 (or 5) is stated as 6 without justification - but must include reference to either being a generator or having the same order as G.
(b) (You may ignore references to the operation for this part)

B1: Identifies $\{1\}$ and H as subgroups
M1: Identifies $\{1,17\}$ or $\{1,7,13\}$ as a subgroup
A1: Identifies $\{1,17\}$ and $\{1,7,13\}$ as subgroups and no others
(c)

M1: Attempts to identify an isomorphism between the groups - may be implied by

- identifying at least 2 correct non-identity pairings or
- by attempting to rearrange group tables to have the same structure, or
- by attempting to map powers of a generator to powers of a generator e.g $(\text { their } 3)^{k} \rightarrow(\text { their } 5)^{k}$ or
- by matching of non-trivial proper subgroups to each other.

A1: Identifies 4 correct pairings, or sets up a mapping with one correct generator
A1: All pairings correct, or sets up a mapping with generators of each group correct, eg. $3^{k} \rightarrow 5^{k}$

Q4.

Question	Scheme						Marks	AOs
(a)	$\begin{gathered} p^{*} q=p^{*} p^{*} p^{*} p=s^{*} s=r \\ \text { OR } \\ =r \Rightarrow p^{*} p^{*} p^{*} p=r \Rightarrow p^{*} q=r \end{gathered}$						B1	2.1
	$\begin{gathered} s^{*} p=p^{*} p^{*} p=q \\ \text { OR } \\ \text { as } p^{*} p^{*} p=q \text { and } p^{*} p=s \Rightarrow s^{*} p=q \end{gathered}$						B1	2.1
							(2)	
(b)	*	e	p	q	r	s	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	e	e	p	q	r	s		
	p	p	s	r	e	q		
	q	q	r	p	s	e		
	r	r	e	s	q	p		
	s	s	q	e	p	r		
							(2)	
(c)	$p^{*} q^{*} r^{*} s=e$						B1	1.1 b
							(1)	
(d)	The order of a subgroup is a factor of the order of the group (Lagrange's Theorem)						M1	1.2
	As 3 is not a factor of 5, the student's statement is wrong						A1	2.3
							(2)	
(7 marks)								

Notes

(a)

B1: Correct proof to achieve the printed statement
B1: Correct proof to achieve the printed statement
(b) Marked B1 B1 on ePen

M1: Finds at least 13 correct entries - usually the highlighted
A1: Completely correct table
(c)

B1: See scheme
(d)

M1: Some indication that the order of a subgroup must be a factor of the order of the group. May say that 3 is not a factor of 5 or equivalent
A1: Fully correct unambiguous statement that refers Lagrange's theorem and either

- 3 is not a factor of 5
- 3 does not divide 5
- 5 is not divisible by 3
and comments that the student's statement is incorrect. No contradictory statements

Q5.

(a)

M1: For any 2 of the self-inverse elements
A1: All 4 self-inverse elements correctly identified
B1: Correct inverses for the other elements
(b)

M1: At least 3 correct orders
A1: 6 correct orders
A1: All correct
(c)

B1: Describes a correct subgroup of order 4
(d)

B1: Correct explanation

Q6.

Question	Scheme	Marks	AOs
(i)	(Order of a subgroup must divide the order of a group by Lagrange's Theorem), so need to check if 11 (and/or 21) divides $46^{46}+47^{47}$ and by FLT, e.g. $a^{11-1}=a^{10} \equiv 1(\bmod 11)$, so	M1	1.1 b
	$\begin{aligned} 46^{46}+47^{47} & \equiv 2^{4 \times 10+6}+3^{4 \times 10+7} \equiv 2^{6}+3^{7} \equiv 64+\left(3^{3}\right)^{2} \times 3 \\ & \equiv 9+5^{2} \times 3 \equiv 84 \equiv 7(\bmod 11) \end{aligned}$	M1	3.1a
	Hence 11 is not a divisor of $46^{46}+47^{47}$ so not a possible order for a subgroup.	Al	2.2a
(ii)	$21=7 \times 3$ so need to check for factors of 7 and 3 , using $a^{2} \equiv 1(\bmod 3)$ and $a^{6} \equiv 1(\bmod 7)$	M1	3.1a
	$46^{46}+47^{47} \equiv 1^{46}+2^{47} \equiv 1+2^{2 \times 23+1} \equiv 1+2^{1} \equiv 3 \equiv 0(\bmod 3)$	M1	1.1b
	$\begin{aligned} & 46^{46}+47^{47} \equiv 4^{46}+(-2)^{47} \equiv 4^{6 \times 774}+(-2)^{6 \times 775} \equiv 4^{4}+(-2)^{5} \\ & \equiv 16^{2}-32 \equiv 9^{2}-4 \equiv 81-4 \equiv 77 \equiv 0(\bmod 7) \end{aligned}$	M1	2.1
	As $46^{46}+47^{47}$ divisible by both 3 and 7 it is divisible by 21 and hence this is a possible order for a subgroup.	Al	2.4
		(7)	
(7 marks)			

Notes:

(i)

M1: For an attempt to apply a correct Fermat's Little theorem at least once in the question with either $p=11, \mathrm{p}=7$ or $p=3$ on either the 46^{46} or 47^{47} term.
M1: Applies FLT and congruence arithmetic fully to find the residue of $46^{46}+47^{47}$ modulo 11 . There will be lots of different routes, so look for an attempt to apply FLT that leads to determining if 11 is a divisor or not.
Al: $46^{46}+47^{47} \equiv 7(\bmod 11)$ (accept equivalents as long as it is clear it is not congruent to 0) and deduces it is not a possible order for a subgroup.
(ii)

M1: Applies checks for both 7 and 3 as divisors of $46^{46}+47^{47}$ via similar strategy
M1: Applies FLT with $p=3$ to find a smaller residue modulo 3. Other routes are possible.
M1: Applies FLT with $p=7$ to find a smaller residue modulo 7 . Other routes are possible.
A1: Shows $46^{46}+47^{47}$ congruent to 0 modulo 3 and modulo 7 , and deduces 21 divides $46^{46}+47^{47}$ hence it is a possible order for a subgroup.
Alt:
M1: Reduces the bases modulo 21 and applies a power reduction technique using congruences for at least one of the power of 46 or 47
M1: Reduces fully by congruence arithmetic either the 46^{46} or 47^{47} term.
M1: Reduces fully by congruence arithmetic both the 46^{46} and 47^{47} terms
Al: Shows $46^{46}+47^{47}$ congruent to 0 modulo 21 , and deduces 21 divides $46^{46}+47^{47}$ hence it is a possible order for a subgroup.

Q7.

Question	Scheme	Marks	A0s
(a)	$\{e=\}\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right)$	B1	1.1b
		(1)	
(b)	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2\end{array}\right)$	B1	1.1b
		(1)	
(c)	Demonstrates that, for example: $\begin{gathered} {[a \circ b] \circ c=\left[\left(\begin{array}{llll} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{array}\right) \circ\left(\begin{array}{llll} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{array}\right)\right] \circ\left(\begin{array}{llll} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{array}\right)} \\ =\left(\begin{array}{llll} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{array}\right) \circ\left(\begin{array}{lll} 1 & 2 & 3 \\ 4 & 1 & 2 \end{array}\right)=\left(\begin{array}{llll} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{array}\right) \\ a \circ[b \circ c]=\left(\begin{array}{lllll} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{array}\right) \circ\left[\left(\begin{array}{lllll} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 \end{array}\right) \circ\left(\begin{array}{llll} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{array}\right)\right] \\ =\left(\begin{array}{llll} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{array}\right) \circ\left(\begin{array}{llll} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{array}\right)=\left(\begin{array}{llll} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{array}\right) \end{gathered}$	M1	2.1
	So $[a \circ b] \circ c=a \circ[b \circ c]$ or associative	A1	2.4
		(2)	
(d)	The order of the group is 24 or 4 !	B1	1.1b
	$\mathbf{4}$ is a factor of $\mathbf{2 4}$ or $\mathbf{4} / \mathbf{2 4}$ therefore it is possible for a subgroup to have order 4 .	B1ft	2.4
		(2)	
(6 marks)			

Notes:

(a)

Bl: See scheme
(b)

B1: See scheme
(c)

M1: Shows two calculations in an attempt to show associative, e,g, $[a \circ b] \circ c$ and $a \circ[b \circ c]$. There must be an intermediate line of working with evidence of using the permutations. Condone the wrong order for this mark.
Al: Correct calculations leading to $[a \circ b] \circ c=a \circ[b \circ c]$ or states associative

Note Incorrect order scores M1 A0

$$
\left.\begin{array}{rl}
{[a \circ b] \circ} & c=\left[\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 2 & 1
\end{array}\right) \circ\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 3 & 1
\end{array}\right)\right] \circ\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{array}\right) \\
=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 1 & 4 & 2
\end{array}\right) \circ\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 4 \\
4 & 1 & 2
\end{array} 3\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array} 4\right. \\
2 & 4
\end{array} \begin{array}{l}
3 \\
1
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 3 & 3
\end{array}\right)
$$

(d)

Bl : Order is 24 or 4 !
Blft: Follow through on their order of the group, draws the correct conclusion

Q8.

(b)	$4^{*} 4^{*} 4=4^{*}(4 * 4)=4 * 6$ or $4 * 4^{*} 4=(4 * 4) * 4=6 * 4$	M1	2.1
	$=0$ (the identity) so 4 has order 3	A1	2.2a
		(2)	
(c)	3 and 5 each have order 6 so either generates the group	M1	3.1a
	Either $3^{1}=3,3^{2}=4,3^{3}=2,3^{4}=6,3^{5}=5,3^{6}=0$ Or $5^{1}=5,5^{2}=6,5^{3}=2,5^{4}=4,5^{5}=3,5^{6}=0$	A1, A1	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(3)	
(11 marks)			
Notes:			
(a)(i) M1: Begins completing the table - obtaining correct first row and first column and using symmetry M1: Mostly correct - three rows or three columns correct (so demonstrates understanding of using * A1: Completely correct			
(a)(ii) M1: States closure and identifies the identity as zero M1: Finds inverses for each element			

Al: States that associative law is satisfied and so all axioms satisfied and S is a group
(b)

M1: Clearly begins process to find $4^{*} 4^{*} 4$ reaching $6^{*} 4$ or $4^{*} 6$ with clear explanation
Al: Gives answer as zero, states identity and deduces that order is 3
(c)

Ml: Finds either 3 or 5 or both
A1: Expresses four of the six terms as powers of either generator correctly (may omit identity and generator itself)
A1: Expresses all six terms correctly in terms of either 3 or 5 (Do not need to give both)

Q9.

Question	Scheme	Marks	AOs
(i)	If we assume $a b=b a$, as $a^{2} b=b a$ then $a b=a^{2} b$	M1	2.1
	So $a^{-1} a b b^{-1}=a^{-1} a^{2} b b^{-1}$	M1	2.1
	So $e=a$	A1	2.2a
	But this is a contradiction, as the elements e and a are distinct so $a b \neq b a$	A1	2.4
		(4)	
(ii)(a)	2 has order 4 and 4 has order 2	M1	1.1b
	7,8 and 13 have order 4	A1	1.1 b
	11 and 14 have order 2 and 1 has order 1	A1	1.1b
		(3)	
(ii)(b)	Finds the subgroup $\{1,2,4,8\}$ or the subgroup $\{1,7,4,13\}$	M1	1.1b
	Finds both and refers to them as cyclic groups, or gives generator 2 and generator 7	A1	2.4
	Finds $\{1,4,11,14\}$	B1	2.2a
	States each element has order 2 or refers to it as Klein Group	B1	2.5
		(4)	
(ii)(c)	J has an element of order 8, (H does not) or J is a cyclic group (H is not) or other valid reason	M1	2.4
	They are not isomorphic	A1	2.2a
		(2)	
(13 marks)			

Notes:

(i)

M1: Proof begins with assumption that $a b=b a$ and deduces that this implies $a b=a^{2} b$
M1: A correct proof with working shown follows, and may be done in two stages
A1: Concludes that assumption implies that $e=a$
A1: Explains clearly that this is a contradiction, as the elements e and a are distinct so $a b \neq b a$
(ii)(a)

M1: Obtains two correct orders (usually the two in the scheme)
A1: Finds another three correctly
A1: Finds the final three so that all eight are correct
(ii)(b)

M1: Finds one of the cyclic subgroups
Al: Finds both subgroups and explains that they are cyclic groups, or gives generators 2 and 7
B1: Finds the non cyclic group
B1: Uses correct terms that each element has order 2 or refers to it as Klein Group
(ii)(c)

M1: Clearly explains how J differs from H
Al: Correct deduction

