Conic Sections 1

Questions

Q1.

The rectangular hyperbola H has parametric equations

$$
x=4 t, \quad y=\frac{4}{t} \quad t \neq 0
$$

The points P and Q on this hyperbola have parameters $t=\frac{1}{4}$ and $t=2$ respectively.
The line / passes through the origin O and is perpendicular to the line $P Q$.
(a) Find an equation for I.
(b) Find a cartesian equation for H.
(c) Find the exact coordinates of the two points where / intersects H.

Give your answers in their simplest form.

(Total for question = 7 marks)

Q2.
The parabola C has equation $y^{2}=4 a x$, where a is a constant and $a>0$
The point $Q\left(a q^{2}, 2 a q\right), q>0$, lies on the parabola C.
(a) Show that an equation of the tangent to C at Q is

$$
\begin{equation*}
q y=x+a q^{2} \tag{4}
\end{equation*}
$$

The tangent to C at the point Q meets the x-axis at the point $X\left(-\frac{1}{4} a, 0\right)$ and meets the directrix of C at the point D.
(b) Find, in terms of a, the coordinates of D.

Given that the point F is the focus of the parabola C,
(c) find the area, in terms of a, of the triangle $F X D$, giving your answer in its simplest form.

Q3.

Figure 2
[You may quote without proof that for the general parabola $\left.y^{2}=4 a x, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a}{y}\right]$
The parabola C has equation $y^{2}=16 x$.
(a) Deduce that the point $P\left(4 p^{2}, 8 p\right)$ is a general point on C.

The line l is the tangent to C at the point P.
(b) Show that an equation for / is

$$
p y=x+4 p^{2}
$$

The finite region R, shown shaded in Figure 2, is bounded by the line I, the x-axis and the parabola C.

The line /intersects the directrix of C at the point B, where the y coordinate of B is $\frac{10}{3}$
Given that $p>0$
(c) show that the area of R is 36

Q4.

Figure 2
Figure 2 shows a sketch of part of the rectangular hyperbola H with equation

$$
x y=c^{2} \quad x>0
$$

where c is a positive constant.
The point $P\left(c t, \frac{c}{t}\right)$ lies on H.
The line l is the tangent to H at the point P.
The line $/$ crosses the x-axis at the point A and crosses the y-axis at the point B.
The region R, shown shaded in Figure 2, is bounded by the x-axis, the y-axis and the line l.

Given that the length $O B$ is twice the length of $O A$, where O is the origin, and that the area of R is 32 , find the exact coordinates of the point P.

Q5.

Figure 2
Figure 2 shows a sketch of the parabola C with equation $y^{2}=4 a x$, where a is a positive constant. The point S is the focus of C and the point $P\left(a p^{2}, 2 a p\right)$ lies on C where $p>0$
(a) Write down the coordinates of S.
(b) Write down the length of $S P$ in terms of a and p.

The point $Q\left(a q^{2}, 2 a q\right)$, where $p \neq q$, also lies on C.
The point M is the midpoint of $P Q$.
Given that $p q=-1$
(c) prove that, as P varies, the locus of M has equation

$$
y^{2}=2 a(x-a)
$$

Q6.

The point $P\left(a p^{2}, 2 a p\right)$, where a is a positive constant, lies on the parabola with equation

$$
y^{2}=4 a x
$$

The normal to the parabola at P meets the parabola again at the point $Q\left(a q^{2}, 2 a q\right)$
(a) Show that

$$
q=\frac{-p^{2}-2}{p}
$$

(b) Hence show that

$$
P Q^{2}=\frac{k a^{2}}{p^{4}}\left(p^{2}+1\right)^{n}
$$

where k and n are integers to be determined.

$$
\text { (Total for question = } 10 \text { marks) }
$$

Q7.
The parabola C has equation $y^{2}=10 x$
The point F is the focus of C.
(a) Write down the coordinates of F.

The point P on C has y coordinate q, where $q>0$
(b) Show that an equation for the tangent to C at P is given by

$$
\begin{equation*}
10 x-2 q y+q 2=0 \tag{3}
\end{equation*}
$$

The tangent to C at P intersects the directrix of C at the point A.
The point B lies on the directrix such that $P B$ is parallel to the x-axis.
(c) Show that the point of intersection of the diagonals of quadrilateral $P B A F$ always lies on the y-axis.

Q8.

The rectangular hyperbola H has equation $x y=36$
(a) Use calculus to show that the equation of the tangent to H at the point $P\left(6 t, \frac{6}{t}\right)$ is

$$
y t^{2}+x=12 t
$$

The point $Q^{\left(12 t, \frac{3}{t}\right)}$ also lies on H.
(b) Find the equation of the tangent to H at the point Q.

The tangent at P and the tangent at Q meet at the point R.
(c) Show that as t varies the locus of R is also a rectangular hyperbola.

(Total for question = 9 marks)

Q9.

The normal to the parabola $y^{2}=4 a x$ at the point $P\left(a p^{2}, 2 a p\right)$ passes through the parabola again at the point $Q\left(a q^{2}, 2 a q\right)$.

The line $O P$ is perpendicular to the line $O Q$, where O is the origin.
Prove that $p^{2}=2$

Mark Scheme - Conic Sections 1

Q1.

Question Number	Scheme		Marks
(a)	$x=4 t, y=\frac{4}{t}, t \neq 0$		
	$t=\frac{1}{4} \Rightarrow P(1,16), \quad t=2 \Rightarrow Q(8,2)$	Coordinates for either P or Q are correctly stated. (Can be implied).	B1
	$m(P Q)=\frac{2-16}{8-1}\{=-2\}$	Finds the gradient of the chord $P Q$ with $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ then uses in $y=-\frac{1}{m} x$. Condone incorrect sign of gradient.	M1
	$m(l)=\frac{1}{2}$ So, $l: y=\frac{1}{2} x$ or $2 y=x$	$y=\frac{1}{2} x \text { or } 2 y=x$	A1 oe
(b)	$x y=16 \text { or } y=\frac{16}{x} \text { or } x=\frac{16}{y}$	Correct Cartesian equation. Accept $\frac{4}{y}=\frac{x}{4} \text { or } x y=4^{2}$	$\begin{aligned} & \quad[3] \\ & \mathrm{B} 1 \mathrm{oe} \end{aligned}$
(c)	Way 1 Way 2 Way 3 $\frac{1}{2} x=\frac{16}{x}$ $\frac{4}{t}=\frac{1}{2}(4 t)$ $2 y=\frac{16}{y}$ $\left\{x^{2}=32\right\}$ $\left\{t^{2}=2\right\}$ $\left\{y^{2}=8\right\}$	Attempts to substitute their l into either their Cartesian equation or parametric equations of H	M1 ${ }^{\text {[1] }}$
	$(4 \sqrt{2}, 2 \sqrt{2}),(-4 \sqrt{2},-2 \sqrt{2})$	At least one set of coordinates (simplified or un-simplified) or $x= \pm 4 \sqrt{2}, y= \pm 2 \sqrt{2}$	A1
		Both sets of simplified coordinates. Accept written in pairs as $\begin{aligned} & x=4 \sqrt{2}, y=2 \sqrt{2} \\ & x=-4 \sqrt{2}, y=-2 \sqrt{2} \end{aligned}$	A1
			[3] 7

Q2.

Question Number	Scheme		Marks
(a)	$\begin{aligned} & y^{2}=4 a x, \text { at } Q\left(a q^{2}, 2 a q\right) \\ & y=2 \sqrt{a} x^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\sqrt{a} x^{-\frac{1}{2}} \text { or } 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=2 a \times \frac{1}{2 a q} \end{aligned}$	$\begin{array}{r} \frac{\mathrm{d} y}{\mathrm{~d} x}= \pm k x^{-\frac{1}{2}} \text { or } k y \frac{\mathrm{~d} y}{\mathrm{~d} x}=c \text { or } \\ \text { their } \frac{\mathrm{d}}{\mathrm{~d}} \end{array}$	M1
	When $x=a q^{2}, m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{a}}{\sqrt{a q^{2}}}=\frac{\sqrt{a}}{\sqrt{a} q}=\frac{1}{q}$ or when $y=2 a q, m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 a}{2(2 a q)}=\frac{1}{q}$	their $\frac{4}{\text { di }}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{q}$	A1
	T: $y-2 a q=\frac{1}{q}\left(x-a q^{2}\right)$		dM1
	$\begin{aligned} & \text { T: } q y-2 a q^{2}=x-a q^{2} \\ & \text { T: } q y=x+a q^{2 *} \end{aligned}$		A1 *
(b)	$x\left(-\frac{1}{4} a, 0\right) \Rightarrow 0=-\frac{1}{4} a+a q^{2}$	Substitutes $x=-\frac{1}{4} a$ and $y=0$	M1 ${ }^{[4]}$
	$\Rightarrow\left\{q^{2}=\frac{1}{4} \Rightarrow q=-\frac{1}{2}(\text { reject })\right\} q=\frac{1}{2}$	$\begin{array}{r} \text { into } \mathrm{T} \\ q=\frac{1}{2} \mathrm{oe} \end{array}$	A1
	So, $\frac{1}{2} y=-a+a\left(\frac{1}{2}\right)^{2}$	Substitutes their " $q=\frac{1}{2}$ " and $x=-a$ in \mathbf{T} or finds $y_{D}=\frac{1}{q}\left(-a+a q^{2}\right)$	M1
	giving, $y=-\frac{3 a}{2}$. So $D\left(-a,-\frac{3}{2} a\right)$ o.e.	$D\left(-a,-\frac{3}{2} a\right)$ o.e.	A1
(c)	$\{\text { focus } F(a, 0)\}$		[4]
Way 1	$\operatorname{Area}(F X D)=\frac{1}{2}\left(\frac{5 a}{4}\right)\left(\frac{3 a}{2}\right)=\frac{15 a^{2}}{16}$	Applies $\frac{1}{2}$ (their $\|F X\|$ (their $\left\|y_{D}\right\|$).	M1
		If their $\left\|y_{D}=\frac{1}{q}\left(-a+a q^{2}\right)\right\|$ then require an attempt to sub for q to award M.	
		$\frac{15 a^{2}}{16} \text { or } 0.9375 a^{2}$	A1 cso

(c) Way 2	$\begin{aligned} \operatorname{Area}(F X D) & =\frac{1}{2}\left\|\begin{array}{cccc} a & -\frac{1}{4} a & -a & a \\ 0 & 0 & -\frac{3}{2} a & 0 \end{array}\right\| \\ & \left.=\frac{1}{2}\left(0+\frac{3}{8} a^{2}+0\right)-\left(0+0-\frac{3}{2} a^{2}\right) \right\rvert\,=\frac{15}{16} a^{2} \end{aligned}$	A correct attempt to apply the shoelace method. $\frac{15 a^{2}}{16} \text { or } 0.9375 a^{2}$	M1 A1cao
(c) Way 3	$\begin{aligned} & \text { Rectangle - triangle } 1-\text { triangle } 2 \\ & =2 a \cdot \frac{3 a}{2}-\frac{1}{2} \cdot \frac{3 a}{4} \cdot \frac{3 a}{2}-\frac{1}{2} \cdot 2 a \cdot \frac{3 a}{2}=3 a^{2}-\frac{9 a^{2}}{16}-\frac{3 a^{2}}{2} \end{aligned}$		M1
		$\frac{15 a^{2}}{16}$ or $0.9375 a^{2}$	A1cao
(c) Way 4	Attempts sine rule using appropriate choice from $F X=\frac{5 a}{4}, F D=\frac{5 a}{2}, D X=\frac{3 \sqrt{5} a}{4}, \sin F=\frac{3}{5}, \sin X=\frac{2}{\sqrt{5}}$	$\text { Uses Area }=\frac{1}{2} a b \sin C$	M1
		$\frac{15 a^{2}}{16} \text { or } 0.9375 a^{2}$	Alcao
			10

	Question Notes
(c) Way 1	Do not award M1 if area of wrong triangle found e.g. $\frac{1}{2} \cdot 2 a \cdot \frac{3 a}{2}=\frac{3 a^{2}}{2}$

Q3.

Question	Scheme	Marks	AOs
(a)	$\begin{aligned} & y^{2}=(8 p)^{2}=64 p^{2} \text { and } 16 x=16\left(4 p^{2}\right)=64 p^{2} \\ & \Rightarrow P\left(4 p^{2}, 8 p\right) \text { is a general point on } C \end{aligned}$	B1	2.2a
		(1)	
(b)	$y^{2}=16 x$ gives $a=4$, or $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=16$ so $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8}{y}$	M1	2.2a
	$l: y-8 p=\left(\frac{8}{8 p}\right)\left(x-4 p^{2}\right)$	M1	1.1b
	leading to $p y=x+4 p^{2} *$	A1*	2.1
		(3)	
(c)	$B\left(-4, \frac{10}{3}\right)$ into $l \Rightarrow \frac{10 p}{3}=-4+4 p^{2}$	M1	3.1a
	$6 p^{2}-5 p-6=0 \Rightarrow(2 p-3)(3 p+2)=0 \Rightarrow p=\ldots$	M1	1.16
	$p=\frac{3}{2}$ and l cuts x-axis when $\frac{3}{2}(0)=x+4\left(\frac{3}{2}\right)^{2} \Rightarrow x=\ldots$	M1	2.1
	$x=-9$	A1	1.1b
	$p=\frac{3}{2} \Rightarrow P(9,12) \Rightarrow \operatorname{Area}(R)=\frac{1}{2}(9--9)(12)-\int_{0}^{9} 4 x^{\frac{1}{2}} \mathrm{~d} x$	M1	2.1
	$\int \frac{1}{1} 4 x^{\frac{3}{2}}$	M1	1.1b
	$\int 4 x^{2} \mathrm{~d} x=\frac{x^{\left.\frac{3}{2}\right)}}{(+c)}$ or $\frac{x^{2}}{} x^{2}(+c)$	A1	1.16
	Area $(R)=\frac{1}{2}(18)(12)-\frac{8}{3}\left(9^{\frac{3}{2}}-0\right)=108-72=36 *$	A1*	1.1 b
		(8)	

$\stackrel{(c)}{\text { ALT }} 1$	$B\left(-4, \frac{10}{3}\right)$ into $l \Rightarrow \frac{10 p}{3}=-4+4 p^{2}$	M1	3.1a
	$6 p^{2}-5 p-6=0 \Rightarrow(2 p-3)(3 p+2)=0 \Rightarrow p=\ldots$	M1	1.1b
	$p=\frac{3}{2}$ into l gives $\frac{3}{2} y=x+4\left(\frac{3}{2}\right)^{2} \Rightarrow x=\ldots$	M1	2.1
	$x=\frac{3}{2} y-9$	A1	1.1b
	$p=\frac{3}{2} \Rightarrow P(9,12) \Rightarrow \operatorname{Area}(R)=\int_{0}^{12}\left(\frac{1}{16} y^{2}-\left(\frac{3}{2} y-9\right)\right) \mathrm{d} y$	M1	2.1
	$\int\left(\frac{1}{1} y^{2}-\frac{3}{2} y+9\right) \mathrm{d} y=\frac{1}{4} y^{3}-\frac{3}{4} y^{2}+9 y(+c)$	M1	1.1 b
	$\int\left(16{ }^{2}{ }^{2}\right.$	A1	1.1 b
	$\begin{aligned} \operatorname{Area}(R) & =\left(\frac{1}{48}(12)^{3}-\frac{3}{4}(12)^{2}+9(12)\right)-(0) \\ & =36-108+108=36^{*} \end{aligned}$	A1*	1.1b
		(8)	

Question	Scheme	Marks	AOs
$\stackrel{(c)}{\text { (c) }} 2$	$B\left(-4, \frac{10}{3}\right)$ into $l \Rightarrow \frac{10 p}{3}=-4+4 p^{2}$	M1	3.1a
	$6 p^{2}-5 p-6=0 \Rightarrow(2 p-3)(3 p+2)=0 \Rightarrow p=\ldots$	M1	1.1 b
	$p=\frac{3}{2}$ and l cuts x-axis when $\frac{3}{2}(0)=x+4\left(\frac{3}{2}\right)^{2} \Rightarrow x=\ldots$	M1	2.1
	$x=-9$	A1	1.1b
	$\begin{aligned} & p=\frac{3}{2} \Rightarrow P(9,12) \text { and } x=0 \text { in } l: y=\frac{2}{3} x+6 \text { gives } y=6 \\ & \Rightarrow \operatorname{Area}(R)=\frac{1}{2}(9)(6)+\int_{0}^{0}\left(\left(\frac{2}{3} x+6\right)-\left(4 x^{\frac{1}{2}}\right)\right) \mathrm{d} x \end{aligned}$	M1	2.1
	$\frac{1}{2} x^{2}+6 x-\frac{8}{3}$	M1	1.1 b
	$\int\left(\frac{1}{3}\right.$) ${ }^{3}$	A1	1.1 b
	$\begin{aligned} \text { Area }(R) & =27+\left(\left(\frac{1}{3}(9)^{2}+6(9)-\frac{8}{3}\left(9^{\frac{1}{2}}\right)\right)-(0)\right) \\ & =27+(27+54-72)=27+9=36^{*} \end{aligned}$	A1*	1.1b
		(8)	
			narks)

Notes

(a)

B1 Substitutes $y_{P}=8 p$ into y^{2} to obtain $64 p^{2}$ and substitutes $x_{P}=4 p^{2}$ into $16 x$ to obtain $64 p^{2}$ and concludes that P lies on C.
(b)

M1 Uses the given formula to deduce the derivative. Alternatively, may differentiate using chain rule to deduce it.
M1 Applies $y-8 p=m\left(x-4 p^{2}\right)$, with their tangent gradient m, which is in terms of p.
Accept use of $8 p=m\left(4 p^{2}\right)+c$ with a clear attempt to find c.
A1* Obtains $p y=x+4 p^{2}$ by cso.

Notes Continued

(c)

M1 Substitutes their $x="-a$ " and $y=\frac{10}{3}$ into l.
M1 Obtains a 3 term quadratic and solves (using the usual rules) to give $p=\ldots$.
M1 Substitutes their p (which must be positive) and $y=0$ into l and solves to give $x=\ldots$.
A1 \quad Finds that l cuts the x-axis at $x=-9$
M1 Fully correct method for finding the area of R.
i.e. $\frac{1}{2}\left(\right.$ their $\left.x_{P}-"-9 "\right)$ (their $\left.y_{P}\right)-\int_{0}^{\text {their } x_{P}} 4 x^{\frac{1}{2}} \mathrm{~d} x$

M1 Integrates $\pm \lambda x^{\frac{1}{2}}$ to give $\pm \mu x^{\frac{3}{2}}$, where $\lambda, \mu \neq 0$
A1 Integrates $4 x^{\frac{1}{2}}$ to give $\frac{8}{3} x^{\frac{3}{2}}$, simplified or un-simplified.
A1* Fully correct proof leading to a correct answer of 36
(c)

ALT 1
M1 Substitutes their $x="-a "$ and $y=\frac{10}{3}$ into l.
M1 Obtains a 3 term quadratic and solves (using the usual rules) to give $p=\ldots$.
M1 Substitutes their p (which must be positive) into l and rearranges to give $x=\ldots$.
A1 \quad Finds l as $x=\frac{3}{2} y-9$
M1 Fully correct method for finding the area of R.
i.e. $\int_{0}^{\text {their } y_{p}}\left(\frac{1}{16} y^{2}-\right.$ their $\left.\left(\frac{3}{2} y-9\right)\right) \mathrm{d} y$

M1 Integrates $\pm \lambda y^{2} \pm \mu y \pm v$ to give $\pm \alpha y^{3} \pm \beta y^{2} \pm v y$, where $\lambda, \mu, v, \alpha, \beta \neq 0$
A1 Integrates $\frac{1}{16} y^{2}-\left(\frac{3}{2} y-9\right)$ to give $\frac{1}{48} y^{3}-\frac{3}{4} y^{2}+9 y$, simplified or un-simplified.
A1* Fully correct proof leading to a correct answer of 36

Notes Continued

(c)

ALT 2
M1 Substitutes their $x="-a$ " and $y=\frac{10}{3}$ into l.
M1 Obtains a 3 term quadratic and solves (using the usual rules) to give $p=\ldots$.
M1 Substitutes their p (which must be positive) and $y=0$ into l and solves to give $x=\ldots$.
A1 \quad Finds that l cuts the x-axis at $x=-9$
M1 Fully correct method for finding the area of R.
i.e. $\frac{1}{2}($ their 9$)($ their 6$)+\int_{0}^{\operatorname{tair} x_{p}}\left(\right.$ their $\left.\left(\frac{2}{3} x+6\right)-\left(4 x^{\frac{1}{2}}\right)\right) \mathrm{d} y$

M1 Integrates $\pm \lambda x \pm \mu \pm v x^{\frac{1}{2}}$ to give $\pm \alpha x^{2} \pm \mu x \pm \beta x^{\frac{3}{2}}$, where $\lambda, \mu, v, \alpha, \beta \neq 0$
A1 Integrates $\left(\frac{2}{3} x+6\right)-\left(4 x^{\frac{1}{2}}\right)$ to give $\frac{1}{3} x^{2}+6 x-\frac{8}{3} x^{\frac{3}{2}}$, simplified or un-simplified.
A1* Fully correct proof leading to a correct answer of 36

Q4.

Question	Scheme	Marks	AOs
	$H: x y=c^{2}, c>0 ; P\left(c t, \frac{c}{t}\right)$ lies on $H ; O B=2 O A ;$ Area $(O A B)=32$		
Way 1	Either $y=\frac{c^{2}}{x}=c^{2} x^{-1} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-c^{2} x^{-2}$ or $-\frac{c^{2}}{x^{2}}$ or $x y=c^{2} \Rightarrow x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0$ or $x=c p, y=\frac{c}{p} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} p} \cdot \frac{\mathrm{~d} p}{\mathrm{~d} x}=-\left(\frac{c}{p^{2}}\right)\left(\frac{1}{c}\right) ;$ condone $t \equiv p$ and so, at $P\left(c t, \frac{c}{t}\right), m_{T}=-\frac{1}{t^{2}}$	M1	3.1a
	$y-\frac{c}{t}="-\frac{1}{t^{2}} "(x-c t)$	M1	1.1b
	or $\frac{c}{t}="-\frac{1}{t^{2}} "(c t)+b \Rightarrow y="-\frac{1}{t^{2}} " x+$ their $b \Rightarrow y=-\frac{1}{t^{2}} x+\frac{2 c}{t}$	A1	1.1b
	,	M1	1.1b
	$y=0 \Rightarrow x=2 c t\left\{x_{A}=2 c t\right\}, x=0 \Rightarrow y=\frac{2}{t}\left\{\Rightarrow y_{B}=\frac{2 c}{t}\right\}$	A1	1.1b
	$\{O B=2 O A \Rightarrow\} \frac{2 c}{t}=2(2 c t) \Rightarrow t=\ldots$	M1	2.1
	$\left\{t^{2}=\frac{1}{2} \Rightarrow\right\} t=\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2}$ or awrt 0.707	A1	1.1b
	$\{$ Area $(O A B)=32 \Rightarrow\} \frac{1}{2}(2 c t)\left(\frac{2 c}{t}\right)=32 \Rightarrow c=\ldots\{\Rightarrow c=4\}$	M1	2.1
	Deduces the mumerical value x_{P} and y_{P} using their values of t and c	M1	2.2a
	$P(2 \sqrt{2}, 4 \sqrt{2})$ or P (awrt 2.83 , awrt 5.66) or $x=2 \sqrt{2}$ and $y=4 \sqrt{2}$	A1	1.1 b
		(10)	

Way 2	Same requirement as the $1^{\text {st }} \mathrm{M}$ mark in Way 1	M1	3.1a
	e.g. $\left\{t=\frac{1}{\sqrt{2}} \Rightarrow P\left(\frac{c}{\sqrt{2}}, \sqrt{2} c\right) \Rightarrow\right\}-\sqrt{2} c=-2\left(x-\frac{c}{\sqrt{2}}\right)$	M1	1.1b
	using $m_{T}=-2$ and their P which has been found by a correct method	A1	1.1b
	$y=0 \Rightarrow x=\sqrt{2} c\left\{\Rightarrow x_{4}=\sqrt{2} c\right\}, x=0 \Rightarrow y=2 \sqrt{2} c\left\{\Rightarrow y_{B}=2 \sqrt{2} c\right\}$	M1	1.1b
		A1	1.1b
	$\{O B=2 O A \Rightarrow\} m_{T}=-2$ and their $m_{T}=-\frac{1}{t^{2}}=-2 \Rightarrow t=\ldots$	M1	2.1
	$\left\{t^{2}=\frac{1}{2} \Rightarrow\right\} t=\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2}$ or awrt $0.707\left\{\Rightarrow P\left(\frac{c}{\sqrt{2}}, \sqrt{2} c\right)\right\}$	A1	1.1b
	$\{$ Area $(O A B)=32 \Rightarrow\} \frac{1}{2} \sqrt{2} c(2 \sqrt{2} c)=32 \Rightarrow c=\ldots \quad\{\Rightarrow c=4\}$	M1	2.1
	Deduces the numerical value x_{P} and y_{P} using their values of t and c	M1	2.2a
	$P(2 \sqrt{2}, 4 \sqrt{2})$ or P (awrt 2.83 , awrt 5.66) or $x=2 \sqrt{2}$ and $y=4 \sqrt{2}$	A1	1.1b
		(10)	
	(10 marks)		

Question	Scheme	Marks	AOs
Way 3	$H: x y=c^{2}, c>0 ; P\left(c t, \frac{c}{t}\right)$ lies on $H ; O B=2 O A ;$ Area $(O A B)=32$		

Way 4	Complete process substituting their $y-8 \sqrt{2}=-2(x-0)$ or $y-0=-2(x-4 \sqrt{2})$ into $x y=c^{2}$ and applying $b^{2}-4 a c=0$ to their resulting $2 x^{2}-8 \sqrt{2} x+c^{2}=0$	M1	3.1a
	e.g. $y-8 \sqrt{2}=-2(x-0)$ or $y-0=-2(x-4 \sqrt{2})$	M1	1.1 b
	using $m_{T}=-2$ and either their $A(4 \sqrt{2}, 0)$ or their $B(0,8 \sqrt{2})$ which have been found by a correct method	A1	1.1 b
	$\{$ Area $(O A B)=32, O B=2 O A \Rightarrow\} \frac{1}{2}(x)(2 x)=32 \Rightarrow x=\ldots$	M1	2.1
	$x=4 \sqrt{2}\left\{\Rightarrow x_{A}=4 \sqrt{2}\right\}$ or $y=8 \sqrt{2}\left\{\Rightarrow y_{B}=8 \sqrt{2}\right\}$	A1	1.1b
	$\begin{gathered} \text { dependent on } 2^{\text {nd }} \mathbf{M} \text { mark } \\ \left\{x y=c^{2} \Rightarrow\right\} x(-2 x+8 \sqrt{2})=c^{2}\left\{\Rightarrow 2 x^{2}-8 \sqrt{2} x+c^{2}=0\right\} \end{gathered}$	dM1	2.1
	$\text { or }\left\{x y=c^{2} \Rightarrow\right\} \frac{1}{2}(8 \sqrt{2}-y) y=c^{2}\left\{\Rightarrow y^{2}-8 \sqrt{2} y+2 c^{2}=0\right\}$	A1	1.1b
	$\left\{b^{2}-4 a c=0 \Rightarrow\right\}(8 \sqrt{2})^{2}-4(2)\left(c^{2}\right)=0 \Rightarrow c=\ldots .\{\Rightarrow c=4\}$	M1	1.1 b
	Deduces the numerical value x_{P} and y_{P} using their value of c	M1	2.2a
	$P(2 \sqrt{2}, 4 \sqrt{2})$ or P (awrt 2.83 , awrt 5.66) or $x=2 \sqrt{2}$ and $y=4 \sqrt{2}$	A1	1.1 b
		(10)	
Note:	For the final Ml mark in Wav 1. Wav 2. Wav 3 and Wav 4 Allow final M1 for a correct method which gives any of $x_{P}=2 \sqrt{2}$ or $y_{P}=4 \sqrt{2}$ or $x_{P}=$ awrt 2.83 or $y_{P}=$ awrt 5.66 o.e.		

Notes for Question	
Way 1	
	Establishes the gradient of the tangent by differentiating $x y=c^{2}$ - to give $\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm k x^{-2} ; k \neq 0$, or - by the product rule to give $\pm x \frac{\mathrm{~d} y}{\mathrm{~d} x} \pm y$, or - by parametric differentiation to give $\left(\right.$ their $\left.\frac{\mathrm{d} y}{\mathrm{~d} t}\right) \times \frac{1}{\left(\text { their } \frac{\mathrm{d} x}{\mathrm{~d} t}\right)}$, condoning $p \equiv t$ and attempt to use $P\left(c t, \frac{c}{t}\right)$ to write down the gradient of the tangent to the curve in terms of t
M1:	Correct straight line method for an equation of a tangent where $m_{T}\left(\neq m_{N}\right)$ is found by using calculus. Note: m_{T} must be a function of t for this mark
Al:	Correct equation of the tangent which can be simplified or un-simplified
M1:	Attempts to find either the x-coordinate of A or the y-coordinate of B
Al:	Both $\{x$-coordinate of A is $\} 2 c t$ and the $\{y$-coordinate of B is $\} \frac{2 c}{t}$
M1:	See scheme
Al:	See scheme
M1:	See scheme
M1:	See scheme
Al:	See scheme

Way 2	
M1:	Same description as the $1^{5 t} \mathrm{M}$ mark in Way 1
M1:	See scheme
Al:	Correct equation of the tangent which can be simplified or un-simplified
M1:	Attempts to find either the x-coordinate of A or the y-coordinate of B
Al:	Both $\{x$-coordinate of A is $\} \sqrt{2} c$ and the $\{y$-coordinate of B is $\} 2 \sqrt{2} c$
M1:	Recognising that the gradient of the tangent is -2 and puts this equal to their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and finds $t=\ldots$
Al:	See scheme
M1:	See scheme
M1:	See scheme
Al:	See scheme
Way 3	
M1:	Same description as the $1^{\text {tr }} \mathrm{M}$ mark in Way 1
M1:	See scheme
Al:	Correct equation of the tangent which can be simplified or un-simplified
M1:	Uses $y=2 x$ and Area $(O A B)=32$ to find either x_{A} or y_{B}
Al:	Either $\{x$-coordinate of A is $\} 4 \sqrt{2}$ or the $\{y$-coordinate of B is $\} 8 \sqrt{2}$
M1:	Recognising that the gradient of the tangent is -2 and puts this equal to their $\frac{\mathrm{d} y}{\mathrm{dx}}$ and finds $t=\ldots$
Al:	See scheme
M1:	Substitutes their P (which is in terms of c, and has come from a correct method) into the equation of the tangent and finds $c=\ldots$
M1:	See scheme
Al:	See scheme

Notes for Question

Notes for Question	
Ml:	See scheme
Ml:	See scheme
Al:	Correct equation of the tangent which can be simplified or un-simplified
Ml:	Uses $y=2 x$ and Area $(O A B)=32$ to find either x_{A} or y_{B}
Al:	Either $\{x$-coordinate of A is $\} 4 \sqrt{2}$ or the $\{y$-coordinate of B is $\} 8 \sqrt{2}$
Ml:	See scheme
Al:	See scheme
Ml:	See scheme
Ml:	See scheme
Al:	See scheme

Q5.

Question	Scheme	Marks	AOs
(a)	$(a, 0)$	B1	1.1b
		(1)	
(b)	$S P=a p^{2}+a$ Note that if focus-directrix property not used may use Pythagoras: $\text { E.g. } S P=\sqrt{4 a^{2} p^{2}+\left(a p^{2}-a\right)^{2}}=\ldots=a p^{2}+a$	B1	1.1b
		(1)	
(c)	M has coordinates $\left(\frac{a p^{2}+a q^{2}}{2}, \frac{2 a p+2 a q}{2}\right)$	B1	1.1b
	$y^{2}=a^{2}\left(p^{2}+2 p q+q^{2}\right)$	M1	1.1b
	$y^{2}=a^{2}\left(p^{2}-2+q^{2}\right)$	A1	2.1
	$2 a(x-a)=2 a\left(\frac{1}{2} a p^{2}+\frac{1}{2} a q^{2}-a\right)=a^{2}\left(p^{2}+q^{2}-2\right)$	M1	1.1b
	$\Rightarrow y^{2}=2 a(x-a)^{*}$	A1*	2.1
		(5)	
	Alternative for (c)		
	M has coordinates $\left(\frac{a p^{2}+a q^{2}}{2}, \frac{2 a p+2 a q}{2}\right)$	B1	1.1b
	$\frac{y}{a}=p+q$	M1	1.1b
	$\frac{y^{2}}{a^{2}}=p^{2}+q^{2}+2 p q=p^{2}+q^{2}-2$	A1	2.1
	$\frac{2 x}{a}=p^{2}+q^{2}$	M1	1.1b
	$\frac{y^{2}}{a^{2}}=\frac{2 x}{a}-2 \Rightarrow y^{2}=2 a(x-a)^{*}$	A1*	2.1
		(5)	
(7 marks)			

Notes

(a)

B1: Correct coordinates
(b)

B1: Correct expression
(c)

B1: Correct coordinates for the midpoint
M1: Squares their y coordinate of the midpoint
A1: Uses $p q=-1$ to obtain a correct expression for y^{2}
M1: Attempts $2 a(x-a)$ using the x coordinate of their midpoint and attempts to simplify
A1*: Fully correct completion to show $y^{2}=2 a(x-a)$

Alternative

B1: Correct coordinates for the midpoint
M1: Uses their y coordinate of the midpoint to find $p+q$
A1: Square and uses $p q=-1$ to obtain a correct expression for y^{2} / a^{2}
M1: Uses the x coordinate of their midpoint to find $p^{2}+q^{2}$
A1*: Fully correct completion to show $y^{2}=2 a(x-a)$

Q6.

Question	Scheme	Marks	AOs
(a)	$\begin{gathered} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{2 a p}=\frac{1}{p} \\ y=2 \sqrt{a} \sqrt{x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\sqrt{a}}{\sqrt{x}}=\frac{1}{p} \\ \text { or } \\ 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a}{y}=\frac{1}{p} \end{gathered}$	B1	1.1b
	$y-2 a p=-p\left(x-a p^{2}\right)$	M1	2.1
	$\begin{gathered} 2 a q-2 a p=-p\left(a q^{2}-a p^{2}\right) \\ p q^{2}+2 q-2 p-p^{3}=0 \end{gathered}$	A1	1.1b
	$(q-p)\left(p q+p^{2}+2\right)=0 \Rightarrow q=\ldots$	M1	3.1a
	$q=\frac{-p^{2}-2}{p}$ *	A1*	1.1b
		(5)	
(b)	$P Q^{2}=\left(a p^{2}-a q^{2}\right)^{2}+(2 a p-2 a q)^{2}$	M1	1.1b
	$\begin{gathered} =a^{2}(p-q)^{2}(p+q)^{2}+4 a^{2}(p-q)^{2} \\ =a^{2}(p-q)^{2}\left[(p+q)^{2}+4\right] \\ =a^{2}\left(2 p+\frac{2}{p}\right)^{2}\left[\left(-\frac{2}{p}\right)^{2}+4\right] \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$
	$=\frac{4 a^{2}}{p^{2}}\left(p^{2}+1\right)^{2} \frac{4}{p^{2}}\left(p^{2}+1\right)=\frac{16 a^{2}}{p^{4}}\left(p^{2}+1\right)^{3}$	$\begin{aligned} & \hline \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(5)	
(10 marks)			

Notes
(a)
B1: Deduces the correct tangent gradient
M1: Correct strategy for the equation of the normal
A1: Correct equation in terms of p and q
M1: Applies a correct strategy for finding q in terms of p. E.g. uses the fact that $q=p$ is known
and uses inspection or long division to find the other root
A1*: Correct proof with no errors
Alternative:
B1: As above
M1A1: $\frac{2 a q-2 a p}{a q^{2}-a p^{2}} \times \frac{1}{p}=-1$
M1: Finds gradient of $P Q$ and uses product of gradients $=-1$
A1: Correct equation
M1A1: As above
(b)
M1: Applies Pythagoras correctly to find $P Q^{2}$
M1: Uses their q in terms of p to obtain an expression in terms of p only
A1: Correct expression in any form in terms of p only
A1: $k=16$ or $n=3$
A1: $k=16$ and $n=3$

Q7.

Question	Scheme	Marks	AOs
(a)	$\left(\frac{5}{2}, 0\right)$ o.e.	B1	2.2a
		(1)	
(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{5}{q}$	B1	1.16
	At $P, x=\frac{q^{2}}{10}$ so tangent has equation $\begin{array}{r} y-q=\operatorname{their} \frac{5}{q}\left(x-\frac{q^{2}}{10}\right) \\ q=\left(\text { their } \frac{5}{q}\right)\left(\frac{q^{2}}{10}\right)+c \Rightarrow c=\ldots \text { to reach an equation for } y \end{array}$	M1	1.1 b
	$\begin{gathered} \Rightarrow q y-q^{2}=5 x-\frac{q^{2}}{2} \Rightarrow 10 x-2 q y+q^{2}=0^{*} \text { cso } \\ \quad \text { or } \\ \Rightarrow y=\frac{5}{q} x+\frac{q}{2} \Rightarrow 10 x-2 q y+q^{2}=0^{*} \text { cso } \end{gathered}$	Al*	2.1
		(3)	

(c)	B is $\left(-\frac{5}{2}, q\right)$ o.e.	Bl	2.2 a
	So diagonal $B F$ has equation $\frac{y-0}{q-0}=\frac{x-\frac{5}{2}}{-\frac{5}{2}-\frac{5}{2}}$ or $y=-\frac{q}{5}\left(x-\frac{5}{2}\right)$	Ml	1.1 b
	(AP is a tangent so) diagonals meet when $10 x-2 q\left(-\frac{q}{5}\left(x-\frac{5}{2}\right)\right)+q^{2}=0$ or $x=\frac{2 q y-q^{2}}{10}$ therefore $y=-\frac{q}{5}\left(\frac{2 q y-q^{2}}{10}-\frac{5}{2}\right)$ leading to $y=\ldots$ $\left\{\begin{array}{l}\left.y=\frac{25 q+q^{3}}{50+2 q^{2}}\right\}\end{array}\right.$	dM1	3.1 a
	$\Rightarrow 10 x+\frac{2 q^{2}}{5} x-q^{2}+q^{2}=0 \Rightarrow x\left(10+\frac{2 q^{2}}{5}\right)=0$ or $x=\frac{1}{10}\left(2 q\left(\frac{25 q+q^{3}}{50+2 q^{2}}\right)-q^{2}\right)$	M1	1.1 b
	But $10+\frac{2 q^{2}}{5}>0$ so not zero, hence $x=0$, so the intersection lies on the y-axis.	Al	2.4

	Or achieves $x=0$ (with no errors), so the intersection lies on the y axis.		
		(5)	
	Alternative for the last three marks		
	When $x=0$ for $B F \quad y=-\frac{q}{5}\left(-\frac{5}{2}\right)=\ldots$ or for $A P 2 q y=q^{2} \Rightarrow y=\ldots$	M1	1.1b
	For $B F y$ intercept is $\frac{q}{2}$ and for $A P y$ intercept is $\frac{q}{2}$	M1	3.1
	Since both diagonals always cross the y-axis at the same place, their intersection must always be on the y axis.	Al	2.4
marks)			
Notes:			
(a) B1: Deduces correct coordinates			
(b) Bl: Using or deriving $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{5}{q}$ Ml: Finds the equation of the tangent using the equation of a line formula with $y_{1}=q, x=\frac{q^{2}}{10}$ (or clear attempt at it) and $m=\frac{2 \times \text { their ' } a \text { ' }}{q}$. If uses $y=m x+c$ must find a value for c and substitute back to find an equation for the tangent Al*: Completes correctly to the given equation, no errors seen.			
(c) $\mathrm{Bl}: B$ is $\left(-\frac{5}{2}, q\right)$ seen or used. M1: A correct method to find the equation of the diagonal $B F$ using their coordinates of F and dM1: Uses the printed answer in (b) and their equation of the diagonal $B F$ to form an equation involving x or solves the two diagonals simultaneously to find an expression for y M1: Correctly factors out the x to achieve $x(\ldots)=0$ or uses their expression for y to find an expression for x A1: Conclusion given including reference to $10+\frac{2 q^{2}}{5} \neq 0$ Alternative for last three marks M1: Attempts to find the y intercept for at least one of the two diagonals. M1: Finds y intercept for both diagonals in order to compare A1: Both intercepts correct and suitable conclusion giving reference to both diagonals always crossing y-axis at same point.			

Q8.

Question	Scheme	Marks	A0s
(a)	$\begin{aligned} & y+x \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{y}{x}=\frac{-\frac{6}{t}}{6 t}=-\frac{1}{t^{2}} \text { or } y=\frac{36}{x} \Rightarrow \frac{d y}{d x}=-\frac{36}{x^{2}}= \\ & -\frac{36}{(6 t)^{2}}=-\frac{1}{t^{2}} \text { or } \frac{d y}{d x}=\frac{d y}{d t} \div \frac{d x}{d t}=\frac{-6 t^{-2}}{6}=-\frac{1}{t^{2}} \end{aligned}$	M1	1.1b
	$y-\frac{6}{t}="-\frac{1}{t^{2}}{ }^{\prime \prime}(x-6 t)$	M1	1.1b
	$y t^{2}+x=12 t^{*}$	A1 *	2.1
		(3)	
(b)	$\frac{d y}{d x}=-\frac{y}{x}=\frac{\frac{3}{t}}{12 t}=-\frac{1}{4 t^{2}}$ and $y-\frac{3}{t}={ }^{\prime}-\frac{1}{4 t^{2}}{ }^{\prime}(x-12 t)$	M1	1.1b
	$y-\frac{3}{t}=-\frac{1}{4 t^{2}}(x-12 t)$ o.e such as $4 y t^{2}+x=24 t$	A1	1.1b
		(2)	
(c)	E.g. $\left.\begin{array}{l}4 y t^{2}+x=24 t \\ y t^{2}+x=12 t\end{array}\right\} 3 y t^{2}=12 t \Rightarrow y=\ldots$ and $x=12 t-y t^{2}=\ldots$	M1	2.1
	$x=8 t$ and $y=\frac{4}{t}$	A1	1.1b
	$x y=\ldots$	dM1	1.1b
	$x y=32$ hence rectangular hyperbola	A1	2.4
		(4)	
(9 marks)			

Notes:

(a)

M1: Differentiates implicitly, directly or parametrically to find the gradient at the point P in terms of t. Allow slips in coefficients, as long as method is clear.
M1: Finds the equation of the tangent at the point P using their gradient (not reciprocal etc). If using $y=m x+c$ must proceed to find c and substitute back in to equation.
Al^{*} : The correct equation for the tangent at the point P from correct working.
(b)

Ml: Finds the new gradient (any method as above) and proceeds to find the equation of the tangent at the point Q. Alternatively replaces t by $2 t$ in the answer to (a).
Al: Correct equation - any form, need not be simplified and isw after a correct equation.
(c)

M1: Solves their simultaneous equations to find both the x and y coordinate for the point R.
A1: Correct point of intersection, it does not need to be simplified.
$\mathrm{dM1}$: Dependent on the first method mark. Multiplies x by y to reach a constant.
Al: Shows that $x y=32$ and hence rectangular hyperbola

Q9.

Question	Scheme	Marks	AOs
	$y^{2}=4 a x \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a$	M1	2.1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{y} \Rightarrow$ Gradient of normal is $\frac{-y}{2 a}=-p$	A1	1.1b
	Equation of normal is : $y-2 a p=-p\left(x-a p^{2}\right)$	M1	1.1 b
	Normal passes through $Q\left(a q^{2}, 2 a q\right)$ so $2 a q+a p q^{2}=2 a p+a p^{3}$	M1	3.1a
	Grad $O P \times$ Grad $O Q=-1 \Rightarrow \frac{2 a p}{a p^{2}} \frac{2 a q}{a q^{2}}=-1$	M1	2.1
	$q=\frac{-4}{p}$	A1	1.1 b
	$2 a\left(\frac{-4}{p}\right)+a p\left(\frac{16}{p^{2}}\right)=2 a p+a p^{3} \Rightarrow p^{4}+2 p^{2}-8=0$	M1	2.1
	$\left(p^{2}-2\right)\left(p^{2}+4\right)=0 \Rightarrow p^{2}=\ldots$	M1	1.1 b
	Hence (as $p^{2}+4 \neq 0$), $p^{2}=2^{*}$	A1*	1.1 b
		(9)	
ALT 1	First three marks as above and then as follows.	M1	2.1
		A1	1.1 b
		M1	1.1 b
	Solves $y^{2}=4 a x$ and their normal simultaneously to find, in terms of a and p, either $x_{Q}\left(=a p^{2}+4 a+\frac{4 a}{p^{2}}\right)$ or $y_{Q}\left(=-2 a p-\frac{4 a}{p}\right)$	M1	3.1a
	Finds the second coordinate of Q in terms of a and p	M1	1.1 b
	Both $x_{\underline{Q}}=a p^{2}+4 a+\frac{4 a}{p^{2}}$ and $y_{\underline{Q}}=-2 a p-\frac{4 a}{p}$	A1	1.1 b
	Grad $O P \times$ Grad $O Q=-1 \Rightarrow \frac{2 a p}{a p^{2}} \times \frac{-2 a p-\frac{4 a}{p}}{a p^{2}+4 a+\frac{4 a}{p^{2}}}=-1$	M1	2.1
	Simplifies expression and solves: $4 p^{2}+8=p^{4}+4 p^{2}+4$ $\Rightarrow p^{4}-4=0 \Rightarrow\left(p^{2}-2\right)\left(p^{2}+2\right)=0 \Rightarrow p^{2}=\ldots$	M1	2.1
	Hence (as $p^{2}+2 \neq 0$), $p^{2}=2^{*}$	A1*	1.1 b
		(9)	

Question	Scheme	Marks	AOs
ALT 2	First three marks as above and then as follows.	M1	2.1
		A1	1.1 b
		M1	1.1b
	Solves $y^{2}=4 a x$ and their normal simultaneously to find, in terms of a and p, either $x_{Q}\left(=a p^{2}+4 a+\frac{4 a}{p^{2}}\right)$ or $y_{Q}\left(=-2 a p-\frac{4 a}{p}\right)$	M1	3.1a
	Forms a relationship between p and q from their first coordinate: either $y_{Q}=2 a\left(-p-\frac{2}{p}\right) \Rightarrow q=-p-\frac{2}{p}$ or $x_{Q}=a\left(p+\frac{2}{p}\right)^{2} \Rightarrow q= \pm\left(p+\frac{2}{p}\right)$	M1	2.1
	$q=-p-\frac{2}{p}$ (if x coordinate used the correct root must be clearly identified before this mark is awarded).	A1	1.1b
	$\operatorname{Grad} O P \times \operatorname{Grad} O Q=-1 \Rightarrow \frac{2 a p}{a p^{2}} \times \frac{2 a q}{a q^{2}}=-1\left(\Rightarrow q=-\frac{4}{p}\right)$.	M1	2.1
	Sets $q=-p-\frac{2}{p}=-\frac{4}{p}$ and solves to give $p^{2}=\ldots$	M1	1.1b
	Hence (as $q=p+\frac{2}{p}=-\frac{4}{p}$ gives no solution), $p^{2}=2$ (only)*	A1*	1.1b
		(9)	
(9 marks)			

Notes

M1 Begins proof by differentiating and using the perpendicularity condition at point P in order to find the equation of the normal.
A1 Correct gradient of normal, $-p$ only.
M1 Use of $y-y_{1}=m\left(x-x_{1}\right)$. Accept use of $y=m x+c$ and then substitute to find c.
M1 Substitute coordinates of Q into their equation to find an equation relating p and q.
M1 Use of $m_{1} m_{2}=-1$ with $O P$ and $O Q$ to form a second equation relating p and q.
A1 $\quad q=\frac{-4}{p}$ only.
M1 Solves the simultaneous equations and cancels a from their results to obtain a quadratic equation in p^{2} only.
M1 Attempts to solve their quadratic in p^{2}. Usual rules.
A1* Correct solution leading to given answer stated. No errors seen.

Notes continued

ALT 1
M1A1M1 As main scheme.
M1 Solves $y^{2}=4 a x$ and their normal simultaneously to find one of the coordinates for Q in terms of a and p as shown.
M1 \quad Finds the second coordinate of Q in terms of a and p.
A1 Both coordinates correct in terms of a and p.
Use of $m_{1} m_{2}=-1$ with $O P$ and $O Q$. i.e. $\frac{2 a p}{a p^{2}} \times \frac{\text { their } y_{Q}}{\text { their } x_{Q}}=-1$ with coordinates of P and their expressions for x_{Q} and y_{Q}.
M1 Cancels the a^{\prime} 's, simplifies to a quadratic in p^{2} and solves the quadratic. Usual rules.
A1* Correct solution leading to the given answer stated. No errors seen.
ALT 2
M1A1M1 As main scheme.
M1
Solves $y^{2}=4 a x$ and their normal simultaneously to find one of the coordinates for Q in terms of a and p as shown.
M1 Uses their coordinate to form a relationship between p and q. Allow $q=\left(p+\frac{2}{p}\right)$ for this mark.
A1 For $q=-p-\frac{2}{p}$. If the x coordinate was used to find q then consideration of the negative root is needed for this mark. Allow for $q= \pm\left(p+\frac{2}{p}\right)$.
M1 Use of $m_{1} m_{2}=-1$ with $O P$ and $O Q$ to form a second equation relating p and q only.
M1 Equates expressions for q and attempts to solve to give $p^{2}=\ldots$.
A1* Correct solution leading to the given answer stated. No errors seen. If x coordinate used, invalid solution must be rejected.

