Conic Sections 1

Questions

Q1.

The rectangular hyperbola *H* has parametric equations

$$x = 4t, \quad y = \frac{4}{t} \qquad t \neq 0$$

The points *P* and *Q* on this hyperbola have parameters $t = \frac{1}{4}$ and t = 2 respectively.

The line I passes through the origin O and is perpendicular to the line PQ.

(a) Find an equation for I.

(3)

(b) Find a cartesian equation for H.

(1)

(c) Find the exact coordinates of the two points where *I* intersects *H*. Give your answers in their simplest form.

(3)

(Total for question = 7 marks)

Q2.

The parabola C has equation $y^2 = 4ax$, where a is a constant and a > 0. The point $Q(aq^2, 2aq)$, q > 0, lies on the parabola C.

(a) Show that an equation of the tangent to C at Q is

$$qy = x + aq^2$$

(4)

The tangent to C at the point Q meets the x-axis at the point $X\left(-\frac{1}{4}a,0\right)$ and meets the directrix of C at the point D.

(b) Find, in terms of a, the coordinates of D.

(4)

Given that the point *F* is the focus of the parabola *C*,

(c) find the area, in terms of a, of the triangle FXD, giving your answer in its simplest form.

2)

(Total for question = 10 marks)

Q3.

Figure 2

You may quote without proof that for the general parabola $y^2 = 4ax$, $\frac{dy}{dx} = \frac{2a}{y}$

The parabola *C* has equation $y^2 = 16x$.

(a) Deduce that the point $P(4p^2, 8p)$ is a general point on C.

(1)

The line *I* is the tangent to *C* at the point *P*.

(b) Show that an equation for I is

$$py = x + 4 p^2$$

(3)

The finite region R, shown shaded in Figure 2, is bounded by the line I, the x-axis and the parabola C.

The line / intersects the directrix of C at the point B, where the y coordinate of B is $\frac{10}{3}$

Given that p > 0

(c) show that the area of R is 36

(8)

(Total for question = 12 marks)

Q4.

Figure 2

Figure 2 shows a sketch of part of the rectangular hyperbola *H* with equation

$$xy = c^2 \qquad x > 0$$

where *c* is a positive constant.

The point
$$P^{\left(ct,\frac{c}{t}\right)}$$
 lies on H

The line *l* is the tangent to *H* at the point *P*.

The line I crosses the x-axis at the point A and crosses the y-axis at the point B.

The region *R*, shown shaded in Figure 2, is bounded by the *x*-axis, the *y*-axis and the line *I*.

Given that the length *OB* is twice the length of *OA*, where *O* is the origin, and that the area of *R* is 32, find the exact coordinates of the point *P*.

(Total for question = 10 marks)

Q5.

Figure 2

Figure 2 shows a sketch of the parabola C with equation $y^2 = 4ax$, where a is a positive constant. The point S is the focus of C and the point $P(ap^2, 2ap)$ lies on C where p > 0

(a) Write down the coordinates of S.

(1)

(b) Write down the length of SP in terms of a and p.

(1)

The point $Q(aq^2, 2aq)$, where $p \neq q$, also lies on C. The point M is the midpoint of PQ.

Given that pq = -1

(c) prove that, as *P* varies, the locus of *M* has equation

$$y^2 = 2a(x-a) \tag{5}$$

(Total for question = 7 marks)

Q6.

The point $P(ap^2, 2ap)$, where a is a positive constant, lies on the parabola with equation

$$v^2 = 4ax$$

The normal to the parabola at P meets the parabola again at the point Q $(aq^2, 2aq)$

(a) Show that

$$q = \frac{-p^2 - 2}{p}$$

(5)

(b) Hence show that

$$PQ^{2} = \frac{ka^{2}}{p^{4}} (p^{2} + 1)^{n}$$

where k and n are integers to be determined.

(5)

(Total for question = 10 marks)

Q7.

The parabola C has equation $y^2 = 10x$

The point *F* is the focus of *C*.

(a) Write down the coordinates of F.

(1)

The point P on C has y coordinate q, where q > 0

(b) Show that an equation for the tangent to C at P is given by

$$10x - 2qy + q2 = 0$$

(3)

The tangent to C at P intersects the directrix of C at the point A.

The point *B* lies on the directrix such that *PB* is parallel to the *x*-axis.

(c) Show that the point of intersection of the diagonals of quadrilateral *PBAF* always lies on the *y*-axis.

(5)

(Total for question = 9 marks)

Q8.

The rectangular hyperbola H has equation xy = 36

(a) Use calculus to show that the equation of the tangent to H at the point $P^{\left(6t, \frac{6}{t}\right)}$ is

$$yt^2 + x = 12t$$

(3)

The point $Q^{\left(12t, \frac{3}{t}\right)}$ also lies on H.

(b) Find the equation of the tangent to H at the point Q.

(2)

The tangent at *P* and the tangent at *Q* meet at the point *R*.

(c) Show that as *t* varies the locus of *R* is also a rectangular hyperbola.

(4)

(Total for question = 9 marks)

Q9.

The normal to the parabola $y^2 = 4ax$ at the point $P(ap^2, 2ap)$ passes through the parabola again at the point $Q(aq^2, 2aq)$.

The line *OP* is perpendicular to the line *OQ*, where *O* is the origin.

Prove that $p^2 = 2$

(9)

(Total for question = 9 marks)

Mark Scheme - Conic Sections 1

Q1.

Question Number	Scheme	Marks
(a)	$x = 4t, y = \frac{4}{t}, t \neq 0$ $t = \frac{1}{4} \Rightarrow P(1, 16), t = 2 \Rightarrow Q(8, 2)$ $m(PQ) = \frac{2-16}{8-1} \{ = -2 \}$ Coordinates for eith correctly stated. (Car Finds the gradient of the correctly stated) $\frac{y_2 - y_1}{x_2 - x_1} \text{ then uses } \frac{y_2 - y_1}{x_2 - x_1}$	the implied). thord PQ with in $y = -\frac{1}{m}x$.
	Condone incorrect sign $m(l) = \frac{1}{2}$ So, $l: y = \frac{1}{2}x$ or $2y = x$ $y = \frac{1}{2}x$	m of gradient. $x ext{ or } 2y = x ext{ A1 oe}$
(b)	$xy = 16$ or $y = \frac{16}{x}$ or $x = \frac{16}{y}$ Correct Cartesian equation $\frac{4}{y} = \frac{1}{y}$	$\frac{x}{4}$ or $xy = 4^2$
(c)		
	$(4\sqrt{2}, 2\sqrt{2}), (-4\sqrt{2}, -2\sqrt{2})$ At least one set of (simplified or un-	30. 30.0000000
	$x = 4\sqrt{2}$,	ten in pairs as
	$x = -4 \sqrt{2}$	$y = -2\sqrt{2}$ [3]

Q2.

Question	Scheme		Marks
Number	$y^2 = 4ax$, at $Q(aq^2, 2aq)$		1.0
(a)	$y = 2\sqrt{a}x^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \sqrt{a}x^{-\frac{1}{2}} \text{ or } 2y\frac{dy}{dx} = 4a \text{ or } \frac{dy}{dx} = 2a \times \frac{1}{2aq}$	ar ar	М1
		$\frac{\text{their } \frac{dy}{dq}}{\text{their } \frac{dx}{dq}}$	
	When $x = aq^2$, $m_T = \frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{aq^2}} = \frac{\sqrt{a}}{\sqrt{a}q} = \frac{1}{q}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{q}$	A1
	or when $y = 2aq$, $m_T = \frac{dy}{dx} = \frac{4a}{2(2aq)} = \frac{1}{q}$		
	$T: y - 2aq = \frac{1}{q}(x - aq^2)$	Applies $y - 2aq = (\text{their } m_T)(x - aq^2)$	dM1
		or $y = (\text{their } m_T)x + c$ and an	
	8-9 8 18	attempt to find c with gradient from calculus.	
	$T: qy - 2aq^2 = x - aq^2$		
	$\mathbf{T}: \ qy = x + aq^{2*}$	cso	A1 *
(b)	$X\left(-\frac{1}{4}a,0\right) \Longrightarrow 0 = -\frac{1}{4}a + aq^2$	Substitutes $x = -\frac{1}{4}a$ and $y = 0$ into T	[4] M1
	$\Rightarrow \left\{ q^2 = \frac{1}{4} \Rightarrow q = -\frac{1}{2} \text{ (reject)} \right\} q = \frac{1}{2}$	$q = \frac{1}{2}$ oe	A1
	1 (1)2	Substitutes their " $q = \frac{1}{2}$ " and	M1
	So, $\frac{1}{2}y = -a + a\left(\frac{1}{2}\right)^2$	x = -a in T or finds	
		$y_D = \frac{1}{q} \left(-a + aq^2 \right)$	
	giving, $y = -\frac{3a}{2}$. So $D(-a, -\frac{3}{2}a)$ o.e.	$D\left(-a,-\frac{3}{2}a\right)$ o.e.	A1
	2		[4]
(c)	$\{focus F(a, 0)\}$		
Way 1		Applies	M1
	Area(FXD) = $\frac{1}{2} \left(\frac{5a}{4} \right) \left(\frac{3a}{2} \right) = \frac{15a^2}{16}$	$\frac{1}{2}$ (their $ FX $)(their $ y_D $).	01033
		If their $y_D = \frac{1}{q}(-a + aq^2)$ then	
		require an attempt to sub for q to award M.	
		$\frac{15a^2}{16}$ or $0.9375a^2$	A1 cso
		10	[2]

(c)	Area(FXD) = $\frac{1}{2}\begin{vmatrix} a & -\frac{1}{4}a & -a & a \\ 0 & 0 & -\frac{3}{2}a & 0 \end{vmatrix}$	A correct attempt to apply the shoelace method. $\frac{15a^2}{16} \text{ or } 0.9375a^2$	M1
Way 2	= $\frac{1}{2}\begin{vmatrix} 0 + \frac{3}{8}a^2 + 0 - (0 + 0 - \frac{3}{2}a^2) \end{vmatrix} = \frac{15}{16}a^2$		A1cao
(c)	Rectangle – triangle 1 – triangle 2		[2]
Way 3	= $2a \cdot \frac{3a}{2} - \frac{1}{2} \cdot \frac{3a}{4} \cdot \frac{3a}{2} - \frac{1}{2} \cdot 2a \cdot \frac{3a}{2} = 3a^2 - \frac{9a^2}{16} - \frac{3a^2}{2}$		M1
(c) Way 4	Attempts sine rule using appropriate choice from $FX = \frac{5a}{4}, FD = \frac{5a}{2}, DX = \frac{3\sqrt{5}a}{4}, \sin F = \frac{3}{5}, \sin X = \frac{2}{\sqrt{5}}$	$\frac{15a^2}{16} \text{ or } 0.9375a^2$ Uses Area = $\frac{1}{2}ab\sin C$	A1cao M1
	4 2 4 5 √ 5	$\frac{15a^2}{16} \text{ or } 0.9375a^2$	A1cao

3	Question Notes
(c) Way 1	Do not award M1 if area of wrong triangle found e.g. $\frac{1}{2} \cdot 2a \cdot \frac{3a}{2} = \frac{3a^2}{2}$

Q3.

Question	Scheme	Marks	AOs
(a)	$y^2 = (8p)^2 = 64p^2$ and $16x = 16(4p^2) = 64p^2$ $\Rightarrow P(4p^2, 8p)$ is a general point on C	В1	2.2a
		(1)	
(b)	$y^2 = 16x$ gives $a = 4$, or $2y \frac{dy}{dx} = 16$ so $\frac{dy}{dx} = \frac{8}{y}$	M1	2.2a
	$l: y - 8p = \left(\frac{8}{8p}\right)\left(x - 4p^2\right)$	M1	1.1b
	leading to $py = x + 4p^2 *$	A1*	2.1
		(3)	
(c)	$B\left(-4, \frac{10}{3}\right) \text{ into } l \Rightarrow \frac{10p}{3} = -4 + 4p^2$	M1	3.1a
	$6p^2 - 5p - 6 = 0 \Rightarrow (2p - 3)(3p + 2) = 0 \Rightarrow p =$	M1	1.1b
	$p = \frac{3}{2}$ and l cuts x-axis when $\frac{3}{2}(0) = x + 4\left(\frac{3}{2}\right)^2 \Rightarrow x = \dots$	M1	2.1
	x = -9	A1	1.1b
	$p = \frac{3}{2} \Rightarrow P(9, 12) \Rightarrow \text{Area}(R) = \frac{1}{2}(99)(12) - \int_0^9 4x^{\frac{1}{2}} dx$	M1	2.1
	$r = \frac{1}{4x^2} + 4x^{\frac{3}{2}}$	M1	1.1b
	$\int 4x^{\frac{1}{2}} dx = \frac{4x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)} (+c) \text{ or } \frac{8}{3}x^{\frac{3}{2}} (+c)$	A1	1.1b
2	Area(R) = $\frac{1}{2}$ (18)(12) - $\frac{8}{3}$ (9 $\frac{3}{2}$ - 0) = 108 - 72 = 36 *	A1*	1.1b
		(8)	

(c) ALT 1	$B\left(-4, \frac{10}{3}\right) \text{ into } l \implies \frac{10p}{3} = -4 + 4p^2$	M1	3.1a
	$6p^2 - 5p - 6 = 0 \Rightarrow (2p - 3)(3p + 2) = 0 \Rightarrow p = \dots$	M1	1.1b
	$p = \frac{3}{2}$ into l gives $\frac{3}{2}y = x + 4\left(\frac{3}{2}\right)^2 \implies x = \dots$	M1	2.1
	$x = \frac{3}{2}y - 9$	A1	1.1b
	$p = \frac{3}{2} \Rightarrow P(9, 12) \Rightarrow \operatorname{Area}(R) = \int_0^{12} \left(\frac{1}{16}y^2 - \left(\frac{3}{2}y - 9\right)\right) dy$	M1	2.1
	$\int \left(\frac{1}{16}y^2 - \frac{3}{2}y + 9\right) dy = \frac{1}{48}y^3 - \frac{3}{4}y^2 + 9y \ (+c)$	M1	1.1b
	$\int (16^{7} 2^{7})^{39} 48^{7} 4^{7}$	A1	1.1b
	Area(R) = $\left(\frac{1}{48}(12)^3 - \frac{3}{4}(12)^2 + 9(12)\right) - (0)$	A1*	1.1b
,	= 36 - 108 + 108 = 36 *	(8)	

Question	Scheme	Marks	AOs
(c) ALT 2	$B\left(-4, \frac{10}{3}\right) \text{ into } l \implies \frac{10p}{3} = -4 + 4p^2$	M1	3.1a
	$6p^2 - 5p - 6 = 0 \Rightarrow (2p - 3)(3p + 2) = 0 \Rightarrow p =$	M1	1.1b
	$p = \frac{3}{2}$ and l cuts x-axis when $\frac{3}{2}(0) = x + 4\left(\frac{3}{2}\right)^2 \Rightarrow x = \dots$	M1	2.1
	x = -9	A1	1.1b
	$p = \frac{3}{2} \Rightarrow P(9, 12) \text{ and } x = 0 \text{ in } l: y = \frac{2}{3}x + 6 \text{ gives } y = 6$ $\Rightarrow \text{Area}(R) = \frac{1}{2}(9)(6) + \int_0^9 \left(\left(\frac{2}{3}x + 6 \right) - \left(4x^{\frac{1}{2}} \right) \right) dx$	M1	2.1
	$\int \left(\frac{2}{3}x + 6 - 4x^{\frac{1}{2}}\right) dx = \frac{1}{3}x^2 + 6x - \frac{8}{3}x^{\frac{3}{2}} (+c)$	M1	1.1b
	$\int (\frac{3}{3}x + 0 - 4x^{2}) dx - \frac{3}{3}x + 0x - \frac{3}{3}x^{2} (+6)$	A1	1.1b
)	Area(R) = 27 + $\left(\left(\frac{1}{3} (9)^2 + 6(9) - \frac{8}{3} (9^{\frac{3}{2}}) \right) - (0) \right)$ = 27 + (27 + 54 - 72) = 27 + 9 = 36 *	A1*	1.1b
	20	(8)	
		(12	marks)

Notes

(a)

B1 Substitutes $y_p = 8p$ into y^2 to obtain $64p^2$ and substitutes $x_p = 4p^2$ into 16x to obtain $64p^2$ and concludes that P lies on C.

(b)

M1 Uses the given formula to deduce the derivative. Alternatively, may differentiate using chain rule to deduce it.

M1 Applies $y - 8p = m(x - 4p^2)$, with their tangent gradient m, which is in terms of p. Accept use of $8p = m(4p^2) + c$ with a clear attempt to find c.

A1* Obtains $py = x + 4p^2$ by cso.

Notes Continued (c) Substitutes their x = "-a" and $y = \frac{10}{3}$ into l. M1 Obtains a 3 term quadratic and solves (using the usual rules) to give p = ...M1 Substitutes their p (which must be positive) and y = 0 into l and solves to give x = ...M1 Finds that *l* cuts the *x*-axis at x = -9A1 Fully correct method for finding the area of R. M1 i.e. $\frac{1}{2}$ (their $x_P - "-9"$)(their y_P) $-\int_{0}^{\text{their } x_P} 4x^{\frac{1}{2}} dx$ Integrates $\pm \lambda x^{\frac{1}{2}}$ to give $\pm \mu x^{\frac{3}{2}}$, where λ , $\mu \neq 0$ M1 Integrates $4x^{\frac{1}{2}}$ to give $\frac{8}{3}x^{\frac{3}{2}}$, simplified or un-simplified. A1 A1* Fully correct proof leading to a correct answer of 36 (c) ALT 1 Substitutes their x = "-a" and $y = \frac{10}{2}$ into l. M1 Obtains a 3 term quadratic and solves (using the usual rules) to give p = ...M1Substitutes their p (which must be positive) into l and rearranges to give x = ...M1Finds l as $x = \frac{3}{2}y - 9$ A1 M1 Fully correct method for finding the area of R. i.e. $\int_{1}^{\text{their } y_p} \left(\frac{1}{16} y^2 - \text{their } \left(\frac{3}{2} y - 9 \right) \right) dy$ Integrates $\pm \lambda y^2 \pm \mu y \pm v$ to give $\pm \alpha y^3 \pm \beta y^2 \pm vy$, where $\lambda, \mu, \nu, \alpha, \beta \neq 0$ M1 Integrates $\frac{1}{16}y^2 - \left(\frac{3}{2}y - 9\right)$ to give $\frac{1}{48}y^3 - \frac{3}{4}y^2 + 9y$, simplified or un-simplified. A1 A1* Fully correct proof leading to a correct answer of 36

0	Notes Continued		
(c)			
ALT 2			
M1	Substitutes their $x = "-a"$ and $y = \frac{10}{3}$ into l .		
M1	Obtains a 3 term quadratic and solves (using the usual rules) to give $p =$		
M1	Substitutes their p (which must be positive) and $y = 0$ into l and solves to give $x =$		
A1	Finds that l cuts the x -axis at $x = -9$		
M1	Fully correct method for finding the area of R .		
	i.e. $\frac{1}{2}$ (their 9)(their 6) + $\int_0^{\text{their } x_p} \left(\text{their } \left(\frac{2}{3}x + 6 \right) - \left(4x^{\frac{1}{2}} \right) \right) dy$		
M1	Integrates $\pm \lambda x \pm \mu \pm \nu x^{\frac{1}{2}}$ to give $\pm \alpha x^2 \pm \mu x \pm \beta x^{\frac{3}{2}}$, where $\lambda, \mu, \nu, \alpha, \beta \neq 0$		
A1	Integrates $\left(\frac{2}{3}x + 6\right) - \left(4x^{\frac{1}{2}}\right)$ to give $\frac{1}{3}x^2 + 6x - \frac{8}{3}x^{\frac{3}{2}}$, simplified or un-simplified.		
A1*	Fully correct proof leading to a correct answer of 36		

Q4.

Question	Scheme	Marks	AOs
	$H: xy = c^2$, $c > 0$; $P\left(ct, \frac{c}{t}\right)$ lies on H ; $OB = 2OA$; Area $(OAB) = 32$		
Way 1	Either $y = \frac{c^2}{x} = c^2 x^{-1} \Rightarrow \frac{dy}{dx} = -c^2 x^{-2} \text{ or } -\frac{c^2}{x^2}$ or $xy = c^2 \Rightarrow x \frac{dy}{dx} + y = 0$ or $x = cp$, $y = \frac{c}{p} \Rightarrow \frac{dy}{dx} = \frac{dy}{dp} \cdot \frac{dp}{dx} = -\left(\frac{c}{p^2}\right) \left(\frac{1}{c}\right)$; condone $t \equiv p$ and so, at $P\left(ct, \frac{c}{t}\right)$, $m_T = -\frac{1}{t^2}$	M1	3.1a
	$y - \frac{c}{t} = " - \frac{1}{t^2} " (x - ct)$	M1	1.1b
	or $\frac{c}{t} = "-\frac{1}{t^2}"(ct) + b \implies y = "-\frac{1}{t^2}"x + \text{their } b \implies y = -\frac{1}{t^2}x + \frac{2c}{t}$	A1	1.1b
	2c [2c]	M1	1.1b
	$y = 0 \Rightarrow x = 2ct \ \{ \Rightarrow x_A = 2ct \}, \ x = 0 \Rightarrow y = \frac{2c}{t} \ \left\{ \Rightarrow y_B = \frac{2c}{t} \right\}$	A1	1.1b
	$\{OB = 2OA \Rightarrow\}$ $\frac{2c}{t} = 2(2ct) \Rightarrow t =$	M1	2.1
	$\left\{ t^2 = \frac{1}{2} \Rightarrow \right\} \ t = \frac{1}{\sqrt{2}} \text{ or } \frac{\sqrt{2}}{2} \text{ or awrt } 0.707$	A1	1.1b
	$\{\text{Area }(OAB) = 32 \Rightarrow\} \frac{1}{2}(2ct)\left(\frac{2c}{t}\right) = 32 \Rightarrow c = \dots \{\Rightarrow c = 4\}$	M1	2.1
	Deduces the <i>numerical</i> value x_p and y_p using their values of t and c	M1	2.2a
	$P(2\sqrt{2}, 4\sqrt{2})$ or $P(\text{awrt } 2.83, \text{awrt } 5.66)$ or $x = 2\sqrt{2}$ and $y = 4\sqrt{2}$	A1	1.1b
		(10)	

Way 2	Same requirement as the 1st M mark in Way 1	M1	3.1a
	e.g. $\left\{ t = \frac{1}{\sqrt{2}} \Rightarrow P\left(\frac{c}{\sqrt{2}}, \sqrt{2}c\right) \Rightarrow \right\} y - \sqrt{2}c = -2\left(x - \frac{c}{\sqrt{2}}\right)$	M1	1.1b
	using $m_T = -2$ and their P which has been found by a correct method	A1	1.1b
	$y = 0 \Rightarrow x = \sqrt{2}c \ \{ \Rightarrow x_A = \sqrt{2}c \} \ , \ x = 0 \Rightarrow y = 2\sqrt{2}c \ \{ \Rightarrow y_B = 2\sqrt{2}c \} $	M1	1.1b
	$y = 0 \rightarrow x = \sqrt{2} \epsilon \left(\rightarrow x_A = \sqrt{2} \epsilon \right), x = 0 \rightarrow y = 2\sqrt{2} \epsilon \left(\rightarrow y_B = 2\sqrt{2} \epsilon \right)$	A1	1.1b
	$\{OB = 2OA \Rightarrow\}$ $m_T = -2$ and their $m_T = -\frac{1}{t^2} = -2 \Rightarrow t =$	M1	2.1
	$\left\{ t^2 = \frac{1}{2} \Rightarrow \right\} \ t = \frac{1}{\sqrt{2}} \text{ or } \frac{\sqrt{2}}{2} \text{ or awrt } 0.707 \left\{ \Rightarrow P\left(\frac{c}{\sqrt{2}}, \sqrt{2}c\right) \right\}$	A1	1.1b
	$\{\text{Area }(OAB) = 32 \Rightarrow\} \frac{1}{2}\sqrt{2}c\left(2\sqrt{2}c\right) = 32 \Rightarrow c = \{\Rightarrow c = 4\}$	M1	2.1
	Deduces the <i>numerical</i> value x_p and y_p using their values of t and c	M1	2.2a
	$P(2\sqrt{2}, 4\sqrt{2})$ or $P(\text{awrt } 2.83, \text{awrt } 5.66)$ or $x = 2\sqrt{2}$ and $y = 4\sqrt{2}$	A1	1.1b
		(10)	
		(1	0 marks)

Question	Scheme	Marks	AOs
	$H: xy = c^2$, $c > 0$; $P\left(ct, \frac{c}{t}\right)$ lies on H ; $OB = 2OA$; Area $(OAB) = 32$		
Way 3	Same requirement as the 1st M mark in Way 1	M1	3.1a
	e.g. $y-8\sqrt{2}=-2(x-0)$ or $y-0=-2(x-4\sqrt{2})$	M1	1.1b
	using $m_T = -2$ and either their $A(4\sqrt{2}, 0)$ or their $B(0, 8\sqrt{2})$ which have been found by a correct method	A1	1.1b
	{Area $(OAB) = 32$, $OB = 2OA \implies$ $\frac{1}{2}(x)(2x) = 32 \implies x =$	M1	2.1
	$x = 4\sqrt{2} \iff x_A = 4\sqrt{2}$ or $y = 8\sqrt{2} \iff y_B = 8\sqrt{2}$	A1	1.1b
	$\{OB = 2OA \Rightarrow\}$ $m_T = -2$ and their $m_T = -\frac{1}{t^2} = -2$ $\Rightarrow t =$	M1	2.1
	$\left\{ t^2 = \frac{1}{2} \Rightarrow \right\} \ t = \frac{1}{\sqrt{2}} \text{ or } \frac{\sqrt{2}}{2} \text{ or awrt } 0.707 \left\{ \Rightarrow P\left(\frac{c}{\sqrt{2}}, \sqrt{2}c\right) \right\}$	A1	1.1b
	$\sqrt{2}c - 8\sqrt{2} = -2\left(\frac{c}{\sqrt{2}} - 0\right) \Rightarrow c = \dots \ \{\Rightarrow c = 4\}$	M1	1.1b
	Deduces the numerical value x_p and y_p using their values of t and c	M1	2.2a
	$P(2\sqrt{2}, 4\sqrt{2})$ or $P(\text{awrt } 2.83, \text{awrt } 5.66)$ or $x = 2\sqrt{2}$ and $y = 4\sqrt{2}$	A1	1.1b
	10 m 5 255	(10)	

Way 4	Complete process substituting their $y-8\sqrt{2}=-2(x-0)$ or $y-0=-2(x-4\sqrt{2})$ into $xy=c^2$ and applying $b^2-4ac=0$ to their resulting $2x^2-8\sqrt{2}x+c^2=0$	M1	3.1a
	e.g. $y-8\sqrt{2}=-2(x-0)$ or $y-0=-2(x-4\sqrt{2})$	M1	1.1b
	using $m_T = -2$ and either their $A(4\sqrt{2}, 0)$ or their $B(0, 8\sqrt{2})$ which have been found by a correct method	A1	1.1b
	$\{\text{Area } (OAB) = 32, OB = 2OA \Rightarrow \} \frac{1}{2}(x)(2x) = 32 \Rightarrow x =$	M1	2.1
	$x = 4\sqrt{2} \iff x_A = 4\sqrt{2}$ or $y = 8\sqrt{2} \iff y_B = 8\sqrt{2}$	A1	1.1b
	dependent on 2 nd M mark $\{xy = c^2 \Rightarrow\} x(-2x + 8\sqrt{2}) = c^2 \{\Rightarrow 2x^2 - 8\sqrt{2}x + c^2 = 0\}$	dM1	2.1
	or $\{xy = c^2 \Rightarrow\} \frac{1}{2} (8\sqrt{2} - y)y = c^2 \ \{\Rightarrow y^2 - 8\sqrt{2}y + 2c^2 = 0\}$	A1	1.1b
	$\{b^2 - 4ac = 0 \Rightarrow\} (8\sqrt{2})^2 - 4(2)(c^2) = 0 \Rightarrow c = \dots \{\Rightarrow c = 4\}$	M1	1.1b
	Deduces the <i>numerical</i> value x_p and y_p using their value of c	M1	2.2a
	$P(2\sqrt{2}, 4\sqrt{2})$ or $P(\text{awrt } 2.83, \text{awrt } 5.66)$ or $x = 2\sqrt{2}$ and $y = 4\sqrt{2}$	A1	1.1b
2		(10)	
Note:	For the final M1 mark in Way 1, Way 2, Way 3 and Way 4 Allow final M1 for a correct method which gives any of $x_P = 2\sqrt{2}$ or $y_P = 4\sqrt{2}$ or $x_P = \text{awrt } 2.83$ or $y_P = \text{awrt } 5.66$ o.e.		

	Notes for Question		
Way 1			
M1:	Establishes the gradient of the tangent by differentiating $xy = c^2$		
	• to give $\frac{dy}{dx} = \pm k x^{-2}$; $k \neq 0$, or		
	• by the product rule to give $\pm x \frac{dy}{dx} \pm y$, or		
	• by parametric differentiation to give $\left(\text{their } \frac{dy}{dt}\right) \times \frac{1}{\left(\text{their } \frac{dx}{dt}\right)}$, condoning $p \equiv t$		
	and attempt to use $P\left(ct, \frac{c}{t}\right)$ to write down the gradient of the tangent to the curve in terms of t		
M1:	Correct straight line method for an equation of a tangent where $m_T (\neq m_N)$ is found by using calculus. Note: m_T must be a function of t for this mark		
Al:	Correct equation of the tangent which can be simplified or un-simplified		
M1:	Attempts to find either the x-coordinate of A or the y-coordinate of B		
A1:	Both {x-coordinate of A is} $2ct$ and the {y-coordinate of B is} $\frac{2c}{t}$		
M1:	See scheme		
Al:	See scheme		
M1:	See scheme		
M1:	See scheme		
Al:	See scheme		

Way 2	
M1:	Same description as the 1st M mark in Way 1
M1:	See scheme
Al:	Correct equation of the tangent which can be simplified or un-simplified
M1:	Attempts to find either the x -coordinate of A or the y -coordinate of B
Al:	Both {x-coordinate of A is} $\sqrt{2c}$ and the {y-coordinate of B is} $2\sqrt{2c}$
M1:	Recognising that the gradient of the tangent is -2 and puts this equal to their $\frac{dy}{dx}$ and finds $t =$
Al:	See scheme
M1:	See scheme
M1:	See scheme
Al:	See scheme
Way 3	
M1:	Same description as the 1 st M mark in Way 1
M1:	See scheme
Al:	Correct equation of the tangent which can be simplified or un-simplified
M1:	Uses $y = 2x$ and Area $(OAB) = 32$ to find either x_A or y_B
Al:	Either {x-coordinate of A is} $4\sqrt{2}$ or the {y-coordinate of B is} $8\sqrt{2}$
M1:	Recognising that the gradient of the tangent is -2 and puts this equal to their $\frac{dy}{dx}$ and finds $t =$
Al:	See scheme
M1:	Substitutes their P (which is in terms of c , and has come from a correct method) into the equation
	of the tangent and finds $c =$
M1:	See scheme
Al:	See scheme

3	Notes for Question		
Way 4			
M1:	See scheme		
M1:	See scheme		
Al:	Correct equation of the tangent which can be simplified or un-simplified		
M1:	Uses $y = 2x$ and Area $(OAB) = 32$ to find either x_A or y_B		
Al:	Either {x-coordinate of A is} $4\sqrt{2}$ or the {y-coordinate of B is} $8\sqrt{2}$		
Ml:	See scheme		
Al:	See scheme		
M1:	See scheme		
Ml:	See scheme		
Al:	See scheme		

Q5.

Question	Scheme	Marks	AOs
(a)	(a,0)	B1	1.1b
		(1)	
(b)	$SP = ap^2 + a$ Note that if focus-directrix property not used may use Pythagoras: $E.g. SP = \sqrt{4a^2p^2 + (ap^2 - a)^2} = = ap^2 + a$	B1	1.1b
		(1)	
(c)	M has coordinates $\left(\frac{ap^2 + aq^2}{2}, \frac{2ap + 2aq}{2}\right)$	B1	1.1b
	$y^2 = a^2 \left(p^2 + 2 pq + q^2 \right)$	M1	1.1b
	$y^2 = a^2 \left(p^2 - 2 + q^2 \right)$	A1	2.1
	$2a(x-a) = 2a\left(\frac{1}{2}ap^2 + \frac{1}{2}aq^2 - a\right) = a^2(p^2 + q^2 - 2)$	M1	1.1b
Ì	$\Rightarrow y^2 = 2a(x-a)^*$	A1*	2.1
		(5)	5
	Alternative for (c)		
	M has coordinates $\left(\frac{ap^2 + aq^2}{2}, \frac{2ap + 2aq}{2}\right)$	В1	1.1b
	$\frac{y}{a} = p + q$	M1	1.1b
	$\frac{y^2}{a^2} = p^2 + q^2 + 2pq = p^2 + q^2 - 2$	A1	2.1
	$\frac{2x}{a} = p^2 + q^2$	M1	1.1b
	$\frac{y^2}{a^2} = \frac{2x}{a} - 2 \Rightarrow y^2 = 2a(x - a)^*$	A1*	2.1
		(5)	
		(7	marks

Notes (a) B1: Correct coordinates (b) B1: Correct expression (c) B1: Correct coordinates for the midpoint M1: Squares their y coordinate of the midpoint A1: Uses pq = -1 to obtain a correct expression for y^2 M1: Attempts 2a(x-a) using the x coordinate of their midpoint and attempts to simplify A1*: Fully correct completion to show $y^2 = 2a(x-a)$ Alternative B1: Correct coordinates for the midpoint M1: Uses their y coordinate of the midpoint to find p + qA1: Square and uses pq = -1 to obtain a correct expression for y^2/a^2 M1: Uses the x coordinate of their midpoint to find $p^2 + q^2$

A1*: Fully correct completion to show $y^2 = 2a(x-a)$

Q6.

Question	Scheme	Marks	AOs
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2a}{2ap} = \frac{1}{p}$		
	5 8		
	or		
	$y = 2\sqrt{a}\sqrt{x} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{a}}{\sqrt{x}} = \frac{1}{p}$	B1	1.1b
	or		
	$2y\frac{dy}{dx} = 4a \Rightarrow \frac{dy}{dx} = \frac{2a}{y} = \frac{1}{p}$		
	$y - 2ap = -p\left(x - ap^2\right)$	M1	2.1
	$2aq - 2ap = -p\left(aq^2 - ap^2\right)$	A1	1.1b
	$pq^2 + 2q - 2p - p^3 = 0$		1.10
	$(q-p)(pq+p^2+2)=0 \Rightarrow q=$	M1	3.1a
	$q = \frac{-p^2 - 2}{p} *$	A1*	1.1b
	P	(5)	
(b)	$PQ^{2} = (ap^{2} - aq^{2})^{2} + (2ap - 2aq)^{2}$	M1	1.1b
	$= a^{2} (p-q)^{2} (p+q)^{2} + 4a^{2} (p-q)^{2}$,
	$=a^{2}\left(p-q\right) ^{2}\left[\left(p+q\right) ^{2}+4\right]$	M1	2.1
	$(2)^{2}[(2)^{2}]$	A1	1.1b
	$=a^2\left(2p+\frac{2}{p}\right)^2\left[\left(-\frac{2}{p}\right)^2+4\right]$		
	$= \frac{4a^2}{p^2} (p^2 + 1)^2 \frac{4}{p^2} (p^2 + 1) = \frac{16a^2}{p^4} (p^2 + 1)^3$	A1	1.1b
	p^2 $(x^2 + x^2)$ p^2 $(x^2 + x^2)$ p^4 $(x^2 + x^2)$	A1	1.1b
		(5)	marks)

Notes

(a)

B1: Deduces the correct tangent gradient

M1: Correct strategy for the equation of the normal

A1: Correct equation in terms of p and q

M1: Applies a correct strategy for finding q in terms of p. E.g. uses the fact that q = p is known and uses inspection or long division to find the other root

A1*: Correct proof with no errors

Alternative:

B1: As above

M1A1:
$$\frac{2aq - 2ap}{aq^2 - ap^2} \times \frac{1}{p} = -1$$

M1: Finds gradient of PQ and uses product of gradients = -1

A1: Correct equation

M1A1: As above

(b)

M1: Applies Pythagoras correctly to find PQ2

M1: Uses their q in terms of p to obtain an expression in terms of p only

A1: Correct expression in any form in terms of p only

A1: k = 16 or n = 3A1: k = 16 and n = 3

Q7.

Question	Scheme	Marks	AOs
(a)	$\left(\frac{5}{2},0\right)$ o.e.	B1	2.2a
		(1)	
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{5}{q}$	B1	1.1b
	At P , $x = \frac{q^2}{10}$ so tangent has equation $y - q = \text{their } \frac{5}{q} \left(x - \frac{q^2}{10} \right)$ or $q = \left(\text{their } \frac{5}{q} \right) \left(\frac{q^2}{10} \right) + c \Rightarrow c = \dots \text{ to reach an equation for } y$	M1	1.1b
	$\Rightarrow qy - q^2 = 5x - \frac{q^2}{2} \Rightarrow 10x - 2qy + q^2 = 0 * cso$ or $\Rightarrow y = \frac{5}{q}x + \frac{q}{2} \Rightarrow 10x - 2qy + q^2 = 0 * cso$	A1*	2.1
		(3)	

(c)	B is $\left(-\frac{5}{2},q\right)$ o.e.	B1	2.2a
	So diagonal <i>BF</i> has equation $\frac{y-0}{q-0} = \frac{x-\frac{5}{2}}{-\frac{5}{2}-\frac{5}{2}}$ or $y = -\frac{q}{5}\left(x-\frac{5}{2}\right)$	M1	1.1b
	(AP is a tangent so) diagonals meet when $10x - 2q\left(-\frac{q}{5}\left(x - \frac{5}{2}\right)\right) + q^2 = 0$ or $x = \frac{2qy - q^2}{10} \text{ therefore } y = -\frac{q}{5}\left(\frac{2qy - q^2}{10} - \frac{5}{2}\right) \text{ leading to } y = \dots$	dM1	3.1a
	$\begin{cases} y = \frac{25q + q^3}{50 + 2q^2} \\ \Rightarrow 10x + \frac{2q^2}{5}x - q^2 + q^2 = 0 \Rightarrow x \left(10 + \frac{2q^2}{5} \right) = 0 \end{cases}$ or $x = \frac{1}{10} \left(2q \left(\frac{25q + q^3}{50 + 2q^2} \right) - q^2 \right)$	M1	1.1b
	But $10 + \frac{2q^2}{5} > 0$ so not zero, hence $x = 0$, so the intersection lies on the y-axis.	Al	2.4

	Or achieves $x = 0$ (with no errors), so the intersection lies on the y axis.		
		(5)	
	Alternative for the last three marks		
	When $x = 0$ for BF $y = -\frac{q}{5}\left(-\frac{5}{2}\right) = \dots$ or for AP $2qy = q^2 \Rightarrow y = \dots$	Ml	1.1b
	For BF y intercept is $\frac{q}{2}$ and for AP y intercept is $\frac{q}{2}$	M1	3.1a
	Since both diagonals always cross the y-axis at the same place, their intersection must always be on the y axis.	Al	2.4

(9 marks)

Notes:

(a)

B1: Deduces correct coordinates.

(b)

B1: Using or deriving $\frac{dy}{dx} = \frac{5}{q}$

M1: Finds the equation of the tangent using the equation of a line formula with $y_1 = q$, $x = \frac{q^2}{10}$ (or

clear attempt at it) and $m = \frac{2 \times \text{their'} a'}{a}$

If uses y = mx + c must find a value for c and substitute back to find an equation for the tangent $A1^*$: Completes correctly to the given equation, no errors seen.

(c)

B1: *B* is $\left(-\frac{5}{2}, q\right)$ seen or used.

M1: A correct method to find the equation of the diagonal BF using their coordinates of F and B dM1: Uses the printed answer in (b) and their equation of the diagonal BF to form an equation just involving x or solves the two diagonals simultaneously to find an expression for y

M1: Correctly factors out the x to achieve x(...) = 0 or uses their expression for y to find an expression for x

A1: Conclusion given including reference to $10 + \frac{2q^2}{5} \neq 0$

Alternative for last three marks

M1: Attempts to find the y intercept for at least one of the two diagonals.

M1: Finds y intercept for both diagonals in order to compare

A1: Both intercepts correct and suitable conclusion giving reference to both diagonals always crossing y-axis at same point.

Q8.

Question	Scheme	Marks	AOs
(a)	$y + x \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x} = \frac{\frac{6}{t}}{6t} = -\frac{1}{t^2} \text{ or } y = \frac{36}{x} \Rightarrow \frac{dy}{dx} = -\frac{36}{x^2} = -\frac{36}{(6t)^2} = -\frac{1}{t^2} \text{ or } \frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = \frac{-6t^{-2}}{6} = -\frac{1}{t^2}$	M1	1.1b
	$y - \frac{6}{t} = " - \frac{1}{t^2}"(x - 6t)$	M1	1.1b
	$yt^2 + x = 12t^*$	A1 *	2.1
		(3)	
	$\frac{dy}{dx} = -\frac{y}{x} = \frac{\frac{2}{t}}{12t} = -\frac{1}{4t^2} \text{ and } y - \frac{3}{t} = ' - \frac{1}{4t^2} '(x - 12t)$	M1	1.1b
(b)	$y - \frac{3}{t} = -\frac{1}{4t^2}(x - 12t)$ o.e such as $4yt^2 + x = 24t$	A1	1.1b
		(2)	
(c)	E.g. $\frac{4yt^2 + x = 24t}{yt^2 + x = 12t}$ $3yt^2 = 12t \Rightarrow y =$ and $x = 12t - yt^2 =$	M1	2.1
	$x = 8t \text{ and } y = \frac{4}{t}$	A1	1.1b
	$xy = \dots$	dM1	1.1b
	xy = 32 hence rectangular hyperbola	A1	2.4
		(4)	
	1	(9 n	narks)

Notes:

(a)

M1: Differentiates implicitly, directly or parametrically to find the gradient at the point P in terms of t. Allow slips in coefficients, as long as method is clear.

M1: Finds the equation of the tangent at the point P using their gradient (not reciprocal etc). If using y = mx + c must proceed to find c and substitute back in to equation.

Al*: The correct equation for the tangent at the point P from correct working.

(h)

M1: Finds the new gradient (any method as above) and proceeds to find the equation of the tangent at the point Q. Alternatively replaces t by 2t in the answer to (a).

Al: Correct equation - any form, need not be simplified and isw after a correct equation.

(c)

M1: Solves their simultaneous equations to find both the x and y coordinate for the point R.

A1: Correct point of intersection, it does not need to be simplified.

dM1: Dependent on the first method mark. Multiplies x by y to reach a constant.

Al: Shows that xy = 32 and hence rectangular hyperbola

Q9.

Question	Scheme	Marks	AOs
	$y^2 = 4ax \Rightarrow 2y \frac{\mathrm{d}y}{\mathrm{d}x} = 4a$	M1	2.1
	$\frac{dy}{dx} = \frac{2a}{y} \Rightarrow \text{ Gradient of normal is } \frac{-y}{2a} = -p$	A1	1.1b
	Equation of normal is : $y - 2ap = -p(x - ap^2)$	M1	1.1b
	Normal passes through $Q(aq^2, 2aq)$ so $2aq + apq^2 = 2ap + ap^3$	M1	3.1a
	Grad $OP \times Grad OQ = -1 \Rightarrow \frac{2ap}{ap^2} \frac{2aq}{aq^2} = -1$	M1	2.1
	$q = \frac{-4}{p}$	A1	1.1b
	$2a\left(\frac{-4}{p}\right) + ap\left(\frac{16}{p^2}\right) = 2ap + ap^3 \implies p^4 + 2p^2 - 8 = 0$	M1	2.1
	$(p^2-2)(p^2+4)=0 \implies p^2=$	M1	1.1b
	Hence (as $p^2 + 4 \neq 0$), $p^2 = 2 *$	A1*	1.1b
		(9)	
3		M1	2.1
ATTI	First three marks as above and then as follows.	A1	1.1b
ALT 1		M1	1.1b
,	Solves $y^2 = 4ax$ and their normal simultaneously to find, in terms of a and p , either $x_Q \left(= ap^2 + 4a + \frac{4a}{p^2} \right)$ or $y_Q \left(= -2ap - \frac{4a}{p} \right)$	M1	3.1a
	Finds the second coordinate of Q in terms of a and p	M1	1.1b
	Both $x_Q = ap^2 + 4a + \frac{4a}{p^2}$ and $y_Q = -2ap - \frac{4a}{p}$	A1	1.1b
	Grad $OP \times Grad OQ = -1 \Rightarrow \frac{2ap}{ap^2} \times \frac{-2ap - \frac{4a}{p}}{ap^2 + 4a + \frac{4a}{p^2}} = -1$	M1	2.1
	Simplifies expression and solves: $4p^2 + 8 = p^4 + 4p^2 + 4$ $\Rightarrow p^4 - 4 = 0 \Rightarrow (p^2 - 2)(p^2 + 2) = 0 \Rightarrow p^2 =$	M1	2.1
	Hence (as $p^2 + 2 \neq 0$), $p^2 = 2 *$	A1*	1.1b
		(9)	

Question	Scheme	Marks	AOs
		M1	2.1
ALT 2	First three marks as above and then as follows.	A1	1.1b
ALI 2		M1	1.1b
	Solves $y^2 = 4ax$ and their normal simultaneously to find, in terms of a and p , either $x_Q \left(= ap^2 + 4a + \frac{4a}{p^2} \right)$ or $y_Q \left(= -2ap - \frac{4a}{p} \right)$	M1	3.1a
	Forms a relationship between p and q from their first coordinate: either $y_Q = 2a\left(-p - \frac{2}{p}\right) \Rightarrow q = -p - \frac{2}{p}$ or $x_Q = a\left(p + \frac{2}{p}\right)^2 \Rightarrow q = \pm\left(p + \frac{2}{p}\right)$	M1	2.1
	$q = -p - \frac{2}{p}$ (if x coordinate used the correct root must be clearly identified before this mark is awarded).	A1	1.1b
	Grad $OP \times Grad OQ = -1 \Rightarrow \frac{2ap}{ap^2} \times \frac{2aq}{aq^2} = -1 \implies q = -\frac{4}{p}$.	M1	2.1
	Sets $q = -p - \frac{2}{p} = -\frac{4}{p}$ and solves to give $p^2 =$	M1	1.1b
	Hence $\left(\text{as } q = p + \frac{2}{p} = -\frac{4}{p} \text{ gives no solution}\right), p^2 = 2 \text{ (only)*}$	A1*	1.1b
		(9)	
		(9	marks)

3 v	Notes
M1	Begins proof by differentiating and using the perpendicularity condition at point P in order to find the equation of the normal.
A1	Correct gradient of normal, $-p$ only.
M1	Use of $y - y_1 = m(x - x_1)$. Accept use of $y = mx + c$ and then substitute to find c.
M1	Substitute coordinates of Q into their equation to find an equation relating p and q .
M1	Use of $m_1m_2 = -1$ with OP and OQ to form a second equation relating p and q .
A1	$q = \frac{-4}{p}$ only.
M1	Solves the simultaneous equations and cancels a from their results to obtain a quadratic equation in p^2 only.
M1	Attempts to solve their quadratic in p^2 . Usual rules.
A1*	Correct solution leading to given answer stated. No errors seen.

Notes continued	
ALT 1	
M1A1M1	As main scheme.
M1	Solves $y^2 = 4ax$ and their normal simultaneously to find one of the coordinates for
	Q in terms of a and p as shown.
M1	Finds the second coordinate of Q in terms of a and p .
A1	Both coordinates correct in terms of a and p .
M1	Use of $m_1 m_2 = -1$ with <i>OP</i> and <i>OQ</i> . i.e. $\frac{2ap}{ap^2} \times \frac{\text{their } y_Q}{\text{their } x_Q} = -1$ with coordinates of
	P and their expressions for x_Q and y_Q .
M1	Cancels the a 's, simplifies to a quadratic in p^2 and solves the quadratic. Usual rules.
A1*	Correct solution leading to the given answer stated. No errors seen.
ALT 2	
M1A1M1	As main scheme.
M1	Solves $y^2 = 4ax$ and their normal simultaneously to find one of the coordinates for
	Q in terms of a and p as shown.
M1	Uses their coordinate to form a relationship between p and q . Allow $q = \left(p + \frac{2}{p}\right)$
	for this mark.
A1	For $q = -p - \frac{2}{p}$. If the x coordinate was used to find q then consideration of the
	negative root is needed for this mark. Allow for $q = \pm \left(p + \frac{2}{p}\right)$.
M1	Use of $m_1m_2=-1$ with OP and OQ to form a second equation relating p and q only.
M1	Equates expressions for q and attempts to solve to give $p^2 =$
A1*	Correct solution leading to the given answer stated. No errors seen. If x coordinate used, invalid solution must be rejected.