Momentum and Impulse

Questions

Q1.

A particle *P* of mass 0.5 kg is moving with velocity $4\mathbf{j}$ m s⁻¹ when it receives an impulse I Ns. Immediately after *P* receives the impulse, the velocity of *P* is $(2\mathbf{i} + 3\mathbf{j})$ m s⁻¹.

Find

(a)	the magnitude of I,	
(b)	the angle between I and j.	(4)
		(2)

(Total for question = 6 marks)

Q2.

Two particles, P and Q, have masses 2m and 3m respectively. They are moving towards each other in opposite directions on a smooth horizontal plane when they collide directly. Immediately before they collide the speed of P is 4u and the speed of Q is 3u. As a result of the collision, Q has its direction of motion reversed and is moving with speed u.

(a) Find the speed of *P* immediately after the collision.

(3)

(b) State whether or not the direction of motion of *P* has been reversed by the collision.

(1)

(c) Find the magnitude of the impulse exerted on *P* by *Q* in the collision.

(3)

(Total for question = 7 marks)

Q3.

A particle *P*, of mass 0.5 kg, is moving with velocity $(4\mathbf{i} + 4\mathbf{j}) \text{ m s}^{-1}$ when it receives an impulse I of magnitude 2.5 Ns.

As a result of the impulse, the direction of motion of P is deflected through an angle of 45°

Given that $\mathbf{I} = (\lambda \mathbf{i} + \mu \mathbf{j})$ Ns, find all the possible pairs of values of λ and μ .

(Total for question = 9 marks)

Q4.

A particle *P* of mass 0.5 kg is moving with velocity $(4\mathbf{i} + 3\mathbf{j})$ m s⁻¹ when it receives an impulse **J** N s. Immediately after receiving the impulse, *P* is moving with velocity $(-\mathbf{i} + 6\mathbf{j})$ m s⁻¹.

(a) Find the magnitude of **J**.

The angle between the direction of the impulse and the direction of motion of P immediately before receiving the impulse is α°

(b) Find the value of α

(3)

(4)

(Total for question = 7 marks)

Q5.

A particle *P* has mass 0.5 kg. It is moving in the *xy* plane with velocity 8**i** m s⁻¹ when it receives an impulse $\lambda(-\mathbf{i} + \mathbf{j}) \mathbf{N}$ s, where λ is a positive constant.

The angle between the direction of motion of *P* immediately before receiving the impulse and the direction of motion of *P* immediately after receiving the impulse is θ°

Immediately after receiving the impulse, P is moving with speed $4\sqrt{10}$ m s⁻¹

Find (i) the value of λ

(ii) the value of θ

(8)

(Total for question = 8 marks)

Q6.

A particle A of mass 3m and a particle B of mass m are moving along the same straight line on a smooth horizontal surface. The particles are moving in opposite directions towards each other when they collide directly.

Immediately before the collision, the speed of A is ku and the speed of B is u. Immediately after the collision, the speed of A is v and the speed of B is 2v.

The magnitude of the impulse received by *B* in the collision is $\overline{2}$ *mu*.

(a) Find *v* in terms of *u* only.

(b) Find the two possible values of *k*.

(5)

(3)

(Total for question = 8 marks)

Q7.

A particle *P* of mass 0.5 kg is moving in a straight line with speed 2.8 m s⁻¹ when it receives an impulse of magnitude 3 N s.

The angle between the direction of motion of P immediately before receiving the impulse and $\frac{4}{4}$

the line of action of the impulse is α , where tan $\alpha = \overline{3}$, as shown in Figure 2.

Find the speed of *P* immediately after receiving the impulse.

(Total for question = 5 marks)

Mark Scheme – Momentum and Impulse

Q1.

Q.	Scheme	Marks	Notes
a	I = 0.5(2i + 3j) - 0.5(4j)	M1	Impulse-momentum equation. Dimensionally correct. Condone subtraction in wrong order.
	(=0.5(2i-j))	A1	Correct unsimplified
	$ \mathbf{I} = \frac{1}{2}\sqrt{2^2 + 1^2}$	M1	Correct method for modulus. Follow their I
	$=\frac{1}{2}\sqrt{5}(=1.12)$ Ns	A1	1.1 or better (from correct solution only)
		(4)	
b	$\tan^{-1}(\pm 2)$ or $\tan^{-1}(\pm \frac{1}{2})$ or $\tan \theta = \pm 2$ or $\tan \theta = \pm \frac{1}{2}$ or equivalent	M1	Correct method for a relevant angle. Follow their I
	Required angle = 117° (116.6° or better)	A1	Accept 243° (2.03 rads)
		(2)	
balt	4j 21 · j 4j 21 · j 21 · j 21 · j		
	$\cos \alpha = \frac{16 + 5 - 13}{2\sqrt{5}\sqrt{16}} = \frac{1}{\sqrt{5}}$	M1	
	Required angle = 117° (116.6°)	A1	Accept 243°
		(2)	
		[6]	

Q2.

Question Number	Scheme	Marks
(a)	$4u \longrightarrow P(2m) \qquad Q(3m) \qquad Q(3m) \qquad V \qquad u \qquad u$	M1 A1 A1 (3)
(b)	(Has been) reversed	B1 (1)
(c)	For $Q: I = 3m(u3u)$ = 12mu OR: For $P: I = 2m(2u4u)$ = 12mu	M1 A1 A1 (3) OR M1 A1 A1 (3) 7
(a)	Notes M1 for CLM with correct no. of terms, all dimensionally correct, to give an equation in m , u and their V only. Condone consistent g 's or cancelled m 's. First A1 for a correct equation (they may have $+ 2mV$) Second A1 for $2u$ (must be positive since speed is required)	
(b)	B1 for '(has been) reversed'. <u>Only available if a correct velocity has been correctly</u> <u>obtained in part (a).</u> B0 for 'changed', 'direction has changed', 'yes'	
(c)	M1 for using Impulse = change in momentum of Q (must have $3m$ in both terms) (M0 if clearly adding momenta or if g is included) but condone sign errors. First A1 for $3m(u3u)$ or $-3m(u3u)$ Second A1 for $12mu$ (must be positive since magnitude required) OR M1 for using Impulse = change in momentum of P (must have $2m$ in both terms) (M0 if clearly adding momenta) but condone sign errors. First A1 for $2m(2u4u)$ or $-2m(2u4u)$ Second A1 for $12mu$ (must be positive since magnitude required) N.B. Allow use of $I = 3m(u - v)$ or $I = 2m(u - v)$ since only magnitude required	

Q3.

Question	Scheme	Mark s	AOs	Notes
	(2i+2j) 45° <i>ci</i>			
	Momentum of P after impulse = $a\mathbf{i}$ (or $a\mathbf{i}$)	B1	2.2 a	Correct interpretation of angle of deflection (velocity or momentum a multiple of i or j)
Either	Use of $I = m(v-u)$: (I=)0.5(2 <i>a</i> i-(4i+4j))(=(<i>a</i> -2)i-	M1	3.3	Form vector triangle or equation for \mathbf{v} or their $a\mathbf{i}$
	Use of Pythagoras to form equation in <i>a</i>	M1	3.4	Use trigonometry or Pythagoras' theorem to form equation in a
	$6.25 = 0.25 ((2a-4)^2 + 16)$ $(4a^2 - 16a + 7 = 0)$	A1ft A1	1.1b 1.1b	Unsimplified equation with at most one error. Follow their <i>a</i> i Correct unsimplified equation
Or	$\lambda^2 + \mu^2 = \frac{25}{4}$	M1		
	$\mathbf{I} = \lambda \mathbf{i} + \mu \mathbf{j} = \frac{1}{2} ((x-4)\mathbf{i} - 4\mathbf{j})$	M1		
	μ=-2	A1		Dependent on 2 nd M (for impulse)
	$\lambda^2 = \frac{9}{4}$	A1		

Or	Use of $\mathbf{I} = m(\mathbf{v} - \mathbf{u})$ to form vector triangle	M1	3.3	
	Form equation in their a	M1	3.4	
	$6.25 = a^2 + 8 - 2a\sqrt{8} \times \frac{1}{\sqrt{2}}$			
	2	A1ft	1.1b	
	$4 \times 6.25 = b^2 + 32 - 2b\sqrt{32} \times \frac{1}{\sqrt{2}}$	A1	1.1b	
	for velocity bi			
	$\left(4a^2-16a+7=0\right)$			
	$a = \frac{7}{2}, \ \frac{1}{2}$ $\Rightarrow \mathbf{I} = \frac{3}{2}\mathbf{i} - 2\mathbf{j} \ (\text{Ns})$	M1	1.1b	Complete correct method to solve to find a pair of values for λ and μ
	or $\mathbf{I} = -\frac{3}{2}\mathbf{i} - 2\mathbf{j} (Ns)$	A1	1.1b	Two correct pairs of values for λ and μ
	or $\mathbf{I} = -2\mathbf{i} - \frac{3}{2}\mathbf{j} \text{ (Ns)}$	M1	2.2a	Use symmetry in complete correct method to find one of the other pairs of values for λ and μ
	or $\mathbf{I} = -2\mathbf{i} + \frac{3}{2}\mathbf{j} (Ns)$	A1	1.1b	All four correct pairs (They do not need to write out the impulse in full)
		(9)		
	ŝi d		5	(9 marks)

Question	Scheme	Marks	AOs
a	Impulse-momentum equation	M1	3.1a
	$\mathbf{J} = 0.5(-\mathbf{i} + 6\mathbf{j} - 4\mathbf{i} - 3\mathbf{j})$ $(\mathbf{J} = 0.5(-5\mathbf{i} + 3\mathbf{j}))$	A1	1.18
	Find magnitude of J:	M1	1.18
	$ \mathbf{J} ^2 = \frac{1}{4}(25+9), \qquad \mathbf{J} = \frac{\sqrt{34}}{2} $ (N s)	A1	1.11
		(4)	
b	-5i+3j a° 4i+3j		
	Correct use of trig	M1	3.1
	$\alpha^{\circ} = 180^{\circ} - \tan^{-1}\frac{3}{4} - \tan^{-1}\frac{3}{5}$ or $\alpha^{\circ} = \tan^{-1}\frac{4}{3} + \tan^{-1}\frac{5}{3}$	A1ft	1.1
	<i>α</i> = 112	A1	1.1
		(3)	
balt	Use scalar product of μJ and $4i + 3j$ to find the angle	M1	3.1
	$\cos \alpha^{\circ} = \frac{-20+9}{\sqrt{34}\times 5}$	A1ft	1.1
	<i>α</i> =112	A1	1.1
		(3)	
balt	Use of cosine rule in triangle of momenta or equivalent	M1	3.1
	$\alpha^{\circ} = 180^{\circ} - \cos^{-1} \left(\frac{34 + 25 - 37}{2 \times 5 \times \sqrt{34}} \right)$	A1ft	1.1
	α=112	A1	1.1
		(3)	
	1	(7 1	n:

Notes:	
(a)M1	Dimensionally correct. Must be subtracting, but condone subtracting in the wrong order.
Al	Correct unsimplified equation
M1	Correct application of Pythagoras to find the magnitude. (from $\pm J$)
Al	2.9 or better (2.9154) (from ±J)
(b)M1	Correct use of trig to find a relevant angle using $4\mathbf{i} + 3\mathbf{j}$ and their J i.e. α° or $180^{\circ} - \alpha^{\circ}$ Allow $\frac{ \mathbf{a}.\mathbf{b} }{ \mathbf{a} \mathbf{b} }$
Alft	Correct unsimplified expression for the required angle. Follow their J A0 for $\begin{vmatrix} a.b \\ a \end{vmatrix} b$ Do not ISW
Al	110 or better (112.166) or accept 247.8°

Q5.

Ques	n Scheme	Marks	AOs		
	Use of Impulse = change in momentum	M1	3.1a		
	$0.5(\mathbf{v}-8\mathbf{i}) = \lambda(-\mathbf{i}+\mathbf{j})$ $(\mathbf{v} = (-2\lambda+8)\mathbf{i}+2\lambda\mathbf{j})$	A1	1.16		
	Use of Pythagoras:	M1	3.1a		
	e.g. $160 = (-2\lambda + 8)^2 + (2\lambda)^2$ $(160 = 4\lambda^2 - 32\lambda + 64 + 4\lambda^2)$	A1	1.1b		
	Form and solve quadratic in λ : $8\lambda^2 - 32\lambda - 96 = 0$ $(\lambda^2 - 4\lambda - 12 = (\lambda - 6)(\lambda + 2))$	= 0) M1	2.1		
	$\Rightarrow \lambda = 6$	A1	1.1b		
	Find the required angle: $180^{\circ} - \tan^{-1} 3$	M1	1.1b		
	$\theta = 108$	A1	2.2a		
	-	(8)			
		(8	marks)		
Note					
M1	ust be subtracting two values for momentum, but condone subtra	action in the wrong o	order		
Al	Correct unsimplified equation				
M1	Correct use of final speed with their v				
Al	Correct unsimplified equation in one unknown or pair of simultaneous equations				
M1	Simplify and solve for λ from correct working				
Al	Correct positive solution only				
M1	Complete method to solve for θ				
Al	8 or better (108.4349)				

Q6.

Question	Scheme	Marks	AOs
а	$ku \longrightarrow \qquad \longleftarrow \qquad u$ $\begin{pmatrix} A \\ 3m \end{pmatrix} \qquad \begin{pmatrix} B \\ m \end{pmatrix}$ either $\nu \longrightarrow \qquad \longrightarrow \qquad 2\nu$ or $\nu \longleftarrow \qquad \longrightarrow \qquad 2\nu$ Note that if they start with their 2v to the left this creates an impossible situation (the particles need to pass through each other). The maximum score is M1M1M1.		
	Impulse received by B:	M1	3.4
	$\frac{3}{2}mu = m(2v - (-u))$	A1	1.1b
	$v = \frac{u}{4}$	A1	1.1b
		(3)	

b	Use of CLM or Impulse-momentum for one option for A:	M1	3.4
	$3kmu - mu = 2mv + 3mv \left(= \frac{5mu}{4} \right)$ or $3m(v - ku) = -\frac{3mu}{2} \left(3mu \left(\frac{1}{4} + \frac{1}{2} \right) = 3mku \right)$	A1ft	1.1b
	$k=\frac{3}{4}$	A1	1.1b
	Form a second equation in k $\left(3mku - mu = 2mv - 3mv\left(=-\frac{mu}{4}\right) \text{ or } 3m(v+ku) = \frac{3mu}{2}\right)$	M1	3.1a
	$k = \frac{1}{4}$	A1	1.16
		(5)	
		(T0tal 8]	 Marks)

Notes	
(a)M1	Form impulse-momentum equation for B (or A). May be expressed as either $\mathbf{I} = m\mathbf{v} - m\mathbf{u}$ or $\mathbf{I} + m\mathbf{u} = m\mathbf{v}$. Dimensionally correct. Must be considering difference in velocities Must have a correct combination of mass and velocity: pairing velocity of one with the mass of the other scores M0 Allow for subtraction the wrong way round or impulse in the wrong direction. Assuming that you have not seen an incorrect formula stated, allow for $2v + u$ without overt evidence of subtraction. Allow if the common factor of m is not seen
A1	Correct unsimplified equation for B (or A). Allow without m
A1	Correct answer only
(b) M1	Correct method to form an equation in k . Must be dimensionally correct Condone sign errors in CLM. Allows marks for CLM equation here if seen in (a) and used correctly to find k here. Rules for impulse-momentum as above. M1 is available if they have not reversed the direction of the impulse. An equation which allows for the change in direction by using $\mathbf{u} - \mathbf{v}$ can score full marks. Could be working with either option for the direction of motion of A
A1ft	Correct unsimplified equation in u , v or their v
A1	One correct solution Be aware that a sign error in the impulse-momentum equation for A can lead to a fortuitous answer. A fortuitous answer scores A0 (FYI the incorrect answers are $\frac{-7}{4}$ and $\frac{1}{4}$)
M1	Correct method to form a second equation in k (reversing the direction of motion of A)
A1	Second correct solution

Q7.

Question	Scheme	Marks	AOs
	Impulse momentum equation(s)	M1	3.1a
	$ \begin{pmatrix} 3 \times \cos \alpha \\ 3 \times \sin \alpha \end{pmatrix} = \frac{1}{2} \begin{pmatrix} v_x - 2.8 \\ v_y \end{pmatrix} \qquad \left(v_x = \frac{32}{5}, v_y = \frac{24}{5} \right) $	A1 A1	1.1b 1.1b
	$v = \frac{1}{5}\sqrt{32^2 + 24^2}$	M1	1.1b
	$= 8 \left(m s^{-1} \right)$	A1	1.1b
	Alternative working parallel and perpendicular to the impulse: $ \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} v_1 - 2.8 \times \cos \alpha \\ v_2 \pm 2.8 \times \sin \alpha \end{pmatrix} v_1 = 7.68, v_2 = \pm 2.24 $ $ v = \sqrt{7.68^2 + 2.24^2} = 8 (\text{ms}^{-1}) $		
		(5)	
alt	v 6 2.8		
	Using cosine rule:	M1	
	$v^2 = 2.8^2 + 6^2 - 2 \times 2.8 \times 6\cos(\pi - \alpha)$	A1 A1	
	Solve for v	M1	
	$v = 8 \left(m s^{-1} \right)$	A1	
		(5)	
		(Total 5 marks)	

Notes		
M1	Use of $I = mv - mu$ in two dimensions. (i.e. resolving used) Dimensionally correct. Allow for a combined equation in vector format or for just one component. Condone sin/cos confusion. Allow if <i>m</i> seen but not substituted.	
A1 A1	Equation for one component correct unsimplified Equations for both components correct unsimplified Allow A1A1 for a correct unsimplified vector equation Allow A marks if in terms of m and α	
M1	Correct use of Pythagoras for their components to obtain the numerical value of the speed This may be seen or implied: an alert candidate might spot the 3, 4, 5 triangle.	
A1	Correct only	
Alt		
M1	Correct use of cosine rule in a dimensionally correct triangle. The lengths of the sides must be consistent, i.e. v, 2.8 and 6 or $\frac{1}{2}v$, 1.4 and 3 and it must be a correct vector triangle (vectors combined correctly)	
A1	Unsimplified equation with at most one error	
A1	Correct unsimplified equation	
M1	Substitute for trig. and solve for v	
A1	Correct only	