Discrete Random Variables

Questions

Q1.

The discrete random variable *X* has probability distribution

x	-3	-1	1	2	4
P(X = x)	q	$\frac{7}{30}$	7 30	q	1.

where q and r are probabilities.

(a) Write down, in terms of q, $P(X \le 0)$

(1)

(b) Show that
$$E(X^2) = \frac{7}{15} + 13q + 16r$$

(2)

Given that $E(X^3) = E(X^2) + E(6X)$

(c) find the value of q and the value of r

(7)

(d) Hence find $P(X^3 > X^2 + 6X)$

(4)

(Total for question = 14 marks)

Q2.

The probability distribution of the discrete random variable X is

$$P(X=x) = \begin{cases} \frac{k}{x} & \text{for } x = 1, 2 \text{ and } 3\\ \frac{m}{2x} & \text{for } x = 6 \text{ and } 9\\ 0 & \text{otherwise} \end{cases}$$

where k and m are positive constants.

Given that E(X) = 3.8, find Var(X)

(7)

(Total for question = 7 marks)

Q3.

The discrete random variable *X* has the following probability distribution.

x	-5	-2	3	4
D(V = v)	1	1	1	1
P(X = x)	12	6	4	2

(a) Find Var(X)

(3)

The discrete random variable Y is defined in terms of the discrete random variable X

When X is negative, $Y = X^2$ When X is positive, Y = 3X - 2

(b) Find P(Y < 9)

(3)

(c) Find E(XY)

(2)

(Total for question = 8 marks)

Q4.

The discrete random variable X has probability distribution

x	-3	-2	-1	0	2	5
P(X = x)	0.3	0.15	0.1	0.15	0.1	0.2

(a) Find E(X)

(1)

Given that Var(X) = 8.79

(b) find $E(X^2)$

(2)

The discrete random variable Y has probability distribution

У	-2	-1	0	1	2
P(Y=y)	3 <i>a</i>	а	b	а	c

where a, b and c are constants.

For the random variable Y

$$P(Y \le 0) = 0.75$$
 and $E(Y^2 + 3) = 5$

(c) Find the value of a, the value of b and the value of c

(5)

The random variable W = Y - X where Y and X are independent.

The random variable T = 3W - 8

(d) Calculate P(W > T)

(4)

(Total for question = 12 marks)

Q5.

The discrete random variable *X* has the following probability distribution

x	0	2	3	6
P(X=x)	p	0.25	q	0.4

- (a) Find in terms of q
 - (i) E(*X*)
 - (ii) $E(X^2)$

(2)

Given that Var(X) = 3.66

(b) show that q = 0.3

(3)

In a game, the score is given by the discrete random variable X

Given that games are independent,

(c) calculate the probability that after the 4th game has been played, the total score is exactly 20

(3)

A round consists of 4 games plus 2 bonus games. The bonus games are only played if after the 4th game has been played the total score is exactly 20

A prize of £10 is awarded if 6 games are played in a round **and** the total score for the round is at least 27

Bobby plays 3 rounds.

(d) Find the probability that Bobby wins at least £10

(6)

(Total for question = 14 marks)

Q6.

The discrete random variable X has probability distribution

x	-5	-1	0	5	b
P(X=x)	0.3	0.25	0.1	0.15	0.2

where b is a constant and b > 5

(a) Find E(X) in terms of b

(1)

Given that Var(X) = 34.26

(b) find the value of b

(4)

(c) Find P(X2 < 2 - 3X)

(4)

(Total for question = 9 marks)

Q7.

Members of a photographic group may enter a maximum of 5 photographs into a members only competition.

Past experience has shown that the number of photographs, *N*, entered by a member follows the probability distribution shown below.

n	0	1	2	3	4	5
P(N=n)	а	0.2	0.05	0.25	ь	c

Given that
$$E(4N+2) = 14.8$$
 and $P(N=5 | N > 2) = \frac{1}{2}$

(a) show that Var(N) = 2.76

(6)

The group decided to charge a 50p entry fee for the first photograph entered and then 20p for each extra photograph entered into the competition up to a maximum of £1 per person. Thus a member who enters 3 photographs pays 90p and a member who enters 4 or 5 photographs just pays £1

Assuming that the probability distribution for the number of photographs entered by a member is unchanged,

(b) calculate the expected entry fee per member.

(3)

Bai suggests that, as the mean and variance are close, a Poisson distribution could be used to model the number of photographs entered by a member next year.

(c) State a limitation of the Poisson distribution in this case.

(1)

(Total for question = 10 marks)

Mark Scheme – Discrete Random Variables

Q1.

				Scheme	2		Marks	AO
(a)		$q + \frac{7}{30}$					B1	1.1b
	AR ASSOCIA	(1) 15.					(1)	
(b)	$E(X^2) = ($	$(-3)^2 \times q +$	$-(-1)^2 \times \frac{7}{30}$	$\frac{7}{0} + 1^2 \times \frac{7}{30}$	$+ 2^2 \times q$	$+ 4^2 \times r$	M1	1.1b
	=	$\frac{7}{15} + 13q + 1$	(*)				A1*cso	1.1b
	-						(2)	
(c)	E(X) = -3	$3q + -\frac{7}{30}$	$+\frac{7}{30}+2$	$q + 4r$ {	=4r-q		M1	3.1a
	$E(X^2+6X^2)$	$X) = \frac{7}{15} + 7$	q + 40r				A1	1.1b
	$E(X^3) = ($	$(-3)^3 \times q +$	$(-1)^3 \times \frac{7}{30}$	$\frac{1}{3} + 1^3 \times \frac{7}{30}$	$+ 2^3 \times q$	$+4^3 \times r$	M1	3.4
	= (64r - 19q					A1	1.1b
	Sum of pro	obabilities	= 1 gives:	$2q + r = \frac{1}{2}$	(o.e.)		M1	1.1b
	Solve: 24	$r-26q=\frac{1}{2}$	$\frac{7}{15}$ and r	$+2q = \frac{8}{15}$	e.g. 37r=	= <u>111</u> 15	dM1	1.1b
			So r	$=\frac{1}{5}$ and	$q = \frac{1}{6}$		A1	1.1b
			N=	- 2 9	10		(7)	
(d)	$X^3 > X^2 +$	$+6X \Rightarrow .$	X(X-3)(.	(X+2) > 0			M1	2.1
	Use of ske	tch or tabl	e to see: -	-2 < X < 0	or $X > 3$		A1	1.1b
	So $P(X^3 >$	$X^2 + 6X$	= P(X =	-1 or 4)			M1	2.2a
				=	$=\frac{7}{30}+"r"=$: <u>13</u> 30	A1ft	1.1b
				4	100		(4)	•
LT	X	- 3	- 1	1	2	4		
LI	X^3	-27	-1	1 7	8	64	(14 marks)	
	$X^2 + 6X$	-9	-5	7	16 lotes	40	(2.1 mm no)	

- (b) M1 for at least 3 correct terms of the expression for $E(X^2)$
 - A1*cso evidence of M1 scored with no incorrect working seen leading to correct answer (*) Allow $-3^2 \times q + -1^2 \times \frac{7}{30}$ etc if followed by $9q + \dots$ but <u>not</u> if simply followed by given answer
- (c) 1st M1 for realising the need to find E(X) a correct attempt with at least 3 correct terms 1st A1 for the correct expression (needn't be simplified at this stage)
 - 2^{nd} M1 for a correct attempt at E(X^3) with at least 3 correct terms seen Treat no $\frac{7}{30}$ terms as <u>one</u> correct term
 - 2^{nd} A1 for 64r 19q (must be simplified) or for $24r 26q = \frac{7}{15}$
 - 3^{rd} M1 for using sum of probabilities = 1 to form an equation in q and r (needn't be simplified) Must be correct or clearly state that Σ probs = 1 being attempted with only one slip
 - 4^{th} dM1 for solving their 2 linear equations in q and r (dep on 3^{rd} M1 and 1^{st} or 2^{nd} M1) Must see correct method to reduce to a linear equation in one variable
 - 3^{rd} A1 for $r = \frac{1}{5}$ and $q = \frac{1}{6}$ or any exact equivalents (dep on 2 correct equations seen)
- (d) 1st M1 for 1st stage towards solving the inequality (factorising the cubic)
 - 1st A1 for solving the inequality
 - 2nd M1 for identifying the values of X required i.e. 1 and 4
 - 2^{nd} A1ft for $\frac{13}{20}$ or exact equivalent e.g. 0.43 (Allow ft of "their r" + $\frac{7}{30}$)
- ALT Table 1st M1 for at least 4 correct values for X^3 and $X^2 + 6X$ (must be labelled) 1st A1 for all 10 correct values. [NB Can score M1A0M1A1ft in (d)]

Q2.

Question	Scheme	Marks	AOs
	$\Sigma p = 1 \longrightarrow k + \frac{k}{2} + \frac{k}{3} + \frac{m}{12} + \frac{m}{18} = 1$ $\Sigma px = 3.8 \longrightarrow k + \frac{k}{2}(2) + \frac{k}{3}(3) + \frac{m}{12}(6) + \frac{m}{18}(9) = 3.8$	M1	3.1a
	$\frac{11k}{6} + \frac{5m}{36} = 1 \ [= 66k + 5m = 36]$	A1	1.1b
	3k + m = 3.8	A1	1.1b
	Solving simultaneously to eliminate one variable	dM1	1.1b
	$k = \frac{1}{3}$ and $m = \frac{14}{5}$	A1	1.1b
	$E(X^{2}) = 1^{2} \times k + 2^{2} \times \frac{k}{2} + 3^{2} \times \frac{k}{3} + 6^{2} \times \frac{m}{12} + 9^{2} \times \frac{m}{18} [= 23]$	M1	1.1b
	$Var(X) = 23 - 3.8^2$		
	= 8.56	A1	1.1b
	·	. 19	(7 marks)

Notes
M1: Attempt at both required equations with at least one term in k and one term in m correct
A1: Correct equation using $\Sigma p = 1$
A1: Correct equation using $\Sigma px = 3.8$
dM1: (dep on 1 st M1) Solving simultaneously (may be implied by one correct value found)
Al: both values correct (may be implied by correct answer)
M1: Attempt to find $E(X^2)$ using their value of k and their value of m with at least 3
correct products or correct ft products Note: $E(X^2) = 6k + 7.5m$
A1: 8.56 cao

Q3.

Question	Scheme	Marks	AOs					
(a)	$[E(X) =](-5) \times \frac{1}{12} + (-2) \times \frac{1}{6} + (3) \times \frac{1}{4} + (4) \times \frac{1}{2} [= 2]$	M1	1.1b					
	$[E(X^2) =](-5)^2 \times \frac{1}{12} + (-2)^2 \times \frac{1}{6} + (3)^2 \times \frac{1}{4} + (4)^2 \times \frac{1}{2} [=13]$ (oe)	M1	1.1b					
	$Var(X) = E(X^2) - [E(X)]^2 = 13 - 2^2 = 9$	A1	1.1b					
1		(3)	92					
(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	3.1a					
	$P(Y < 9) = P(X = -2) + P(X = 3) \left[= \frac{1}{6} + \frac{1}{4} \right]$	M1	1.1b					
	$=\frac{5}{12}$	A1	1.1b					
	-	(3)	6					
(c)	$E(XY) = (-5)(25)\frac{1}{12} + (-2)(4) \times \frac{1}{6} + (3)(7) \times \frac{1}{4} + (4)(10) \times \frac{1}{2}$	M1	3.1a					
	= 13.5	A1	1.1b					
	S 01	(2)						
		(8	8 marks)					
	Notes		c					
(a)	M1: Attempt at $E(X)$ with at least 3 correct products seen M1: Attempt at $E(X^2)$ with at least 3 correct products seen A1: 9 cao Alternative M1: Attempt at $E(X)$ with at least 3 correct products seen M1: Attempt at expression for $E((X - \mu)^2) = (-5 - 2)^2 \times \frac{1}{12} + (-2 - 2)^2 \times \frac{1}{6} + (3 - 2)^2 \times \frac{1}{4} + (4 - 4)^2 \times \frac{1}{2} = (-2 - 2)^2 \times \frac{1}{2} = ($	$(-2)^2 \times \frac{1}{2}$						
(b)	M1: Finding distribution of Y M1: $P(X = -2) + P(X = 3)$ or $P(Y = 4) + P(Y = 7)$ A1: $\frac{5}{12}$ (condone awrt 0.417)	M1: Finding distribution of Y M1: $P(X=-2) + P(X=3)$ or $P(Y=4) + P(Y=7)$						
(c)	M1: Attempt at E(XY) with at least 2 correct terms A1: 13.5							

Q4.

Question	Scheme	Marks	AOs
(a)	E(X) = -0.1 oe	B1	1.1b
		(1)	
(b)	$Var(X) = E(X^2) - ("-0.1")^2$	M1	1.2
	$E(X^2) = 8.8$	A1	1.1b
		(2)	
(c)	$(-2)^2 \times 3a + (-1)^2 \times a[+0^2 \times b] + 1^2 \times a + 2^2 \times c = ["2"]$	M1	1.1b
	7a+2c=1 oe A1 One of $a+c=0.25$ or $4a+b=0.75$ or $5a+b+c=1$ M1	A1	1.1b
	One of $a+c=0.25$ or $4a+b=0.75$ or $5a+b+c=1$	M1	3.1a
	Two of $a+c=0.25$ or $4a+b=0.75$ or $5a+b+c=1$	A1	1.1b
	a = 0.1 and $b = 0.35$ and $c = 0.15$	A1	1.1b
2		(5)	
(d)	P(W > T) = P(W > 3W - 8) = P(W < 4)	M1	3.1a
	$P(W < 4) = 1 - [P(X = -3) \times P(Y = 1) + P(X = -3) \times P(Y = 2) + P(X = -2) \times P(Y = 2)]$ or $= P(X \ge -1) + P(X = -2) \times P(Y \ne 2) + P(X = -3) \times P(Y \le 0)$	M1dep	1.1b
	$= 1 - [0.3 \times "0.1" + 0.3 \times "0.15" + 0.15 \times "0.15"]$ or $0.55 + 0.15 \times [1 - "0.15"] + 0.3 \times ["0.3" + "0.1" + "0.35"]$	M1dep	1.1b
	= 0.9025	A1	1.1b
		(4)	
		(12 n	narks)

	VIE .	Notes:				
(a)	B1:	-0.1 oe				
(b)	M1:	For recalling and using a correct formula				
ė.	Al:	8.8				
(c)	M1:	For use of $\sum y^2 P(Y=y) [=2]$ or $\sum (y^2+3) P(Y=y) [=5]$ 3 correct products seen				
	Al:	For correct equation with a's collected				
	M1:	For use of $\sum P(Y = y) = 1$ or $P(Y \le 0) = 0.75$ or $1 - P(Y \le 0) = 0.25$				
	A1:	For 2 correct equations				
	A1:	a, b and c correct. Award full marks if all 3 correct				
(d)	M1:	For using the information given to work out the values of W . Allow $Y-X$ instead of W				
Š.	dM1:	For using the information given to work out which are the relevant combinations of X and Y . The irrelevant ones must not be used.				
-)	M1:	Previous method must be awarded. All required cases identified and their probabilities of a , b and c used. Allow in terms of a , b and c				
	A1:	0.9025 (accept awrt 0.903 or exact fraction $\frac{361}{400}$)				

Q5.

Question	Scheme	Marks	AOs
(a)(i)	$E(X) = [0 \times p] + (2 \times 0.25) + 3q + (6 \times 0.4) [= 2.9 + 3q]$	B1	1.1b
(ii)	$E(X^{2}) = [0 \times p] + (2^{2} \times 0.25) + 3^{2}q + (6^{2} \times 0.4)[=15.4 + 9q]$	B1	1.1b
		(2)	
(b)	$("15.4+9q")-("2.9+3q")^2=3.66$	M1	1.1b
	$9q^2 + 8.4q - 3.33 = 0 \implies q = 0.3 \text{ and } -\frac{37}{30}$	M1	1.1b
	q = 0.3* since q cannot be negative	A1cso*	2.4
	SC $("15.4+9\times0.3")-("2.9+3\times0.3")^2$ can get M1M0A0		
		(3)	
(c)	$P(x_1 + x_2 + x_3 + x_4 = 20) = P(6,6,6,2 \text{ or } 6,6,2,6 \text{ or } 6,2,6,6 \text{ or } 2,6,6,6)$	M1	1.1b
	$= 4 \times 0.4^3 \times 0.25$	M1	1.1b
	= 0.064 oe	A1	1.1b
		(3)	6
(d)	$P(x_5 + x_6 \ge 7) = P(6,6 \text{ or } 6,3 \text{ or } 6,2)$	M1	3.1a
	$= (0.4^{2}) + 2 \times (0.4 \times 0.3) + 2 \times 0.4 \times 0.25 = 0.6$	M1	1.1b
	$P(score \ge 27) = "0.064" \times "0.6" [= 24/625 = 0.0384]$	M1	1.1b
	Y~ B(3, "0.0384")	dM1	3.3
	$P(Y \geqslant 1) = 1 - P(Y = 0)$	M1	1.1b
	= 0.1108	A1cso	1.1b
		(6)	
Notes	<i>y</i> -	(14 m	arks)

(a)(i)	B1:	Correct expression for $E(X)$ need not be simplified					
(ii)	B1:	Correct expression for $E(X^2)$ need not be simplified					
(b)	M1:	Using "their $E(X^2)$ " – "their $(E(X))^2$ " = 3.66					
	M1:	Rearranging to get a correct 3 term quadratic (condone missing = 0) leading to 0.3 and $-37/30$ (awrt -1.23) or $(10q-3)(30q+37)$					
	Alcso:*	cso with a comment why $-37/30$ is eliminated. Minimum required is $q \ge 0$ or they say it is impossible.					
(c)	M1:	Realising that combination is 6662. Any order. Implied by $0.4^3 \times 0.25$					
	M1:	Correct calculation					
	Al:	0.064 oe only eg 8/125					
(d)	M1:	Realising all the different combinations 7 or more can be scored from 2 games. (no need for arrangements) Implied by (0.4^2) and (0.4×0.3) and (0.4×0.25)					
	M1:	Fully correct method.					
	M1:	For multiplying "their (c)" with "their $P(x_5 + x_6 \ge 7)$ " providing at least 2 combinations are used to find $P(x_5 + x_6 \ge 7)$ "					
	dM1:	Dependent on 3 rd M1 being awarded for using or writing B(3, "their P($x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \ge 27$)") $(1 - 0.0384")^3$ or					
	M1:	For writing or using $1-P(Y=0) \text{ eg } 1-(1-"0.0384")^3$					
	Alcso:	awrt 0.111 from correct working					
) 1 st 3 1						
Fully	correct n	nethod "0.064"× (0.4^2) +0.064×2× (0.4×0.3) +0.064×2× (0.4×0.25) is M1M1M1					
A11 3 1	but no an	rangements ie "0.064"× (0.4^2) +0.064× (0.4×0.3) +0.064× (0.4×0.25) M1M0M1					
At lea	st 2 com	binations used for > 7 eg $0.064 \times (0.4 \times 0.3) + 0.064 \times (0.4^2)$ or $2 \times (0.4 \times 0.3)$ M0M0M1					

Q6.

Question				Schen	ne			Marks	AOs
(a)	[E(.	X)= $]0.2b-1$						B1 (1)	1.1b
(b)	$E(X^2)$	$= 25 \times 0.3 + 1$	×0.25[+0	0×0.1]+	25×0.15	$+0.2b^{2}$	$=11.5+0.2b^2$		1.1b
	"11.5+0.2 b^2 "-("0.2 b -1") ² [= 34.26]							M1	3.1a
	$0.16b^2 + 0.4b - 23.76 = 0$ or $\frac{4}{25}b^2 + \frac{2}{5}b - \frac{594}{25} = 0$							M1	1.1b
	b = 11 [since $b > 5$]							A1	2.2a
	25							(4)	
(c)		X	-5	-1	0	5	"11"		
		X^2	25	1	0	25	"121"		
		2 - 3X	17	5	2	- 13	"- 31"	M1	2.1
		$X^2 - 2$	23	-1	-2	23	"119"		7.557.55
		-3X	15	3	0	15	"-33"	A1ft	1.1b
		$X^2 + 3X$	10	-2	0	40	"154"		
		$X^2 + 3X - 2$	8	-4	-2	38	"152"		
	$P(X^2 < 2-3X) = P(X = -1) + P(X = 0)$							M1	2.2a
	= <u>0.35</u>					A1 (4)	1.1b		
							T	otal 9	

(a)	B1	Correct expression for $E(X)$
(b)	1 st M1	Correct attempt at $E(X^2)$ using $\sum x^2 P(X = x)$ at least 3 correct non-zero products Allow $(-5)^2$ etc
	2nd M1	Realising that $Var(X) = E(X^2) - [E(X)]^2$ needs to be used
	3rd M1	Reducing their equation to a 3 term quadratic. At least 2 terms correct. Allow e.g. $0.16b^2 + 0.4b = 23.76$ Condone missing "=0"
	Al	For 11 only (from the correct equation) so -13.5 must be eliminated
		Correct answer with no incorrect working seen scores 4/4
(c)	1st M1	At least 4 values correct for $(X^2 \text{ and } 2-3X)$ or for $(X^2-2 \text{ and } -3X)$ or X^2+3X or X^2+3X-2 (o.e.) Allow for solving equation with one sign error All correct or correct ft with their b but must have $b > 5$ (accurate to 1 sf) Allow solving equation to get awrt -3.6 and awrt 0.56 or $\frac{-3\pm\sqrt{17}}{2}$ (ft their $b > 5$)
		If there are omissions but no errors in the lists of values then if 2 nd M1 and 2 nd A1 are scored then the 1 st M1 and 1 st A1 can be given by implication.
	2 nd M1	For identifying the correct values of X required i.e. $X = -1$ and $X = 0$
	2nd A1	0.35
		NB It is possible to score M0A0M1A1 here if their table of values is incorrect
		Correct answer with no incorrect working seen scores 4/4
		(Allow correct use of their $b > 5$)

Q7.

Question	Scheme	Marks	AOs	
(a)	4E(N) + 2 = 14.8 or E(N) = 3.2	M1	3.1a	
(>	0.2 + 0.1 + 0.75 + 4b + 5c = 3.2	M1	1.1b	
	$\frac{c}{0.25+b+c} = 0.5 \text{ or } 0.25=c-b$	M1	3.1a	
	b = 0.1 and $c = 0.35$		i e	
	$E(N^2) = 1 \times 0.2 + 4 \times 0.05 + 9 \times 0.25 + 16 \times "0.1" + 25 \times "0.35" [=13]$	M1	1.1b	
	$Var(N) = "13" - "3.2"^2$	dM1	1.1b	
	= 2.76 *	A1*	2.1	
		(6)		
(b)	fee 0 50 70 90 100 100 P(N=n) a 0.2 0.05 0.25 b c	M1	3.3	
(~)	$50 \times 0.2 + 70 \times 0.05 + 90 \times 0.25 + 100 \times "0.1" + 100 \times "0.35"$	M1	1.1b	
	= 81p	A1	1.1b	
		(3)		
(c)	Poisson distribution will assign substantial probability to $N \ge 5$	B1	3.5b	
		(1)		

Note	es	
(a)	M1:	For using the given information to find E(N)
		ALT $a+b+c=0.5$ oe
	M1:	For use of $\sum nP(N=n) = "3.2"$ At least 3 terms correct
		ALT $\sum (4n+2)P(N=n) = 14.8 \Rightarrow 2a+1.2+0.5+3.5+18b+22c = 14.8$ At least 3 terms correct
	M1:	Forming an equation in b and c using conditional probability
	M1:	For using $\sum n^2 P(N=n)$ Allow with the letters b and c
	dM1:	Dependent on previous method mark. Correct method to find Var(N)
	A1*:	All previous marks must be awarded and 2.76 stated
(b)	M1:	Setting up a new model with the correct fees. At least 3 terms correct. Allow 0.5, 0.7, 0.9, 1
	M1:	Correct method for calculating E(fee) Allow with the letters b and c
	A1:	81[p] No units needed. Allow 0.81 if fees are in pounds
(c)	B1:	A correct limitation.