## Discrete Random Variables

## Questions

Q1.

The discrete random variable $X$ has probability distribution

| $x$ | -3 | -1 | 1 | 2 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}(X=x)$ | $q$ | $\frac{7}{30}$ | $\frac{7}{30}$ | $q$ | $r$ |

where $q$ and $r$ are probabilities.
(a) Write down, in terms of $q, \mathrm{P}(X \leq 0)$
(b) Show that $\mathrm{E}\left(X^{2}\right)=\frac{7}{15}+13 q+16 r$

Given that $\mathrm{E}\left(X^{3}\right)=\mathrm{E}\left(X^{2}\right)+\mathrm{E}(6 X)$
(c) find the value of $q$ and the value of $r$
(d) Hence find $\mathrm{P}\left(X^{3}>X^{2}+6 X\right)$

Q2.

The probability distribution of the discrete random variable $X$ is

$$
\mathrm{P}(X=x)= \begin{cases}\frac{k}{x} & \text { for } x=1,2 \text { and } 3 \\ \frac{m}{2 x} & \text { for } x=6 \text { and } 9 \\ 0 & \text { otherwise }\end{cases}
$$

where $k$ and $m$ are positive constants.
Given that $\mathrm{E}(X)=3.8$, find $\operatorname{Var}(X)$

Q3.

The discrete random variable $X$ has the following probability distribution.

| $x$ | -5 | -2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}(X=x)$ | $\frac{1}{12}$ | $\frac{1}{6}$ | $\frac{1}{4}$ | $\frac{1}{2}$ |

(a) Find $\operatorname{Var}(X)$

The discrete random variable $Y$ is defined in terms of the discrete random variable $X$
When $X$ is negative, $Y=X^{2}$
When $X$ is positive, $Y=3 X-2$
(b) Find $\mathrm{P}(Y<9)$
(c) Find $\mathrm{E}(X Y)$

Q4.

The discrete random variable $X$ has probability distribution

| $x$ | -3 | -2 | -1 | 0 | 2 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}(X=x)$ | 0.3 | 0.15 | 0.1 | 0.15 | 0.1 | 0.2 |

(a) Find $\mathrm{E}(X)$

Given that $\operatorname{Var}(X)=8.79$
(b) find $\mathrm{E}\left(X^{2}\right)$

The discrete random variable $Y$ has probability distribution

| $y$ | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}(Y=y)$ | $3 a$ | $a$ | $b$ | $a$ | $c$ |

where $a, b$ and $c$ are constants.
For the random variable $Y$

$$
\mathrm{P}(Y \leqslant 0)=0.75 \quad \text { and } \quad \mathrm{E}\left(Y^{2}+3\right)=5
$$

(c) Find the value of $a$, the value of $b$ and the value of $c$

The random variable $W=Y-X$ where $Y$ and $X$ are independent.
The random variable $T=3 W-8$
(d) Calculate $P(W>T)$

Q5.

The discrete random variable $X$ has the following probability distribution

| $x$ | 0 | 2 | 3 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}(X=x)$ | $p$ | 0.25 | $q$ | 0.4 |

(a) Find in terms of $q$
(i) $\mathrm{E}(X)$
(ii) $\mathrm{E}\left(X^{2}\right)$

Given that $\operatorname{Var}(X)=3.66$
(b) show that $q=0.3$

In a game, the score is given by the discrete random variable $X$
Given that games are independent,
(c) calculate the probability that after the 4th game has been played, the total score is exactly 20

A round consists of 4 games plus 2 bonus games. The bonus games are only played if after the 4th game has been played the total score is exactly 20

A prize of $£ 10$ is awarded if 6 games are played in a round and the total score for the round is at least 27

Bobby plays 3 rounds.
(d) Find the probability that Bobby wins at least £10

Q6.

The discrete random variable $X$ has probability distribution

| $x$ | -5 | -1 | 0 | 5 | $b$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}(X=x)$ | 0.3 | 0.25 | 0.1 | 0.15 | 0.2 |

where $b$ is a constant and $b>5$
(a) Find $\mathrm{E}(X)$ in terms of $b$

Given that $\operatorname{Var}(X)=34.26$
(b) find the value of $b$
(c) Find $\mathrm{P}(X 2<2-3 X)$

## Q7.

Members of a photographic group may enter a maximum of 5 photographs into a members only competition.
Past experience has shown that the number of photographs, $N$, entered by a member follows the probability distribution shown below.

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}(N=n)$ | $a$ | 0.2 | 0.05 | 0.25 | $b$ | $c$ |

Given that $\mathrm{E}(4 N+2)=14.8$ and $\mathrm{P}(N=5 \mid N>2)=\frac{1}{2}$
(a) show that $\operatorname{Var}(M)=2.76$

The group decided to charge a 50p entry fee for the first photograph entered and then 20p for each extra photograph entered into the competition up to a maximum of $£ 1$ per person. Thus a member who enters 3 photographs pays 90 p and a member who enters 4 or 5 photographs just pays £1

Assuming that the probability distribution for the number of photographs entered by a member is unchanged,
(b) calculate the expected entry fee per member.

Bai suggests that, as the mean and variance are close, a Poisson distribution could be used to model the number of photographs entered by a member next year.
(c) State a limitation of the Poisson distribution in this case.

## Mark Scheme - Discrete Random Variables

Q1.


Q2.

| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \Sigma p=1 \rightarrow k+\frac{k}{2}+\frac{k}{3}+\frac{m}{12}+\frac{m}{18}=1 \\ & \Sigma p x=3.8 \rightarrow k+\frac{k}{2}(2)+\frac{k}{3}(3)+\frac{m}{12}(6)+\frac{m}{18}(9)=3.8 \end{aligned}$ | M1 | 3.1a |
|  | $\frac{11 k}{6}+\frac{5 m}{36}=1 \quad[=66 k+5 m=36]$ | A1 | 1.1 b |
|  | $3 k+m=3.8$ | A1 | 1.1b |
|  | Solving simultaneously to eliminate one variable | dM1 | 1.1b |
|  | $k=\frac{1}{3}$ and $m=\frac{14}{5}$ | A1 | 1.1 b |
|  | $\mathrm{E}\left(X^{2}\right)=1^{2} \times k+2^{2} \times \frac{k}{2}+3^{2} \times \frac{k}{3}+6^{2} \times \frac{m}{12}+9^{2} \times \frac{m}{18}[=23]$ | M1 | 1.1 b |
|  | $\operatorname{Var}(X)=23-3.8^{2}$ |  |  |
|  | $=\underline{8.56}$ | A1 | 1.1 b |
| (7 marks) |  |  |  |

## Notes

Ml: Attempt at both required equations with at least one term in $k$ and one term in $m$ correct
A1: Correct equation using $\Sigma p=1$
Al: Correct equation using $\sum p x=3.8$
dM1: (dep on $1^{\text {st }} \mathrm{M} 1$ ) Solving simultaneously (may be implied by one correct value found)
Al: both values correct (may be implied by correct answer)
M1: Attempt to find $\mathrm{E}\left(X^{2}\right)$ using their value of $k$ and their value of $m$ with at least 3 correct products or correct ft products Note: $\mathrm{E}\left(X^{2}\right)=6 k+7.5 m$ Al: 8.56 cao

Q3.


Q4.

| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| (a) | $\mathrm{E}(\mathrm{X})=-0.1$ oe | B1 | 1.1b |
|  |  | (1) |  |
| (b) | $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-("-0.1)^{2}$ | M1 | 1.2 |
|  | $\mathrm{E}\left(X^{2}\right)=8.8$ | A1 | 1.1b |
|  |  | (2) |  |
| (c) | $(-2)^{2} \times 3 a+(-1)^{2} \times a\left[+0^{2} \times b\right]+1^{2} \times a+2^{2} \times c=[" 2$ " $]$ | M1 | 1.1b |
|  | $7 a+2 c=1$ oe | A1 | 1.1b |
|  | One of $a+c=0.25$ or $4 a+b=0.75$ or $5 a+b+c=1$ | M1 | 3.1a |
|  | Two of $a+c=0.25$ or $4 a+b=0.75$ or $5 a+b+c=1$ | A1 | 1.1 b |
|  | $a=0.1$ and $b=0.35$ and $c=0.15$ | A1 | 1.1b |
|  |  | (5) |  |
| (d) | $\mathrm{P}(W>T)=\mathrm{P}(W>3 W-8)=\mathrm{P}(W<4)$ | M1 | 3.1a |
|  | $\begin{aligned} & \mathrm{P}(W<4)=1-[\mathrm{P}(X=-3) \times \mathrm{P}(Y=1)+\mathrm{P}(X=-3) \times \mathrm{P}(Y=2) \\ &+\mathrm{P}(X=-2) \times \mathrm{P}(Y=2)] \\ & \text { or } \quad=\mathrm{P}(X \geqslant-1)+\mathrm{P}(X=-2) \times \mathrm{P}(Y \neq 2)+\mathrm{P}(X=-3) \times \mathrm{P}(Y \leqslant 0) \end{aligned}$ | M1dep | 1.1b |
|  | $\begin{array}{ll} \hline & =1-[0.3 \times " 0.1 "+0.3 \times " 0.15 "+0.15 \times " 0.15 "] \\ \text { or } \quad & 0.55+0.15 \times[1-" 0.15 "]+0.3 \times[" 0.3 "+" 0.1 "+" 0.35 "] \\ \hline \end{array}$ | M1dep | 1.1b |
|  | = $\underline{0.9025}$ | A1 | 1.1b |
|  |  | (4) |  |
| (12 marks) |  |  |  |


| Notes: |  |  |
| :---: | :---: | :---: |
| (a) | B1: | -0.1 oe |
| (b) | M1: | For recalling and using a correct formula |
|  | Al: | 8.8 |
| (c) | M1: | For use of $\sum y^{2} \mathrm{P}(Y=y)[=2]$ or $\sum\left(y^{2}+3\right) \mathrm{P}(Y=y)[=5] 3$ correct products seen |
|  | Al: | For correct equation with $a^{\prime}$ 's collected |
|  | M1: | For use of $\sum \mathrm{P}(Y=y)=1$ or $\mathrm{P}(Y \leqslant 0)=0.75$ or $1-\mathrm{P}(Y \leqslant 0)=0.25$ |
|  | Al: | For 2 correct equations |
|  | A1: | $a, b$ and $c$ correct. Award full marks if all 3 correct |
| (d) | M1: | For using the information given to work out the values of $W$. Allow $Y-X$ instead of $W$ |
|  | dM1: | For using the information given to work out which are the relevant combinations of $X$ and $Y$. The irrelevant ones must not be used. |
|  | M1: | Previous method must be awarded. All required cases identified and their probabilities of $a, b$ and $c$ used. Allow in terms of $a, b$ and $c$ |
|  | A1: | $0.9025 \text { (accept awrt } 0.903 \text { or exact fraction } \frac{361}{400} \text { ) }$ |

Q5.

| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| (a)(i) <br> (ii) | $\mathrm{E}(X)=[0 \times p]+(2 \times 0.25)+3 q+(6 \times 0.4)[=2.9+3 q]$ | B1 | 1.1b |
|  | $\mathrm{E}\left(X^{2}\right)=[0 \times p]+\left(2^{2} \times 0.25\right)+3^{2} q+\left(6^{2} \times 0.4\right)[=15.4+9 q]$ | B1 | 1.1 b |
|  |  | (2) |  |
| (b) | $\left(" 15.4+9 q^{\prime \prime}\right)-\left(" 2.9+3 q^{\prime \prime}\right)^{2}=3.66$ | M1 | 1.1 b |
|  | $9 q^{2}+8.4 q-3.33=0 \Rightarrow q=0.3$ and $-37 / 30$ | M1 | 1.1b |
|  | $q=0.3 *$ since $q$ cannot be negative | Alcso* | 2.4 |
|  | SC ("15.4+9×0.3") $-(\text { " } 2.9+3 \times 0.3 \text { " })^{2}$ can get M1M0A0 |  |  |
|  |  | (3) |  |
| (c) | $\mathrm{P}\left(x_{1}+x_{2}+x_{3}+x_{4}=20\right)=\mathrm{P}(6,6,6,2$ or $6,6,2,6$ or $6,2,6,6$ or $2,6,6,6)$ | M1 | 1.1 b |
|  | $=4 \times 0.4^{3} \times 0.25$ | M1 | 1.1 b |
|  | $=0.064$ oe | A1 | 1.1b |
|  |  | (3) |  |
| (d) | $\mathrm{P}\left(x_{5}+x_{6} \geqslant 7\right)=\mathrm{P}(6,6$ or 6,3 or 6,2$)$ | M1 | 3.1a |
|  | $=\left(0.4^{2}\right)+2 \times(0.4 \times 0.3)+2 \times 0.4 \times 0.25[=0.6]$ | M1 | 1.1b |
|  | $\mathrm{P}($ score $\geqslant 27)=$ "0.064" $\times$ " 0.6 " $[=24 / 625=0.0384]$ | M1 | 1.1 b |
|  | $Y \sim \mathrm{~B}(3, ~ 0.0384 ")$ | dM1 | 3.3 |
|  | $\mathrm{P}(Y \geqslant 1)=1-\mathrm{P}(Y=0)$ | M1 | 1.1 b |
|  | =0.1108 $\ldots$ | Alcso | 1.1b |
|  |  | (6) |  |

## Notes

(14 marks)

| (a)(i) | B1: | Correct expression for $\mathrm{E}(X)$ need not be simplified |
| :---: | :---: | :---: |
| (ii) | B1: | Correct expression for $\mathrm{E}\left(X^{2}\right)$ need not be simplified |
| (b) | M1: | Using "their $\mathrm{E}\left(X^{2}\right)$ " - "their $(\mathrm{E}(X))^{2 \prime}=3.66$ |
|  | M1: | Rearranging to get a correct 3 term quadratic (condone missing $=0$ ) leading to 0.3 and $-37 / 30$ (awrt -1.23 ) or $(10 q-3)(30 q+37)$ |
|  | Alcso:* | cso with a comment why $-37 / 30$ is eliminated. Minimum required is $q>0$ or they say it is impossible. |
| (c) | M1: | Realising that combination is 6662 . Any order. Implied by $0.4^{3} \times 0.25$ |
|  | M1: | Correct calculation |
|  | Al: | 0.064 oe only eg $8 / 125$ |
| (d) | M1: | Realising all the different combinations 7 or more can be scored from 2 games. (no need for arrangements) Implied by $\left(0.4^{2}\right)$ and $(0.4 \times 0.3)$ and $(0.4 \times 0.25)$ |
|  | M1: | Fully correct method. |
|  | M1: | For multiplying "their (c)" with "their $\mathrm{P}\left(x_{5}+x_{6} \geqslant 7\right.$ )"providing at least 2 combinations are used to find $\mathrm{P}\left(x_{5}+x_{6} \geqslant 7\right)$ " |
|  | dM1: | Dependent on $3^{\text {rd }}$ M1 being awarded for using or writing $\mathrm{B}\left(3\right.$, "their $\mathrm{P}\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \geqslant 27\right)$ ") $\left(1-" 0.03844^{\prime \prime}\right)^{3}$ or |
|  | M1: | For writing or using $1-\mathrm{P}(Y=0) \mathrm{eg} 1-\left(1-" 0.0384{ }^{\prime \prime}\right)^{3}$ |
|  | Alcso: | awrt 0.111 from correct working |
| NB (b) $1^{\text {st }} 3$ marks |  |  |
| Fully correct method " 0.064 " $\times\left(0.4^{2}\right)+0.064 \times 2 \times(0.4 \times 0.3)+0.064 \times 2 \times(0.4 \times 0.25)$ is M1M1M1 |  |  |
| All 3 but no arrangements ie " $0.064^{\prime \prime} \times\left(0.4{ }^{2}\right)+0.064 \times(0.4 \times 0.3)+0.064 \times(0.4 \times 0.25) \mathrm{M} 1 \mathrm{M} 0 \mathrm{M} 1$ |  |  |
| At least 2 combinations used for $>7 \mathrm{eg} 0.064 \times(0.4 \times 0.3)+0.064 \times\left(0.4^{2}\right)$ or $2 \times(0.4 \times 0.3)$ M0M0M1 |  |  |

Q6.

| Question | Scheme |  |  |  |  |  | Marks | AOs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (a) | $[\mathrm{E}(X)=] 0.2 b-1$ |  |  |  |  |  | B1 <br> (1) | 1.1b |
| (b) | $\begin{aligned} & \mathrm{E}\left(X^{2}\right)=25 \times 0.3+1 \times 0.25[+0 \times 0.1]+25 \times 0.15+0.2 b^{2}\left[=11.5+0.2 b^{2}\right] \\ & " 11.5+0.2 b^{2} "-\left(" 0.2 b-1^{\prime \prime}\right)^{2}[=34.26] \\ & 0.16 b^{2}+0.4 b-23.76[=0] \quad \text { or } \frac{4}{25} b^{2}+\frac{2}{5} b-\frac{594}{25}[=0] \\ & b=\underline{11} \text { [since } b>5] \end{aligned}$ |  |  |  |  |  | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ <br> (4) | $\begin{aligned} & 1.1 \mathrm{~b} \\ & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \\ & 2.2 \mathrm{a} \end{aligned}$ |
| (c) | $X$ | -5 | -1 | 0 | 5 | "11" | $\begin{gathered} \text { M1 } \\ \text { A1ft } \end{gathered}$ | $\begin{gathered} 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$ |
|  | $X^{2}$ | 25 | 1 | 0 | 25 | "121" |  |  |
|  | $2-3 X$ | 17 | 5 | 2 | -13 | "-31" |  |  |
|  | $X^{2}-2$ | 23 | -1 | -2 | 23 | "119" |  |  |
|  | $-3 X$ | 15 | 3 | 0 | 15 | "-33" |  |  |
|  | $X^{2}+3 X$ | 10 | -2 | 0 | 40 | "154" |  |  |
|  | $X^{2}+3 X-2$ | 8 | -4 | -2 | 38 | "152" |  |  |
|  | $\begin{aligned} \mathrm{P}\left(X^{2}<2-3 X\right) & =\mathrm{P}(X=-1)+\mathrm{P}(X=0) \\ & =\underline{0.35} \end{aligned}$ |  |  |  |  |  | M1 | 2.2a |
|  |  |  |  |  |  |  | A1 <br> (4) | 1.1 b |
| Total 9 |  |  |  |  |  |  |  |  |


| (a) | B1 | Correct expression for $\mathrm{E}(X)$ |
| :---: | :---: | :---: |
| (b) | $\begin{gathered} 1^{\text {st }} \mathrm{Ml} \\ \\ 2^{\text {nd }} \mathrm{Ml} \\ 3^{\text {rd }} \mathrm{Ml} \\ \mathrm{Al} \end{gathered}$ | Correct attempt at $\mathrm{E}\left(X^{2}\right)$ using $\sum x^{2} \mathrm{P}(X=x)$ at least 3 correct non-zero products Allow $(-5)^{2}$ etc <br> Realising that $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}$ needs to be used <br> Reducing their equation to a 3 term quadratic. At least 2 terms correct. <br> Allow e.g. $0.16 b^{2}+0.4 b=23.76$ Condone missing " $=0$ " <br> For 11 only (from the correct equation) so -13.5 must be eliminated <br> Correct answer with no incorrect working seen scores 4/4 |
| (c) | $\begin{aligned} & 1^{\text {st } \mathrm{Ml}} \\ & 1^{\text {st } \mathrm{Alft}} \\ & \\ & 2^{\text {nd }} \mathrm{Ml} \\ & 2^{\text {nd }} \mathrm{Al} \end{aligned}$ | At least 4 values correct for $\left(X^{2}\right.$ and $\left.2-3 X\right)$ or for $\left(X^{2}-2\right.$ and $\left.-3 X\right)$ or $X^{2}+3 X$ or $X^{2}+3 X-2$ (o.e.) Allow for solving equation with one sign error <br> All correct or correct ft with their $b$ but must have $b>5$ (accurate to 1 sf ) <br> Allow solving equation to get awrt -3.6 and awrt 0.56 of $\frac{-3 \pm \sqrt{17}}{2}$ ( ft their $b>5$ ) <br> If there are omissions but no errors in the lists of values then if $2^{\text {nd }} \mathrm{M} 1$ and $2^{\text {nd }} \mathrm{A} 1$ are scored then the $1^{\text {st }} \mathrm{M} 1$ and $1^{\text {st }} \mathrm{A} 1$ can be given by implication. <br> For identifying the correct values of $X$ required i.e. $X=-1$ and $X=0$ <br> 0.35 <br> NB It is possible to score M0A0M1A1 here if their table of values is incorrect Correct answer with no incorrect working seen scores $4 / 4$ (Allow correct use of their $b>5$ ) |

Q7.


| Notes |  |  |
| :---: | :---: | :---: |
| (a) | M1: | For using the given information to find $\mathrm{E}(N)$ |
|  |  | ALT $a+b+c=0.5$ oe |
|  | M1: | For use of $\sum n \mathrm{P}(N=n)=" 3.2$ At least 3 terms correct |
|  |  | ALT $\sum(4 n+2) \mathrm{P}(N=n)=14.8 \Rightarrow 2 a+1.2+0.5+3.5+18 b+22 c=14.8$ At least 3 terms correct |
|  | M1: | Forming an equation in $b$ and $c$ using conditional probability |
|  | M1: | For using $\sum n^{2} \mathrm{P}(N=n)$ Allow with the letters $b$ and $c$ |
|  | dM1: | Dependent on previous method mark. Correct method to find $\operatorname{Var}(N)$ |
|  | $\mathrm{Al}^{*}$ : | All previous marks must be awarded and 2.76 stated |
| (b) | M1: | Setting up a new model with the correct fees. At least 3 terms correct. Allow 0.5, 0.7, 0.9, 1 |
|  | M1: | Correct method for calculating E (fee) Allow with the letters $b$ and $c$ |
|  | Al: | $81[\mathrm{p}]$ No units needed. Allow 0.81 if fees are in pounds |
| (c) | B1: | A correct limitation. |

