
Complex Numbers (CP2) 

Questions 
 
Q1. 
  

Solve the equation 

 

giving your answers in the form reiθ where r > 0 and −π < θ ≤ π 

(6) 

  

(Total for question = 6 marks) 

  

 
 
 
 
Q2. 
  

The infinite series C and S are defined by 

 

Given that the series C and S are both convergent, 

(a)  show that 

 

(4) 

(b)  Hence show that 

 

(4) 

  

(Total for question = 8 marks) 
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Q3. 
  

(a)  Use de Moivre's theorem to prove that 

sin 7θ = 7 sin θ − 56 sin3θ + 112 sin5θ − 64 sin7θ 

(5) 

(b)  Hence find the distinct roots of the equation 

1 + 7x − 56x3 + 112x5 − 64x7 = 0 

(5) 
giving your answer to 3 decimal places where appropriate. 

  

(Total for question = 10 marks) 

  

 
 
 
 
 
 
Q4. 
  

(a)  Given that , write down the sum of the infinite series 

1 + z + z2 + z3 + ... 

(1) 

(b)  Given that , 

(i)  use the answer to part (a), and de Moivre's theorem or otherwise, to prove that 

 

(5) 
(ii)  show that the sum of the infinite series 1 + z + z2 + z3 + ... cannot be purely 
imaginary, giving a reason for your answer. 

(2) 

  

(Total for question = 8 marks) 
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Q5. 
  

In an Argand diagram, the points A, B and C are the vertices of an equilateral triangle  
with its centre at the origin. The point A represents the complex number 6 + 2i. 

(a)  Find the complex numbers represented by the points B and C, giving your answers in 

the form x + iy, where x and y are real and exact. 
(6) 

The points D, E and F are the midpoints of the sides of triangle ABC. 

(b)  Find the exact area of triangle DEF. 

(3) 

  

(Total for question = 9 marks) 

  

 
 
 
 
 
 
 
Q6. 
  

A complex number z has modulus 1 and argument θ. 

(a)   Show that 

 

(2) 

(b)   Hence, show that 

 

(5) 

  

(Total for question = 7 marks) 
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Q7. 
  

(a)  Find the four roots of the equation z4 = 8(√3 + i) in the form z = reiθ 

(5) 

(b)  Show these roots on an Argand diagram. 

(2) 

  

(Total for question = 7 marks) 

  

 
 
 
Q8. 
  

(a)  Use de Moivre's theorem to show that 

 

where a, b and c are constants to be found. 
(5) 

(b)  Hence show that  

(5) 

  

(Total for question = 10 marks) 

  

 
 
 
Q9. 
  

(i)  The point P is one vertex of a regular pentagon in an Argand diagram. The centre of the 
pentagon is at the origin. 

Given that P represents the complex number 6 + 6i, determine the complex numbers that 
represent the other vertices of the pentagon, giving your answers in the form reiθ 

(5) 

(ii)  (a)  On a single Argand diagram, shade the region, R, that satisfies both 

 

(2) 
(b)  Determine the exact area of R, giving your answer in simplest form. 

(4) 

  

(Total for question = 11 marks) 
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Q10. 
  

(a)  Express the complex number w =  − 4i in the form r(cosθ θ+ isinθ) where r > 0 and 
−π < θ ≤ π 

(4) 

(b)  Show, on a single Argand diagram, 

(i)  the point representing w 

(ii)  the locus of points defined by arg(z + 10i) =  
(3) 

(c)  Hence determine the minimum distance of w from the locus arg(z + 10i) =  

(3) 

  

(Total for question = 10 marks) 

  

 
 
 
 
Q11. 
  

(i)  Given that 

 and  

show that 

 

(3) 

(ii)  Given that 

arg(z – 5) =  

determine the least value of |z| as z varies. 
(3) 

  

(Total for question = 6 marks) 
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Mark Scheme – Complex Numbers (CP2) 
 
 
 
 
Q1. 
  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Ch.1 Complex Numbers



Q2. 
  

 

 

 Ch.1 Complex Numbers



 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Ch.1 Complex Numbers



Q3. 
  

 

 Ch.1 Complex Numbers



 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Ch.1 Complex Numbers



Q4. 
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