Edexcel Chemistry A-level - Moles, Mass and Formulae

Questions

Q1.
(a) State what is meant by the term molar volume of a gas.
\qquad
\qquad
(b) The following steps were carried out by a student to find the molar mass of a gas. The experiment was carried out at $20^{\circ} \mathrm{C}$ and one atmosphere pressure. The dry gas was supplied in a plastic bag fitted with a self-sealing device. The student had a choice of two different gas syringes. The student decided to use a $50 \mathrm{~cm}^{3}$ syringe.

Step 1. The $50 \mathrm{~cm}^{3}$ syringe was fitted with a needle and then emptied of air by pushing in the plunger to zero. The needle was sealed by pushing the needle into a rubber bung and the syringe and bung were then weighed on a balance.

Step 2. The syringe was checked for leaks by pulling the plunger out by about $10 \mathrm{~cm}^{3}$ for a few seconds before releasing it.

Step 3. The rubber bung was removed from the needle which was then inserted through the self-sealing device in the plastic bag of the dry gas.

Step 4. $50 \mathrm{~cm}^{3}$ of the dry gas was withdrawn from the plastic bag into the syringe and the needle resealed with the same rubber bung used in step 1.

Step 5. The syringe and rubber bung were then reweighed on the balance.

Results

volume of gas used	$50 \mathrm{~cm}^{3}$
initial mass of empty syringe	107.563 g
final mass of syringe + gas	107.655 g

(i) The gas syringe has a total uncertainty of $\pm 0.5 \mathrm{~cm}^{3}$. Each reading on the balance has an uncertainty of $\pm 0.0005 \mathrm{~g}$.
Calculate the percentage uncertainty in the measurement of the volume and mass of gas used in this procedure.
(ii) The student repeated the experiment with $100 \mathrm{~cm}^{3}$ of the gas using a $100 \mathrm{~cm}^{3}$ syringe.

The total uncertainty for this larger syringe was also $\pm 0.5 \mathrm{~cm}^{3}$.
Determine the effect, if any, on the volume and mass uncertainties.
\qquad
\qquad
\qquad
\qquad

Edexcel Chemistry A-level - Moles, Mass and Formulae

(iii) Calculate the molar mass of the gas used in the procedure outlined in part (b). You may assume that one mole of gas occupies $24000 \mathrm{~cm}^{3}$ under these conditions. Give your answer to an appropriate number of significant figures and include units in your answer.
(iv) Explain how the student would know if the syringe had a leak in step 2 and what effect this leak would have on the molar mass determined in part (b)(iii).
\qquad
\qquad
\qquad
\qquad
\qquad
(c) If the temperature had been less than $20^{\circ} \mathrm{C}$ and the pressure remained at one atmosphere, deduce the effect, if any, on the molar mass calculated in part (b)(iii).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Give a reason why the gas should be dry.
\qquad
\qquad
\qquad

Q2.

A student wanted to measure the volume of a gas and use the results to find the volume occupied by one mole of the gas. The following method was used.

- A sample of calcium carbonate was weighed out in a small plastic container.
- $20 \mathrm{~cm}^{3}$ of hydrochloric acid of concentration $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ was added to a conical flask. A small pinch of calcium carbonate was added to the acid.
- The container was placed in the conical flask and a gas syringe was connected to the top of the conical flask.
- The flask was carefully shaken so that the small plastic container fell over, allowing the acid and calcium carbonate to mix.

The apparatus set up is shown.

The student repeated the experiment five times using different masses of calcium carbonate on each occasion, with the concentration and volume of the hydrochloric acid constant.

Experiment number	Mass $/ \mathbf{g}$	Volume of $\mathrm{CO}_{\mathbf{2}} / \mathrm{cm}^{\mathbf{3}}$
1	0.10	23
2	0.20	44
3	0.30	67
4	0.40	96
5	0.50	115

(a) (i) Write the equation for the reaction between calcium carbonate and hydrochloric acid. Include state symbols.
(ii) Calculate the molar mass of calcium carbonate.

Edexcel Chemistry A-level - Moles, Mass and Formulae

(iii) Show that, in each experiment, the hydrochloric acid is in excess.
(b) (i) Plot a graph of volume of carbon dioxide produced against mass of calcium carbonate on the grid. Include a line of best fit.

(ii) State how your graph supports the idea that the volume of gas produced depends directly on the mass of calcium carbonate added.
\qquad
\qquad
\qquad

Edexcel Chemistry A-level - Moles, Mass and Formulae

(c) Calculate the volume, under these conditions, of one mole of carbon dioxide gas from these data. Give your answer in dm^{3} to two significant figures.
(d) Give a reason why the student added a small pinch of calcium carbonate to the acid before starting the reaction.
\qquad
\qquad
\qquad
\qquad
\qquad

Edexcel Chemistry A-level - Moles, Mass and Formulae

Q3.

Ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, is a member of the homologous series of alcohols.
Calculate the number of molecules in 55.2 kg of ethanol.
[Avogadro Constant $=6.02 \times 10^{23} \mathrm{~mol}^{-1}$]

Edexcel Chemistry A-level - Moles, Mass and Formulae

Q4.

Sulfur is a bright yellow crystalline solid at room temperature.
Sulfur forms rings of 8 sulfur atoms so the formula of the yellow solid is S_{8}.
Compound \mathbf{X} is an oxide of sulfur. A gaseous sample of 0.318 g of \mathbf{X} occupied a volume of $132 \mathrm{~cm}^{3}$ at a temperature of 420 K and pressure of 105 kPa .

The number of moles of a gas and the volume occupied by it can be found using the ideal gas equation

$$
p V=n R T
$$

Calculate the relative molecular mass of \mathbf{X} and hence its molecular formula.
You must show all your working.
$\left[R=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right]$

Edexcel Chemistry A-level - Moles, Mass and Formulae

Q5.

This question is about alkenes with the molecular formula $\mathrm{C}_{5} \mathrm{H}_{10}$.
A sample of pent-1-ene, with a mass of 1.33 g , is warmed to $60^{\circ} \mathrm{C}$ in a sealed container. The volume of the container is $500 \mathrm{~cm}^{3}$.

Calculate the pressure inside the container.
Include units and give your answer to an appropriate number of significant figures.
[Gas constant $(R)=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$]

Edexcel Chemistry A-level - Moles, Mass and Formulae

Q6.

In an experiment, 1.000 g of a hydrocarbon, A, was burned completely in oxygen to produce 3.143 g of carbon dioxide and 1.284 g of water.

In a different experiment, the molar mass of the hydrocarbon, \mathbf{A}, was found to be 84.0 g mol^{-1}.

Calculate the empirical formula and the molecular formula of the hydrocarbon, \mathbf{A}.

Edexcel Chemistry A-level - Moles, Mass and Formulae

Q7.

The characteristic smell of pine wood is due, partly, to the presence of a group of compounds called terpenes. One of the simpler terpenes is a compound called geraniol, which is an oily liquid at room temperature and pressure. The structure of geraniol is

Deduce the molecular formula of geraniol. Use your answer to calculate the molar mass of geraniol in $\mathrm{g} \mathrm{mol}^{-1}$.

Edexcel Chemistry A-level - Moles, Mass and Formulae

Q8.

Boron and aluminium are in the same group of the Periodic Table. Both form compounds with chlorine and with fluorine.

Aluminium also reacts directly with chlorine to form a compound, aluminium chloride, containing only aluminium and chlorine.

A 0.500 g sample of aluminium chloride was analysed and found to contain 0.101 g of aluminium.

Another 0.500 g sample was heated to 473 K . The gas produced occupied a volume of 73.6 cm^{3} at a pressure of $1.00 \times 10^{2} \mathrm{kPa}$.

Determine the molecular formula of the gas.
You will need to use the equation $p V=n R T$ and $R=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

Q9.

A group of students analysed a hydrated salt with the formula $\mathrm{KH}_{3}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$ y. $\mathbf{z H} \mathrm{H}_{2} \mathrm{O}$ where \mathbf{y} and \mathbf{z} are whole numbers.

The students carried out experiments to determine the values of \mathbf{y} and \mathbf{z}.
(a) Experiment 1 - to determine the value of y

One student was provided with a $0.0235 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of the salt.
$25.0 \mathrm{~cm}^{3}$ portions of the salt solution were acidified with excess dilute sulfuric acid and heated to about $60^{\circ} \mathrm{C}$.
Each portion was titrated with $0.0203 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium manganate(VII).
The results of four titrations are shown in the table.

$\|c\| c\|c\|$	Titration number	1	2	3
Final burette reading $/ \mathrm{cm}^{3}$	23.85	47.20	24.05	48.10
Initial burette reading $/ \mathrm{cm}^{3}$	0.00	24.00	0.50	25.00
Titre $/ \mathrm{cm}^{3}$	23.85	23.20	23.55	23.10

(i) Complete the diagram to show the final burette reading in Titration 1.

(ii) Explain why this student should use a mean titre of $23.15 \mathrm{~cm}^{3}$ and not $23.43 \mathrm{~cm}^{3}$ in the calculation.
\qquad
\qquad
\qquad
\qquad
(iii) The uncertainty in each burette reading is $\pm 0.05 \mathrm{~cm}^{3}$. Calculate the percentage uncertainty in the titre volume of potassium manganate(VII) solution used in Titration 2.
(iv) The equation for the reaction is

$$
2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

Deduce, by calculation, the value of \mathbf{y}, to the nearest whole number, in the formula $\mathrm{KH}_{3}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$ y. $\mathbf{z H} \mathrm{H}_{2} \mathrm{O}$.
Use the mean titre of $23.15 \mathrm{~cm}^{3}$ and other data from Experiment 1.
You must show your working.
(b) Experiment $\mathbf{2}$ - to determine the value of \mathbf{z}

Another student wrote an account of the method for this experiment.
A crucible was weighed.
A sample of the hydrated salt was added to the crucible and it was reweighed.
The crucible and salt were heated to remove the water of crystallisation and then allowed to cool.

The crucible and contents were weighed again.
Results

Mass of crucible	$=19.56 \mathrm{~g}$
Mass of crucible $+\mathrm{KH}_{3}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{y} \cdot \mathrm{z} \mathrm{H}_{2} \mathrm{O}$	$=22.97 \mathrm{~g}$
Mass of crucible $+\mathrm{KH}_{3}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{y}$	$=22.52 \mathrm{~g}$

(i) Deduce, by calculation, the value of \mathbf{z}, to the nearest whole number, in the formula $\mathrm{KH}_{3}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathbf{y} . \mathrm{zH}_{2} \mathrm{O}$.
You must use the data from Experiment 2 and your value of \mathbf{y} in (a)(iv).
You must show your working.

Edexcel Chemistry A-level - Moles, Mass and Formulae

(ii) A third student carried out Experiment 2 and calculated a value of \mathbf{z} that was lower than expected.
This student evaluated the experiment and gave two suggestions for \mathbf{z} being lower. Suggestion 1
"Some of the crystals jumped out of the crucible while it was being heated." Suggestion 2
"It was difficult to tell when all the water of crystallisation had been lost."
Evaluate these two suggestions to decide whether they could account for the lower value of \mathbf{z} obtained from the experimental results.
Include an explanation of the effect each suggestion would have on the calculated value of \mathbf{z} and how the method could be improved to prevent these errors.
\qquad

Edexcel Chemistry A-level - Moles, Mass and Formulae

Q10.

Sulfur reacts with fluorine to form a number of different compounds.
One compound contains 45.79% sulfur and 54.21% fluorine by mass.
Calculate the empirical formula of this compound.

Edexcel Chemistry A-level - Moles, Mass and Formulae

Q11.

This question is about isotopes, mass spectra and hydrocarbons.
1.00 g of a different hydrocarbon, W, was burnt in oxygen.

Analysis of the combustion products showed that complete combustion produced 3.14 g of carbon dioxide and 1.29 g of water.

Water and carbon dioxide were the only products of combustion.
Calculate the empirical formula of hydrocarbon W.
You must show your working.

Edexcel Chemistry A-level - Moles, Mass and Formulae

Q12.

This question is about equilibrium systems.
Sulfur dioxide and oxygen form an equilibrium with sulfur trioxide.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

The composition of an equilibrium mixture at 698 K and a total pressure of 2.40 atm is shown in the table.

Substance	$\mathrm{SO}_{2}(\mathrm{~g})$	$\mathrm{O}_{2}(\mathrm{~g})$	$\mathrm{SO}_{3}(\mathrm{~g})$
Number of moles $/ \mathrm{mol}$	0.0160	0.0120	0.772

(i) Calculate the value of K_{p} at this temperature. Include units, if appropriate.
(ii) Calculate the number of sulfur dioxide molecules present in this equilibrium mixture.
(iii) Deduce, by referring to K_{p}, how the number of sulfur dioxide molecules will change if more oxygen is added to the equilibrium mixture.
\qquad
\qquad
\qquad
\qquad

Edexcel Chemistry A-level - Moles, Mass and Formulae

Q13.

\mathbf{Y} is identified as hydrated potassium carbonate, $\mathrm{K}_{2} \mathrm{CO}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$.
Two of the students were asked to determine the number of moles of water of crystallisation, n, in Y using the procedure shown:

- weigh a sample of hydrated \mathbf{Y} into a pre-weighed crucible
- place a lid loosely on the crucible and heat it for five minutes to remove the water of crystallisation
- allow the crucible and lid to cool, remove the lid and then reweigh the crucible with its contents.

(i) The first student carried out the experiment but forgot to use the lid.

Explain how this mistake would affect the calculated value of n.
\qquad
\qquad
(ii) The second student carried out the experiment but heated the apparatus for only one minute.

Explain how this mistake would affect the calculated value of n.
\qquad
\qquad
(iii) In an accurate experiment, \mathbf{Y} is found to consist of $71.9 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ by mass.

Calculate the value of n.

Q14.

This question is about the arenes, ethylbenzene, xylene, and phenol, which can be identified in wine samples using gas chromatography.

ethylbenzene

xylene

phenol

A student carried out an experiment to determine the molar mass of xylene.
The student's sample of xylene vapour had a mass of 0.271 g .
At a temperature of $165^{\circ} \mathrm{C}$ and a pressure of 118 kPa , this sample had a volume of 70.5 cm^{3}.

Use the Ideal Gas Equation to calculate the molar mass, in $\mathrm{g} \mathrm{mol}^{-1}$, of this sample.
Give your answer to an appropriate number of significant figures.
You must show your working.

Q15.

This question is about the identification of an alcohol, \mathbf{X}.
(a) Alcohol \mathbf{X} has the following percentage composition by mass:

$$
\begin{array}{ll}
\text { carbon, } \mathrm{C} & =68.2 \% \\
\text { hydrogen, } \mathrm{H} & =13.6 \% \\
\text { oxygen, } \mathrm{O} & =18.2 \%
\end{array}
$$

The molecular ion peak in the mass spectrum for alcohol \mathbf{X} occurs at $m / z=88$. Use all of these data to show that the molecular formula for alcohol \mathbf{X} is $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$. Include your working.
(b) (i) When alcohol \mathbf{X} is oxidised, a carboxylic acid is formed.

State what information this gives about alcohol \mathbf{X}.
(ii) Draw the displayed formulae of the four possible structural isomers that could be alcohol \mathbf{X}.

Alcohol 1	Alcohol 2
Alcohol 3	
	Alcohol 4

Edexcel Chemistry A-level - Moles, Mass and Formulae

(iii) The mass spectrum of alcohol \mathbf{X} has a major peak at $m / z=45$.

Draw the structure of the species that could give this peak.
(iv) Alcohol \mathbf{X} has a branched chain. Identify alcohol \mathbf{X}, explaining your reasoning.
\qquad
\qquad
\qquad
\qquad

Edexcel Chemistry A-level - Moles, Mass and Formulae

Q16.

This question is about nitrogen and some nitrogen compounds.
A study of one brand of crisps found that each packet contained 0.420 g of nitrogen gas at a pressure of 120 kPa and a temperature of $20^{\circ} \mathrm{C}$.
(i) Calculate the volume of nitrogen gas, in $\mathbf{~ c m}^{\mathbf{3}}$, in one packet of crisps.

$$
\begin{equation*}
\left[R=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right] \tag{4}
\end{equation*}
$$

(ii) Give a possible reason why nitrogen gas and not air is used in packets of crisps.

Q17.

This question is about organic compounds containing fluorine and chlorine.
The use of chlorofluorocarbons as refrigerants has ceased due to concerns about their effects on the ozone layer. One such compound is dichlorodifluoromethane.
(i) A different refrigerant contains 34.0% chlorine and 54.5% fluorine by mass, with the remainder carbon.

Calculate the empirical formula of this compound.
(ii) Use the mass spectrum to show that the empirical and the molecular formulae of this compound are the same.

Edexcel Chemistry A-level - Moles, Mass and Formulae

(iii) Suggest the species responsible for the peak at $m / z=69$.

Edexcel Chemistry A-level - Moles, Mass and Formulae

Q18.

This question is about sodium carbonate.
Sodium carbonate forms a number of hydrates with the general formula $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$.
A $250 \mathrm{~cm}^{3}$ standard solution of one of these hydrates contained 10.0 g of the compound.
In an experiment, the M_{r} of a different hydrated sodium carbonate was found to be 286 g mol^{-1}.
(i) Calculate the relative formula mass of anhydrous sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
(ii) Calculate the number of molecules of water of crystallisation, x, for this hydrated sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$.

Q19.

This question is about extracting benzoic acid from a mixture of benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$, and phenol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$.

The following steps were carried out.
Step 1 A suitable mass of the mixture was placed in a separating funnel and some ether added. The funnel was shaken to dissolve the mixture.

Step 2 Aqueous sodium hydrogencarbonate was added to the separating funnel, and the contents shaken.

Step 3 Once the reaction was complete, the two layers were allowed to separate.
Step 4 The lower aqueous layer was removed and placed in a beaker.
Step 5 The ether layer in the separating funnel was washed with deionised water and the washings added to the beaker.

Step 6 Hydrochloric acid was added to the aqueous solution in the beaker to precipitate the benzoic acid.

Step 7 The impure benzoic acid was filtered under reduced pressure.
Step 8 The impure benzoic acid was purified by recrystallisation.
Step 9 The melting temperature of the purified benzoic acid was measured and compared with the literature value of $122^{\circ} \mathrm{C}$.

Benzoic acid can be purified in Step 8 because of its high solubility in hot water and low solubility in cold water.

Calculate the maximum number of benzoic acid molecules that can dissolve in $50.0 \mathrm{~cm}^{3}$ of cold water if the solubility is 1.70 g per $1000 \mathrm{~cm}^{3}$.

Q20.

Bromobutanes react with hot ethanolic potassium hydroxide solution to produce gaseous butenes.

$$
\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

Apparatus

Procedure

- 0.0080 mol of liquid 1 -bromobutane was injected into a round bottom flask containing hot ethanolic potassium hydroxide.
- After the reaction, the syringe was sealed using a clamp.
- The syringe was then removed from the apparatus and allowed to cool to room temperature (298 K).

Result
The final volume of but-1-ene collected was $22.0 \mathrm{~cm}^{3}$.
Before cooling, the volume of but-1-ene in the gas syringe was $24.0 \mathrm{~cm}^{3}$.
Calculate the temperature of the gas in the syringe before it cooled.
[Assume no loss from the gas syringe during cooling, and a constant pressure]

Edexcel Chemistry A-level - Moles, Mass and Formulae

Q21.

Ice has a density of $0.92 \mathrm{~g} \mathrm{~cm}^{-3}$ and water has a density of $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$.
Calculate how many more molecules there are in $5.00 \mathrm{~cm}^{3}$ of water compared to $5.00 \mathrm{~cm}^{3}$ of ice.

Edexcel Chemistry A-level - Moles, Mass and Formulae

Q22.

This question is about the molar volume of gases.
(i) Calculate the volume of one mole of an ideal gas, \mathbf{A}, at $60^{\circ} \mathrm{C}$ and 500 kPa pressure.

Give your answer to two significant figures and include units.
[The ideal gas equation is $p V=n R T$. Gas constant $(R)=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]
(ii) At room temperature and pressure (r.t.p) another gas \mathbf{B}, with formula XH_{3}, has a density of $1.42 \mathrm{~g} \mathrm{dm}^{-3}$.

Calculate the molar mass of the gas XH_{3} and deduce the identity of the element X .
[The molar volume of gas $\mathbf{B}=24000 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ at r.t.p.]

Q23.

Traditionally, high-flying aircraft and Formula 1 racing cars have had their tyres inflated with nitrogen gas instead of air. Recently, this practice has been extended to some other cars.

A car tyre is filled with nitrogen gas to a volume of $8.98 \mathrm{dm}^{3}$ and a pressure of 207 kPa at 20 ${ }^{\circ} \mathrm{C}$.
(i) Using the Ideal Gas Equation, calculate the mass of nitrogen gas, in grams, present in the car tyre under these conditions. Give your answer to an appropriate number of significant figures.
(ii) During a car journey, the tyres become warm. Use the Ideal Gas Equation to deduce the effect that this has on the pressure in the tyres.
\qquad
\qquad

Mark Scheme

Q1.

Question Number	Acceptable Answer	Additional Guidance	Mark
(a)	an answer that makes reference to the following point: volume/space occupied by one mole of a gas at a specified temperature and pressure/rtp/stp/standard conditions	temp and pressure need not be s.t.p. or r.t.p. ignore just reference to 22.4 or $24 \mathrm{dm}^{3}$ Ignore units of volume, if given.	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
(b)(iii)	- mass of gas and expression for molar mass (1) - molar mass to 2 or 3 SF and correct units (1)	mple of calculation s of gas = $.655-107.563=0.092 \mathrm{~g}$ $\text { ar mass }=0.092 \times 24000 / 50$ 4.16 wany other correct alternative ulation from M1 to M2 for incorrect s only $2 / 44 \mathrm{~g} \mathrm{~mol}^{-1}$ ect answer to $2 / 3 \mathrm{SF}$ /without working gets 2 marks	(2)
Question Number	Acceptable Answer	Additional Guidance	Mark
(b)(iv)	an explanation that makes reference to the following points: - plunger does not return (to zero/original position) when released (1) - molar mass will decrease because 'air' has a lower molar mass (than 44/carbon dioxide) (1)	Mark independently There must be some reference to air	(2)
Question Number	Acceptable Answer	Additional Guidance	Mark
(c)	An answer that makes reference to the following points: - the calculated molar mass would be greater (1) - at a lower temperature there would be more molecules/moles/mass in the same volume /density is greater. (1)	Points to be marked independently Standalone mark Do not award for answers that refer to smaller volume Ignore smaller molar volume Ignore particles/molecules/atoms closer together	(2)
Question Number	Acceptable Answer	Additional Guidance	Mark
(d)	an answer that makes reference to the following point: water (vapour) would decrease/affect molar mass OR gas is now a mixture so would decrease/affect molar mass	Ignore gas may dissolve in water Do not award water may react with gas in syringe Do not award wet gas is heavier Ignore answers that refer to molar volume	(1)

Q2.

Question Number	Acceptable Answer	Additional Guidance	Mark
$\mathbf{(a) (\mathrm { i })}$	$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+$ $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$	Accept $\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow$ $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$	(2)
Balanced equation $\mathbf{(1)}$ State symbols $\mathbf{(1)}$	2nd mark dependent on first or near miss.		
Reject $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ in equation, but allow state symbol mark if otherwise correct.			

Question Number	Acceptable Answer	Additional Guidance	Mark
(a) (ii)	Finds molar mass of calcium carbonate	Example of calculation Mr of calcium carbonate $=40.1+12+(16 \times 3)=100.1\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$	(1)
		Allow $=40+12+(16 \times 3)=100\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ Accept answer with no working	

Question Number	Acceptable Answer	Additional Guidance	Mark
(a) (iii)	- calculate moles of calcium carbonate in 0.50 g (1) - moles of hydrochloric acid in 20 cm^{3} AND Show the hydrochloric acid is in excess with appreciation of 2:1 ratio in equation for reaction (1)	Example of calculation moles of calcium carbonate $=0.50 / 100.1=0.004995$ $=0.0050(\mathrm{~mol})$ moles of hydrochloric acid in $20 \mathrm{~cm}^{3}=20 / 1000 \times 2=$ 0.040 (mol) 0.04 (moles of hydrochloric acid) reacts with 0.02 (moles of calcium carbonate) therefore the acid is in (a four times) excess. OR 0.0050 (moles of calcium carbonate) reacts with 0.010 (moles of hydrochloric acid) therefore the acid is in (a four times) excess Ignore calculations using other masses of calcium carbonate	(2)

Question Number	Acceptable Answer		Additional Guidance	Mark
(b) (i)	Points plotted accurately AND axes labelled (1) Points plotted must cover more than half of graph paper AND Reasonable straight line of best fit which may extend to the origin (1) Allow ecf on reasonable line on incorrectly plotted points.	Do not award for reversed axes Volume (of CO_{2}) $/ \mathrm{cm}^{3}$		(2)

Question Number	Acceptable Answer	Additional Guidance	Mark
(b) (ii)	Straight line through the origin (therefore volume is directly proportional to mass)	Allow 'There is a positive correlation.'	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
(c)	Either - finds gradient from graph (1) - molar volume given to 2 s.f. with units (1) OR - moles of calcium carbonate (1) - molar Volume (1)	Example calculation Gradient $=$ volume $=231\left(\mathrm{~cm}^{3}\right.$ per gram) mass Allow correctly calculated values in the range $=210 \text { to } 250$ (Molar Volume $=$ Gradient \times Mr) Molar Volume $=231 \times 100.1($ or $\times 100)$ $\left.=23\left(\mathrm{dm}^{3}\right) \text { (must be } 2 \mathrm{~s} . \mathrm{f}\right)$ Answer to 2 s.f. (and units) Allow TE from any gradient OR Data may be used from any experiment number eg using data from Experiment 5 $\begin{aligned} \text { Moles of calcium carbonate } & =0.50 / 100.1 \\ & =0.0050 \end{aligned}$ $\begin{aligned} \text { Molar Volume } & =115 / 0.005 \\ & =23\left(\mathrm{dm}^{3}\right) \end{aligned}$ Allow data from a point on the line calculated using route 2	(2)

Question Number	Acceptable Answer	Additional Guidance	Mark
(d)	To saturate the solution with $\mathrm{CO}_{2} /$ to stop the CO_{2} formed from dissolving		(1)

Q3.

Question Number	Acceptable Answers	Additional Guidance	Mark
	- calculation of no. mol of ethanol (1) - calculation of no. molecules of ethanol	```Example of calculation no. mol of ethanol \(=55.2 \times 1000\) / 46 \(=1200\) no. molecules ethanol \(=1200 \times\) \(6.02 \times 10^{23}\) \(=7.224 \mathrm{x}\) \(10^{26}\) TE on no. of mol of ethanol Correct answer with or without working scores both marks Ignore SF except 1 SF Ignore units Comment: common incorrect answers: \(7.224 \times 10^{23}\) scores 1 (used 55.2 g) \(7.224 \times 10^{20}\) scores 1 (used 0.0552 g)```	(2)

Q4.

Question Number	Answer	Additional Guidance	Mark
	- rearrangement of the ideal gas equation - conversion of volume into m^{3} and conversion of pressure into pascals - calculation of number of moles - calculation of molar mass - deduction of formula of \mathbf{X}	Example of calculation $\begin{aligned} & n=\frac{p V}{R T} \\ & V=0.000132\left(\mathrm{~m}^{3}\right) \end{aligned}$ and $p=105000(\mathrm{~Pa})$ $\mathrm{n}=\underline{105000 \times 0.000132}=$ $0.0039711(\mathrm{~mol})$ 8.31×420 $\begin{aligned} & M_{\mathrm{r}}=\underset{\mathrm{m}}{=} \underset{\left(\mathrm{gmol}^{-1}\right)}{0.318}= \\ & \begin{array}{l} \mathrm{n} \quad 0.0039711 \\ \text { Ignore SF } \end{array} \end{aligned}$ SO_{3} Allow $\mathrm{S}_{2} \mathrm{O}$ Allow TE at each stage Correct answer with at least MP2, MP3 or MP4 correct	(5)

Q5.

Question Number	Answer	Additional Guidance	Mark
	- calculation of moles of pent-1-ene (1) - conversion of volume and temperature (1) - rearrangement of ideal gas equation and calculation of p (1) - final answer to 2 or 3 SF and units (1)	Example of calculation $1.33 / 70=0.019(\mathrm{~mol})$ $500 \times 10^{-6} \mathrm{~m}^{3} \text { and } 333 \mathrm{~K}$ Allow conversion of volume to 0.5 dm^{3} if units for M3 and / or M4 shown as kPa $\begin{aligned} & P=(n R T) / V=(0.019 \times 8.31 \times \\ & 333) / 500 \times 10^{-6} \\ & =105154.74 \\ & =105000 \mathrm{~Pa} / 1.05 \times 10^{5} \mathrm{~Pa} / 1.1 \times \\ & 10^{5} \mathrm{~Pa} \end{aligned}$ Allow Nm^{-2} for Pa Allow 105 kPa Allow TE at each stage Penalise rounding to 1 SF in M1 but then allow TE Correct answer with units and no working scores (4)	(4)

Q6.

Question Number	Acceptable Answer	Additional Guidance	Mark
	- moles of $\mathrm{CO}_{2} /$ moles of C (1) - moles of H (1) - empirical formula (1) - calculates molecular formula $\mathrm{C}_{6} \mathrm{H}_{12}$ (1)	$\begin{aligned} & \text { example of calculation } \\ & \text { moles of } \mathrm{CO}_{2}=3.143 / 44(= \\ & 0.07143 / 0.071) \\ & =\text { moles of } \mathrm{C} \\ & \text { moles of } \mathrm{H}_{2} \mathrm{O}=1.284 / 18(=0.07133) \\ & \text { moles of } \mathrm{H}=2 \times \text { moles of } \mathrm{H}_{2} \mathrm{O}= \\ & 0.1427 \\ & \mathrm{C}: \mathrm{H}=0.07143: 0.1427=1: 2 \end{aligned}$ hence $\mathrm{C}_{1} \mathrm{H}_{2}$ or CH_{2} allow TE from first and/or second mark point(s) Allow any workable calculation Ignore SF in intermediate stages of calculation Award 3 marks for correct C:H ratio, with or without working. $84 / 14=6$ $6 \times \mathrm{CH}_{2}=\mathrm{C}_{6} \mathrm{H}_{12}$ Mark independently of M1, M2, M3	(4)

Q7.

Question Number	Acceptable Answer	Additional Guidance	Mark
	$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$ $\mathbf{(1)}$	Ignore $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{OH}$ $154\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ $\mathbf{(1)}$no TE on incorrect molecular formula except for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{OH}$	

Q8.

Question Number	Acceptable Answer	Additional Guidance	Mark
	Determine empirical formula finds mass of Cl AND finds moles of aluminium and chlorine (1) determines ratio and hence empirical formula is AlCl_{3} (1)	Example of calculation $0.500-0.101=0.399(\mathrm{~g})$ AND $0.101 / 27.0=0.00374074 / 3.74 \ldots \mathrm{x}$ 10^{-3} AND $0.399 / 35.5=0.01123944 / 1.12 \ldots \mathrm{x}$ 10^{-2} $0.01123944=3.005$ 0.00374074 Could use $(0.101 / 0.5) \times 100=$ 20.2% $20.2 / 27.0=0.74814815$ AND $79.8 / 35.5=2.2478873$ $\underline{2.2478873}$ $0.74814815=3.005$	(6)

Q9.

| Question
 Number | Acceptable Answers | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: | :---: |
| (a)(i) | bottom of meniscus between 23.8 and
 $23.9\left(\mathrm{~cm}^{3}\right)$ | (1) | (2) |
| - meniscus curved downwards | | | |

Question Number	Acceptable Answers	Additional Guidance	Mark
(a) (ii)	An explanation that makes reference to the following points: - $23.15\left(\mathrm{~cm}^{3}\right)$ should be used as it is the mean of the concordant titres / titres 2 and $4 / 23.10$ and $\begin{equation*} 23.20\left(\mathrm{~cm}^{3}\right) \tag{1} \end{equation*}$ - $23.43\left(\mathrm{~cm}^{3}\right)$ should not be used as it includes the inaccurate / nonconcordant / rough values / titres 1 and $3 / 23.85$ and $23.55\left(\mathrm{~cm}^{3}\right)$	Allow other descriptions of concordant e.g. titres within 0.1 / $0.2 \mathrm{~cm}^{3}$ Allow $(23.1(0)+23.2(0)) / 2=$ $23.15\left(\mathrm{~cm}^{3}\right)$ Allow only the concordant titres / titres 2 and 4 / 23.20 and 23.20 $\left(\mathrm{cm}^{3}\right)$ should be used / are used(in the mean) Allow the inaccurate / nonconcordant/ rough values / titres 1 and $3 / 23.85$ and 23.55 (cm^{3}) should not be used / are used (in the mean)	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
(a)(iii)	• calculation of percentage uncertainty	$\frac{\text { Example of calculation }}{\frac{2 \times 0.05}{23.20} \times 100}$ $=(\pm) 0.431 / 0.43 / 0.4(\%)$ Ignore SF including 1 SF Correct answer with no working Scores (1)	

Question Number	Acceptable Answers	Additional Guidance	Mark
(a) (iv)	- calculation of moles of MnO_{4}^{-} - calculation of moles $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in $25.0 \mathrm{~cm}^{3}$ - calculation of moles $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in $1.00 \mathrm{dm}^{3}$ - calculation of \mathbf{y} to nearest whole number	$\begin{align*} & \text { Example of calculation } \\ & \text { moles } \mathrm{MnO}_{4}^{-}=23.15 \times 0.0203 / 1000 \\ & \quad=0.00046995 / 4.6995 \times 10^{-4}(\mathrm{~mol}) \tag{1}\\ & \text { moles } \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \text { in } 25.0 \mathrm{~cm}^{3}=4.6995 \times \\ & 10^{-4} \times 5 / 2=0.0011749 / \\ & 1.1749 \times 10^{-3}\left(\mathrm{~mol}^{2}\right) \tag{1}\\ & \mathrm{TE} \text { on moles } \mathrm{MnO}_{4}^{-} \\ & \text {moles } \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \text { in } 1.00 \mathrm{dm}^{3} \\ & =1.1749 \times 10^{-3} \times \frac{1000}{25.0} \tag{1}\\ & =0.046995 / 4.6995 \times 10^{-2}(\mathrm{~mol}) \end{align*}$ TE on moles $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in $25.0 \mathrm{~cm}^{3}$ Ratio moles salt : moles $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ $\begin{equation*} =0.0235: 0.046995=1: 1.9998 \tag{1} \end{equation*}$ $\mathbf{y}=2$ TE on moles $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in $1.00 \mathrm{dm}^{3}$ Alternative method for M3 and M4 moles salt in $25.0 \mathrm{~cm}^{3}=0.0235 \mathrm{x}$ $\begin{aligned} & 25.0 / 1000 \\ & \quad=5.875 \times 10^{-4}(1) \end{aligned}$ Ratio moles salt : moles $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ $\begin{array}{rll} =5.875 \times 10^{-4} & : & 1.1749 \times 10^{-3} \\ = & 1 & : \\ \mathbf{y}=2 & & \end{array}$ TE on moles salt and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in $25.0 \mathrm{~cm}^{3}$ (1) Ignore SF in working except 1 SF Correct answer with no working scores (1) Allow M4 for correct answer using charges on ions	(4)

Question Number	Acceptable Answers	Additional Guidance	Mark
(b)(i)	- calculation of mol of anhydrous salt - calculation of $\mathrm{mol} \mathrm{H}_{2} \mathrm{O}$ (1) - calculation of \boldsymbol{z} to nearest whole number (1)	$\begin{aligned} & \begin{aligned} & \text { Example of calculation } \\ & \text { mol anhydrous salt }=2.96 / 218.1 \\ &=0.013572 / 1.3572 \mathrm{x} \\ & 10^{-2}(\mathrm{~mol}) \end{aligned} \end{aligned}$ TE on M_{r} of anhydrous salt from value of \mathbf{y} in (a)(iv) or an assumed value of \boldsymbol{y} Allow 0.013578 from $M_{r} 218$ $\begin{aligned} & \mathrm{mol} \mathrm{H}_{2} \mathrm{O}(=0.45 / 18)=0.025 / 2.5 \times 10^{-2} \\ & (\mathrm{~mol}) \end{aligned}$ Ratio mol salt : mol $\mathrm{H}_{2} \mathrm{O}$ $\begin{array}{lll} =0.013572 & : & 0.025 \\ = & 1 & : \\ 1.842 \end{array}$ $z=2$ TE on moles anhydrous salt and moles $\mathrm{H}_{2} \mathrm{O}$ Ignore SF in working except 1 SF Correct answer with some working scores (3) Penalise \mathbf{y} and \mathbf{z} not given to nearest whole number once only in (a)(iv) and (b)(i) Allow alternative correct methods	(3)

Question Number	Acceptable Answers	Additional Guidance	Mark
(b)(ii)	An answer which includes the following points: Crystals jumped out of crucible - value of \boldsymbol{z} increases and because it appears that more mass / mol / water is lost (than expected) - (this can be prevented by) placing a lid on the crucible or heat more gently / carefully Not all water of crystallisation lost - less mass / mol /water is lost (than expected) - (this can be prevented by) heating to constant mass or description of heating to constant mass - so this accounts for the lower value of \boldsymbol{z} / value of \boldsymbol{z} decreases	Ignore just `loss in mass / mol^{\prime} Stand alone mark Allow just 'cover the crucible' Ignore use an electrical heater / larger crucible / evaporating basin / conical flask / test tube etc Do not award add antibumping granules Stand alone mark Ignore just 'heat for longer' Do not award the idea of repeating the experiment / using a drying agent Conditional on M3	(5)

Q10.

Question Number	Acceptable Answers	Additional Guidance	Mark	
	- evaluation of the number of moles of S and F	Example of calculation: $\mathrm{n}(\mathrm{S})=(45.79 \div 32.1)=1.426$ $\mathrm{n}(\mathrm{F})=(54.21 \div 19.0)=2.853$	(2)	
	- evaluation of ratio $1: 2$ and empirical formula	(1)	Ratio $=(1.426: 2.853)=1: 2$ Empirical formula SF_{2} Allow use of S = 32 (1.431)	

Q11.

Question Number	Acceptable Answer		Additional Guidance	Mark
	An answer that makes reference to the following points: - calculation of moles of carbon/carbon dioxide - calculation of moles of water - calculation of moles of hydrogen - calculation of empirical formula	(1)	Example of calculation Moles of carbon dioxide $=$ $3.14 \div 44=0.071364(\mathrm{~mol})$ Moles of carbon = 0.071364 (mol) Moles of water $=1.29 \div 18$ $=0.071667$ (mol) Moles of hydrogen = $0.071667 \times 2=0.14333$ (mol) Ratio of moles C:H = 0.071364:0.14333 = 1:2.(001) Empirical formula $=\mathrm{CH}_{2}$ TE on M4 for lost M3 (no x2), so CH TE on moles of C and H	(4)

Q12.

Question Number	Answer	Additional Guidance	Mark
(ii)	• calculation of the number of molecules	Example of calculation $\mathrm{N}=\left(\mathrm{n} \times \mathrm{L}=0.0160 \times 6.02 \times 10^{23}\right)$	(1)

Question Number	Answer	Additional Guidance	Mark
(iii)	An answer that makes reference to the following points: - to ensure that K_{p} stays the same/ quotient stays the same or only temperature changes the value of K_{p} - the number of (sulfur dioxide) molecules decreases Either because the equilibrium shifts to the right or because one of the denominators (oxygen) has increased so the other denominator (sulfur dioxide) has to decrease (1)	Standalone marks Allow concentration changes have no effect on the value of K_{p} Allow 'moles' for molecules	(2)

Q13.

Question Number	Answer	Additional Guidance	Mark
(i)	An explanation that makes reference to the following points: - (not using a lid means) some of salt \mathbf{Y} could be lost from crucible during heating (1) - (mass loss greater than expected), so $n /$ amount of water (of crystallisation) greater (than expected) (1)	Allow solid / product / crystals for 'salt' Allow 'salt spits / jumps out' / 'salt escapes' from crucible Ignore gas escapes Do not award 'salt evaporates' M2 dependent on M1 or salt evaporates	(2)

Question Number	Answer	Additional Guidance	Mark
(ii)	An explanation that makes reference to the following points: (heating for only 1 minute may mean) not all the water (of crystallisation) has been removed (1)	Allow evaporated / boiled off for removed Allow (only) partial dehydration Ignore incomplete reaction - (mass loss less than expected), so $n /$ amount of water (of	M2 dependent on M1 or incomplete reaction
(2) (l)			

Question Number	Answer	Additional Guidance			Mark
(iii)	calculation of moles of $\mathrm{K}_{2} \mathrm{CO}_{3}$ calculation of moles of $\mathrm{H}_{2} \mathrm{O}$ deduction of n (1)	Example of calculation			(3)
			$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{H}_{2} \mathrm{O}$	
		Moles $=$	$\begin{align*} & \hline 71.9 /(138.2) \\ & =0.52026 \tag{1}\\ & \hline \end{align*}$	$\begin{aligned} & (100-71.9) / 18 \\ & =1.56111 \end{aligned}$	
		Ratio $=$	$\begin{align*} & =0.52026 / \\ & 0.52026 \\ & =1 \tag{1} \end{align*}$	$\begin{aligned} & =1.56111 \\ & 0.52026 \\ & =3 \end{aligned}$	
		 $n=$ 3			
		Accept use of 0.719 / 0.281 in M1 Allow TE from M1 Allow use of 138 for M_{r} of $\mathrm{K}_{2} \mathrm{CO}_{3}$ - gives 0.52101 Ignore SF including 1SF in M1 and M2 M3 must be 1 SF			
		Accept alternative methods e.g.$\begin{aligned} & \frac{138.2}{138.2+18 n}=0.719(1) \\ & 38.8342=12.942 n(1) \text { so } n=3 \\ & (1) \text { or } \\ & M_{\mathrm{r}} \text { of hydrated salt }=\underline{138.2}=192.2(1) \\ & \\ & \text { mass of water }=192.2-138.2= \\ & 54(1) n=54 / 18=3(1) \text { or } \\ & 138.2=71.9 \% \text { so } 28.1 \% \text { is water (1) } \underline{138.2} \times 28.1=54 \end{aligned}$(1)			

Q14.

Question Number	Answer	Additional Guidance	Mark
	- M1 conversion of pressure and temperature - M2 conversion of volume units - M3 rearrangement of gas equation and calculation of n - M4 calculation of the molar mass with the final answer given to 2 or $\mathbf{3} \mathbf{~ S F}$	Example of calculation $118000\left(\mathrm{Nm}^{-2}\right)$ and $438(\mathrm{~K})$ $70.5 \times 10^{-6} / 7.05 \times 10^{-5}\left(\mathrm{~m}^{3}\right)$ $n=\underline{p}$ RT $n=\underline{\left(118000 \times 70.5 \times 10^{-6}\right)}$ (8.31×438) $n=2.2855777 \times 10^{-3}(\mathrm{~mol})$ $\frac{0.271}{2.2855777} \times 10^{-3}$ $=118.5696$ $=119 / 120\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ If use $M_{r}=\frac{m R T}{\mathrm{pV}}$ (since $n=\frac{m}{M_{r}}$) can score both M3 and M4 $\begin{aligned} & M_{r}=\frac{0.271 \times 8.31 \times 438}{118000 \times 70.5 \times 10^{-6}} \\ & M_{r}=118.5695 \\ & M_{r}=119 / 120\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \end{aligned}$ Award TE at each stage Ignore units even incorrect	(4)

Q15.

Question Number	Acceptable Answers	Additional Guidance	Mark
$(\mathrm{b})(\mathbf{i})$	$\bullet\left(\mathbf{X}\right.$ is a) primary/ 1° (alcohol)		$\mathbf{(1)}$

Question Number	Acceptable Answers	Additional Guidance	Mark
(b)(ii)		Allow alcohols in any order Allow $\mathrm{CH}_{3} / \mathrm{OH}$ Allow slip of 1 H missing from 1 alcohol / 1 C-C bond missing Ignore names, even if incorrect Penalise O-H-C- / -C-HO at end of molecule once only If no other mark is given, allow (2) for 4 correct skeletal / structural formulae or any combination of these or (1) for 3 correct Allow (2) for displayed formulae of pentan-2-ol, pentan-3-ol and 3-methylbutan-2-ol if secondary alcohol in (b)(i), or (1) for any two of those	(3)

	- 4 correct - 3 correct - 2 correct	(3) (2) (1)	If no other mark awarded and if (b)(i) is blank or incorrect, allow (2) for any 4 different alcohols with formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$, (1) for 3 alcohols	

Question Number	Acceptable Answers	Additional Guidance	Mark
(b)(iii)	\bullet	Allow structural formula or any combination of displayed and structural formula	(1)
		Allow + anywhere on structure or outside of a formula in a bracket Do not allow $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{+} / \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OH}^{+}$ Do not allow missing charge Allow $\mathrm{CH}_{3} \mathrm{C}^{+} \mathrm{HOH}$ if secondary alcohol identified in $(\mathrm{b})(\mathrm{i})$	

Question Number	Acceptable Answers	Additional Guidance	Mark
(b)(iv)	 - because this is the only alcohol with a branched chain and forms $\mathrm{CH}_{2} \mathrm{OHCH}_{2}{ }^{+} / \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OH}^{+} /$ peak at 45 / fragment identified in (b)(iii)	Allow any type of identification, including name 3-methylbutan-1-ol Ignore incorrect name with correct structure Conditional on correct identification Ignore missing charge on fragment Allow reasons why the others are not correct e.g. not pentan-1-ol as it is not branched and not 2-methylbutan1 -ol or 2,2-dimethylpropan-1-ol as they do not form $\mathrm{CH}_{2} \mathrm{OHCH}_{2}{ }^{+}$ If secondary alcohol identified in (b)(i): Allow 3-methylbutan-2-ol (1) as it is the only alcohol with a branched chain that forms $\mathrm{CH}_{3} \mathrm{C}^{+} \mathrm{HOH}$ (1)	(2)

Q16.

Question Number	Answer	Additional Guidance	Mark
(i)		Example of calculation:	(4)
	- evaluation of number of moles of nitrogen (1)	$n=0.42 \div 28=0.015$	
	- conversion of pressure and temperature to correct units (1)	$\begin{aligned} & 120 \mathrm{kPa}=120000 \mathrm{~Pa}, \\ & 20^{\circ} \mathrm{C}=293 \mathrm{~K} \end{aligned}$	
	- rearrangement of ideal gas equation so $V=n R T \div P$ and evaluation of	$\begin{aligned} V & =\frac{0.015 \times 8.31 \times 293}{120000} \\ & =3.0435 \times 10^{-4}\left(\mathrm{~m}^{3}\right) \end{aligned}$	
	(1)	$\begin{aligned} & =3.0435 \times 10^{-4} \times 10^{6} \\ & =304\left(\mathrm{~cm}^{3}\right) \end{aligned}$	
	- answer converted into cm^{3} (1)	Ignore SF except 1SF TE throughout	
		Correct answer without working scores (4)	

$\begin{array}{c}\text { Question } \\ \text { Number }\end{array}$	Answer	Additional Guidance	Mark
(ii)	An answer that makes reference to	$\begin{array}{l}\text { Allow answers such as } \\ \text { 'keep the crisps fresh' or } \\ \text { 'prevents the crisps from } \\ \text { going off/stale' } \\ \text { Allow reference to 'crisps not } \\ \text { reacting with nitrogen but } \\ \text { will with air' } \\ \text { Ignore reference to gas } \\ \text { prevents crisps from getting } \\ \text { squashed/broken }\end{array}$	(1)

Q17.

Question Number	Answer		Additional Guidance	Mark
(i)	- calculate percentage of carbon - division of all percentages by atomic mass - find simplest ratio and give empirical formula	(1) (1) (1)	Example of calculation: $\begin{aligned} & 100-(34.0+54.5)= \\ & 11.5 \% \end{aligned}$ Cl $34.0 / 35.5=0.95775$ F $\quad 54.5 / 19.0=2.8684$ C $11.5 / 12.0=$ 0.95833 Cl $(0.95775 / 0.95775=$ $2.9949)=1$ F $\quad(2.8684 / 0.95775=$ $2.9949)=3$ C $(0.95833 / 0.95775=$ $2.9949)=1$ So $\mathrm{CF}_{3} \mathrm{Cl} / \mathrm{CClF}_{3}$ Allow any order Correct answer with no working scores (3) Ignore significant figures throughout.	(3)

Question Number	Answer	Additional Guidance	Mark
(ii)	An answer that makes reference to the following points:	(1)	
- molecular ion peak at 104 /106 (which matches the mass of the empirical formula)	Do not award statements stating that the molecular ion peak is at 105 or at 104.5, unless this is a calculated average.		

Question Number	Answer	Additional Guidance	Mark
(iii)	• correct ion	CF_{3}^{+} Do not award CF_{3} with no plus.	(1)

Q18.

Question Number	Answer	Additional Guidance	Mark
(i)	- calculation of M_{I} of $\mathrm{Na}_{2} \mathrm{CO}_{3}$	Example of calculation $=(2 \times 23)+12+(3 \times 16)=106$ Correct answer with no working scores (1)	(1)

Question Number	Answer	Additional Guidance	Mark
(ii)	calculation of mass of water in 1 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ and calculation of x.	Example of calculation	(l)

Q19.

Question Number	Answer	Additional Guidance	Mark
	Method 1 - (M1) mass of benzoic acid in $50 \mathrm{~cm}^{3}$ (1) - (M2) no. of moles of benzoic acid in 50 cm^{3} (1) OR Method 2 - (M1) moles of benzoic acid in 1000 cm^{3} (1) - (M2) no. of moles of benzoic acid in 50 cm^{3} (1) then - (M3) evaluation of the number of molecules of benzoic acid in $50 \mathrm{~cm}^{3}$ (1)	Example of calculation $\begin{aligned} & \mathrm{m}=(1.70 \times 0.05=) 0.0850(\mathrm{~g}) \\ & \mathrm{n}=(0.0850 \div 122=) 6.967 \ldots \times 10^{-4} \\ & (\mathrm{~mol}) \end{aligned}$ $\begin{aligned} & \mathrm{n}=(1.70 \div 122 \Rightarrow 0.01393 \ldots(\mathrm{~mol}) \\ & \mathrm{n}=(0.01393 \ldots \times 0.05 \Rightarrow 6.967 \ldots x \\ & 10^{-4}(\mathrm{~mol}) \end{aligned}$ $\begin{aligned} & N=\left(6.967 \ldots \times 10^{-4} \times 6.02 \times 10^{23}=\right) \\ & =4.19 \times 10^{20} / 4.2 \times 10^{20} \end{aligned}$ Ignore sf except 1sf Penalise excessive (6+) SF Allow use of 6.0×10^{23} to give 4.18 $\times 10^{20}$ for (3) Correct final answer without working scores (3) TE throughout	(3)

Q20.

Question Number	Acceptable Answer	Additional Guidance	Mark
	- calculation of ratio of volumes before and after cooling (1) - calculation of temperature of warm syringe (1)	$\begin{aligned} & \text { Example of calculation } \\ & \frac{24}{22}=1.091 / 1.0909 \ldots \\ & 1.0909 \times 298=325 \mathrm{~K} / \\ & 325.09090909 \mathrm{~K} / \\ & \text { Use of pV = nRT giving } 325 \mathrm{~K} \text { scores } \\ & 2 \\ & \text { Correct answer with no working } \\ & \text { scores } 2 \\ & \text { If candidate assumes } \mathrm{P}=100000 \text { / } \\ & 101000 \text { and uses pV = nRT to find T } \\ & =315 / 318 \mathrm{~K} \text { award } 1 . \\ & \text { Ignore SF except } 1 \mathrm{SF} \end{aligned}$	(2)

Q21.

Question Number	Answer	Additional Guidance	Mark
	An answer that give evidence of the following: - use of both densities to get two masses and division by 18 to give moles (1) - subtraction to give either mass or moles or number of molecules (1) - multiplication by Avogadro constant to give number of molecules	Multiple correct methods are possible which process the data in different sequences. The correct final answer is $1.34 \times 10^{22} / 1.338 \times 10^{22}$ which can be awarded (3) regardless of working If this answer is not given then look for evidence of each of the given mathematical processes and give one mark for each The use of both densities must be carried out first Note that the use of 5 for the mass of water implies the use of a density of $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$ Depending on the method used this can be done at the beginning, the middle or at the end of the calculation but must be of (water - ice) This must be evidenced after moles have been calculated Allow TE throughout Ignore SF except 1SF for the final answer Allow use of 6×10^{23} which gives 1.33×10^{22} for (3) Correct answer without working scores (3) Do not allow a number of molecules <1	(3)

Q22.

Question Number	Acceptable Answer	Additional Guidance	Mark
(i)	- converts temperature to Kelvin and pressure to Nm^{-2} (Pa) (1) - rearranging ideal gas equation and substituting their values (1) - evaluates answer to 2 SF and includes units (1)	Examples of calculation $60^{\circ} \mathrm{C}=333 \mathrm{~K}$ $500 \mathrm{kPa}=5 \times 10^{5} / 500000 \mathrm{~Pa}$ $V=\frac{n R T}{P}$ $V=1 \times 8.31 \times 333 / 500000$ $=5.53446 \times 10^{-3}$ $=0.0055 \mathrm{~m}^{3} / 5.5 \times 10^{-3} \mathrm{~m}^{3} / 5.5$ $\mathrm{dm}^{3} / 5500 \mathrm{~cm}^{3}$ allow TE answers to 2 SF only correct answer with no working scores 3 marks correct answer with incorrect working scores 2 marks max.	(3)

Question Number	Acceptable Answer	Additional Guidance	Mark
(ii)	- calculates M_{r} to 2 or more SF (1) - identifies element X (1)	Example of calculation: molar mass $=$ mass in 24000 cm^{3} $=1.42 \times 24000 / 1000=34$ (.08) $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$ ignore SF except 1 SF $(x+(3 \times 1))=34$ $\mathrm{X}=31$ so $\mathrm{P} /$ phosphorus just 'phosphorus' with no working scores M2 only	(2)

Q23.

Question Number	Answer	Additional Guidance	Mark
(i)		Example of calculation:	(3)
	- conversion of pressure, volume and temperature to correct units (1)	$\begin{aligned} & 207 \mathrm{kPa}=207000 \mathrm{~Pa} \\ & 8.98 \mathrm{dm}^{3}=0.00898 \mathrm{~m}^{3}, \\ & 20^{\circ} \mathrm{C}=293 \mathrm{~K} \end{aligned}$	
	- rearrangement of ideal gas equation so $n=P V \div R T$ and calculation of n (1)	$\begin{aligned} & \mathrm{n}=\frac{207000 \times 0.00898}{8.31 \times 293}= \\ &=0.7634 \ldots \end{aligned}$	
	- conversion of answer into mass to $2 / 3$ SF (1)	$\begin{aligned} & =0.7634 \ldots . \ldots 28= \\ & 21.37647 . . \\ & =21.4 / 21(\mathrm{~g}) \end{aligned}$ Correct answer with no working scores 3 TE on both parts of the calculation	

Question Number	Answer	Additional Guidance	Mark
(ii)	- The temperature increase will result in an increase in pressure because p is (directly) proportional to T (at constant volume and moles of gas)	Allow $p \propto T$ Reference to $p=n R T / V$	(1)

