Questions

_	
\sim	4
.,	1

Chloroalkanes can be formed from both alkenes and alkanes.	
Ethene can be converted into chloroethane.	
(i) Identify, by name or formula, the reagent for this conversion.	
	(1)
(ii) Draw the mechanism for the conversion of ethene into chloroethane. Include curly arrows, and any relevant lone pairs and dipoles.	(4)

(Total for question = 5 marks)

Q2.

Plastic products often have a symbol on them. Two of the symbols are shown.

The V on the symbol with the number 3 stands for vinyl or vinyl chloride. The V is sometimes replaced by PVC, standing for polyvinyl chloride.

(Total for question = 1 ma	ark)
	(1)
State the link between vinyl chloride and polyvinyl chloride.	

Q3.

Plastic products often have a symbol on them. Two of the symbols are shown.

The symbols are used to sort the plastic products into groups of specific types of plastic when they are thrown away.

Some plastic products can be cleaned and used again.

Give two other uses of waste plastic.	
	(2)
	•
	•
	•

(Total for question = 2 marks)

structural isomers stereoisomers

_	
\sim	4
	_

This quest	ion concerns alkenes and some halogen	compounds.	
The alkene	e, propene, reacts with hydrogen chloride	ı.	
(i) This rea	action is best described as		
□ A □ B □ C □ D			(1)
(ii) The rea	action of propene with hydrogen chloride	can produce two isomeric products:	
	CH ₃ —CH ₂ —CH ₂ Cl 1-chloropropane	Cl CH ₃ —CH—CH ₃ 2-chloropropane	
1-chlore	opropane and 2-chloropropane are		(4)
□ A □ B □ C	cis-trans isomers E/Z isomers structural isomers		(1)

(iii) Draw the mechanism for the reaction of propene with hydrogen chloride to produce 2-chloropropane. Include curly arrows, and any relevant dipoles and lone pairs.

(4)

(Total for question = 6 marks)

Q5.

This question is about alkenes.

But-1-ene has the structure

(i) Draw the structure of the polymer formed when but-1-ene polymerises. Include **two** repeat units.

(1)

(ii) Calculate the number of molecules in 70.0 g of but-1-ene. [Avogadro constant = $6.02 \times 10^{23} \, \text{mol}^{-1}$]

(2)

(Total for question = 3 marks)

Q6.				
Analysis shows that a compound has the molecular formula C ₄ H ₈ O ₂ .				
A student suggests that the compound could be either A or B .				
	CH₃CH₂CH₂COOH A	or	HOCH ₂ CH=CHCH ₂ OH B	
	nemical test which would eagent and observation		esult for B but not for A .	(0)
				(2)

(Total for question = 2 marks)

Q7.

This is a question about dihalogenoalkanes.

Dihalogenoalkanes are formed when alkenes react with halogens.

(i) Complete the mechanism for the production of a dihalogenoalkane from 2-methylbut-1-ene and chlorine.

Include curly arrows and any relevant lone pairs.

(3)

(1)

(ii) Give the name of the dihalogenoalkane produced.

.....

(Total for question = 4 marks)

Q8.

This is a question about polymerisation.

But-1-ene and cyclohexene both form addition polymers.

Draw a section of each polymer, showing **two** repeat units.

(Total for question = 2 marks)

Q9.

2-methylbuta-1,3-diene can react with hydrogen bromide.

When 2-methylbuta-1,3-diene reacts with **excess** hydrogen bromide, several isomeric products are possible. Give the structures of **four** isomeric products.

(4)

(Total for question = 4 marks)

Q10.	
This question concerns alkenes and some halogen compounds.	
The halogenoalkane chloroethene is used to make the important polymer poly(chloroethene), PVC.	
(i) Draw a displayed formula of two repeat units of poly(chloroethene).	
	(1)
(ii) Some polymers are disposed of by incineration. Ignoring any economic considerations, explain why incineration is not a suitable method for the disposal of poly(chloroethene).	
	(2)
(iii) Chloroethene has a boiling temperature of 260 K and is known to be carcinogenic. Use these facts to state one precaution that chemists should take when using this compound.)
	(1)
(Total for guestion = 4 mark	s)

This question concerns iodine monochloride, ICI, a red-brown solid which melts at 27 °C to form a red-brown liquid.

lodine monochloride is used in measuring unsaturation in organic compounds.

lodine monochloride is a polar molecule which adds rapidly to double bonds in a similar way to hydrogen chloride. This reaction can be used to determine the degree of unsaturation in oils.

(i) Add the dipole to a molecule of iodine monochloride.

(1)

I—Cl

(ii) Draw the mechanism for the addition of iodine monochloride to propene. You should include all curly arrows and relevant lone pairs and dipoles.

(3)

(Total for question = 4 marks)

Q12.
Answer the questions with a cross in the boxes you think are correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .
Methyl cinnamate, $C_{10}H_{10}O_2$, is a white crystalline solid used in the perfume industry.
Methyl cinnamate undergoes an addition reaction in the dark with bromine.
 (i) Draw the mechanism for the reaction between methyl cinnamate and bromine, Br₂. Include curly arrows, and relevant lone pairs and dipoles.
(ii) Deduce the number of optical isomers of the addition product that can exist.
 A 2 B 3 C 4 D 8
(iii) When plane-polarised light is passed through an optical isomer, the plane of polarisation is
 A diffracted B reflected C refracted D rotated

(Total for question = 6 marks)

Q13.

* This question is about polymers.

Compare and contrast how each of these monomers forms a polymer.

Include equations, showing the formation of a single repeat unit for each polymer.

(6)

(Total for question = 6 marks)

Q14.

Some plants are able to make terpenes by linking together several molecules of 2-methylbuta-1,3-diene, also known as isoprene. The skeletal formula of 2-methylbuta-1,3-diene is

Predict the number of isoprene molecules that would be nee molecule. Justify your answer.	eded to make a single geraniol
	(2)
	(Total for question = 2 marks)

Q15.

Phenylethene, commonly known as styrene, is an important substance in the production of polystyrene which is used for some types of plastic packaging. Phenylethene can be made from benzene in a three-step synthesis.

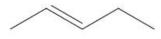
Which reagent could produce a diol from phenylethene?

■ A acidified potassium dichromate(VI)
 ■ B acidified potassium manganate(VII)
 ■ C aqueous sodium hydroxide
 ■ D steam

(Total for question = 1 mark)

(1)

Q16.


This question is about alkenes with the molecular formula C_5H_{10} .

Pent-2-ene reacts with hydrogen bromide, HBr, to form two bromoalkanes.

Complete the diagram to show the mechanism for the formation of 2-bromopentane in this reaction.

Include curly arrows, and relevant lone pairs and dipoles.

(4)

(Total for question = 4 marks)

Q17.

This question is about hydrocarbons.

Propene reacts with iodine monochloride, ICI, by an electrophilic addition mechanism.

Draw the mechanism for the reaction between propene and iodine monochloride to form the **major** product.

Include the dipole on the ICI molecule, curly arrows and any relevant lone pairs of electrons.

(4)

(Total for question = 4 marks)

\sim	1	0
u	ı	О.

Answer the question with a cross in the box you think is correct ☒. If you change
your mind about an answer, put a line through the box 🗟 and then mark your new
answer with a cross ⊠.

Propene can be converted into a mixture of 1-chloropropane and 2-chloropropane, in which 2-chloropropane is the major product.

(i)	Giv	e th	e reagent re	equired for	this reac	ction.						(1)
 (ii)	WI	A B C	s the type a electrophil nucleophil electrophil nucleophil	ic addition ic addition ic substitut	ion	he rea	ection in	(i)?				(1)
									(Total fo	r quest	ion = 2	marks)

Q19.

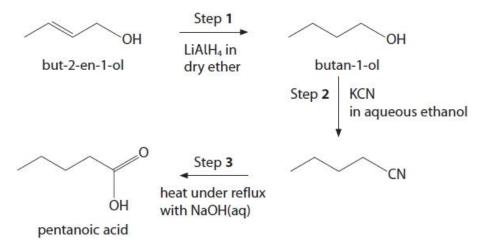
Phenylethene, commonly known as styrene, is an important substance in the production of polystyrene which is used for some types of plastic packaging. Phenylethene can be made from benzene in a three-step synthesis.

Draw a section of the polymer, polystyrene, showing **two** repeat units.

(Total for question = 1 mark)

Q20.

This question is about the synthesis and reactions of butane-1,4-diol.


Butane-1,4-diol can be synthesised from but-2-ene-1,4-diol, by reaction with a reagent, **B**.

					but-2-ene-1	1,4-diol		butane-1,4	-diol		
(i) l	de	ntii	y r	eagent B and	state suit	table condi	itions for	this react	ion.		
											(2)
(ii)	Γh	is ı	ea	ction is best o	lescribed	as					(4)
E		A B C D		hydrolysis oxidation reduction substitution							(1)
				one other com vith the alken		important	product	that can b	e manufa	ctured by t	his type
											(1)
								(Т	otal for o	uestion =	4 marks)

Q21.

This question is about the synthesis of organic compounds.

A student suggested the following plan for the synthesis of pentanoic acid from but-2-en-1-ol.

.,	s a source of hydride ions, H possible reason why LiAIH ₄ o		uce alkenes.	(1)
	suitable reagent and condition			(2)
compound.	is incorrect because alcohol a suitable intermediate con	·		 diate (1)
Give th aqueous so	involves the hydrolysis of a e additional reagent that sho dium hydroxide, to produce oic acid.	ould be added after he	eating under reflux with	(1)

(Total for question = 5 marks)

Q22.

This question is about alkenes.

Two reactions of ethene are shown.

Complete the table.

(3)

Reaction	Reagent and condition	Product
1	HBr at room temperature	
2		H H H—C—C—OH H H

(Total for question = 3 marks)

Mark Scheme

Q1.

Question Number	Answer	Additional Guidance	Mark
(i)	An answer that makes reference to the following point: • HCl((g)) / hydrogen chloride (gas)	Do not award hydrochloric acid / HCl(aq) / chlorine / Cl ₂ / Cl If name and formula are both given, both must be correct	(1)
Question	Answer	Additional Guidance	Mark

			correct	
Question Number	Answer		Additional Guidance	Mark
(ii)	An answer that makes reference to the following points: • dipole present on hydrogen chloride	(1)	H H H H H H H H H H H H H H H H H H H	(4)
	arrow from C=C bond to H or to where bond will be and arrow from H–CI bond to, or just beyond, CI	(1)	Allow TE for use of Cl ₂ in (a)(i), but max (3) if chloroethane is formed as the product Use of the wrong alkene (e.g. propene) or the	
	 correct carbocation intermediate 	(1)	wrong hydrogen halide (e.g. HBr) cannot score M4	
	arrow from lone pair on chloride ion to positive carbon in carbocation (to give correct product)	(1)		

Q2.

Question Number	Answer	Additional Guidance	Mark
	An answer that makes reference to the following point:	Correct answers will include monomer, polymer or words describing bonding / joining / linking of the vinyl chloride Allow pvc for polyvinyl chloride throughout	(1)
	Vinyl chloride is the monomer from which (the polymer) polyvinyl chloride is made Or the polymer polyvinyl chloride is made from the (monomer) vinyl chloride	Allow many vinyl chloride molecules joined / bonded together to make polyvinyl chloride Allow vinyl chloride is the repeat unit in polyvinyl chloride	

Q3.

Question Number	Answer		Additional Guidance	Mark
	An answer that makes reference to two of the following points:			(2)
	• recycling	(1)	Allow remoulding Allow made into other items / description of recycling	
	incineration to release energy	(1)	Allow for burning as a fuel Ignore just 'for incineration'	
	as a feedstock for cracking	(1)	Ignore just 'as a feedstock'	

Q4.

Question Number	Acceptable Answer	Mark
(i)	The only correct answer is B	
	A is not correct because reaction is not substitution	
	C is not correct because reaction is not substitution, nor nucleophilic	
	D is not correct because reaction is not nucleophilic	(1)

Question Number	Acceptable Answer	Mark
(ii)	The only correct answer is C	
	A is not correct because no C=C present	
	B is not correct because no C=C present	
	D is not correct because these are not stereoisomers	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
(iii)	An answer which shows the following: curly arrow from double bond to H atom of HCl/space between double bond and H atom of HCl (1) correct dipole on HCl molecule and curly arrow from H-Cl bond to Cl atom (1) intermediate with + charge shown on correct carbon (1) curly arrow from lone pair on chloride ion to correct carbon (1)	incorrectly drawn starting molecule loses M1, e.g. missing H or pentavalent carbon. incorrect starting molecule, e.g. butene will lose M3. if product is 1-chloropropane M3 only is lost. Other errors in end product lose M4 use of HBr in place of HCl loses M2 only use of H+ and Cl- loses M1 and M2	(4)

Q5.

Question Number	Answer	Additional Guidance	Mark
1 () () () () () ()	2 repeat units with extension bonds	Additional Guidance Example of two repeat units H H H H H CC C C C C H H H H CH2CH3 CH2CH3 The extension bonds can be solid / dotted / dashed Allow C2H5 for the side chains Allow ethyl groups on carbon atoms: 1 and 3, 2 and 4, 1 and 4 or 2 and 3 Allow skeletal formula / any combination of structural or displayed formulae	(1)
		Ignore brackets / n Ignore connectivity of vertical CH ₂ CH ₃ groups	

Question Number	Answer	Additional Guidance	Mark
(ii)	calculation of moles of but-1-ene (1)	Example of calculation moles of but-1-ene = $\frac{70.0}{56.0}$ = 1.25 (mol)	(2)
	calculation of number of molecules of but-1-ene (1)	molecules of but-1-ene = 1.25 x 6.02 x10 ²³ = 7.525 x 10 ²³	
		TE on moles but-1-ene Ignore SF except 1 SF Do not award M2 for mass x 6.02 x10 ²³	
		Correct answer with no working scores (2)	

Q6.

Question Number	Answer		A	lditional Guidance	Mark
	A description that makes		Examples of reagen	ts and observations	(2)
	reference to		Reagent	Observation	
	two of the		bromine water	orange / yellow / brown solution	1
	following		Allow bromine	goes colourless	
	points:		(in an organic solvent)	Allow bromine water is decolourised	
	reagent corresponding observation	(l) (l)	carboxylic acid and (concentrated) H ₂ SO ₄ / HCl / H ⁺	characteristic smell (of an ester)	
	0.00 ** (0.00		acidified potassium manganate(VII) / permanganate	purple to colourless / decolourised	
			alkaline potassium manganate(VII)	purple to green	
			(neutral) potassium manganate(VII)	purple to brown ppt	
			acidified (potassium) dichromate((VI)) (ions)	orange to green	
			Allow names or for given, both must be	mulae for reagents but if both are correct	
			Ignore conditions e.	g. heat	
			Do not award PCl ₅	Na	
			If more than one testests	t is given, penalise any incorrect	

Q7.

Question Number	Answer	Additional Guidance	Mark
(i)	\$ C C C C C C C C C C C C C C C C C C C	Example of mechanism:	(3)
	curly arrow from C=C to chlorine and curly arrow from Cl-Cl to 'bottom' chlorine atom(1)	Ignore dipoles even if incorrect	
	structure of carbocation intermediate and structure of final product (1)	Allow correct structural/displayed formulae for intermediate and/or product	
	chloride ion with lone pair and curly arrow from lone pair to C+ of carbocation (1)	Allow TE on incorrect primary carbocation	

Question Number	Answer	Additional Guidance	Mark
(ii)	1,2-dichloro-2-methylbutane	Allow name shown on mechanism Ignore missing hyphens and commas Do not allow 2-methyl-1,2-dichlorobutane TE on structure in (a)(i)	(1)
		Allow correct name even if incorrect structure in (i)	

Q8.

Question Number	Aı	iswer	Additional Guidance	Mark
	(CH ₂ =CHCH ₂ CH ₃ →) (1)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Accept skeletal, structural or displayed formulae or combination of which is clear, e.gC ₂ H ₅ Brackets are not essential	(2)
			Ignore 'n' Ignore orientation of side chains Ignore bond length Ignore where bond goes to for the ethyl groups	
	(1) -)		Penalise lack of 'end- bonds' once only	
			Award 1 mark max if only one repeat unit given for each polymer	
			Ignore more than 2 repeat units	

Q9.

Question Number	Acceptable Answer	Additional Guidance	Mark
	Br Br	accept displayed/structural/skeletal formulae	(4)
	Br Br Br	H H C H H H H C H H H H C H H H H H H H	
	one mark for each structure	H H H H H H H H H H H H H H H H H H H	
		Allow 2 marks for 4 different and correct monobromo isomers Allow 1 mark for 2/3 different and correct monobromo isomers Zero for 1 monobromoisomer accept correct enantiomers (provided both C=C bond react) Deduct one mark only for use of HCl Deduct one mark for (any number of) missing hydrogens	

Q10.

Question Number	Acceptable Answer	Additional Guidance	Mark
(i)	— c — H — H — H — C — H — H — H — H — H — H	must show two repeat units fully displayed allow head to head, head to tail, tail to tail, syndiotactic and isotactic stuctures do not award any other type of formula ignore brackets and n	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
(ii)	An explanation that makes reference to the following:	M2 is dependent on M1 allow chlorine	
	(incineration produces) HCl/chlorinated molecules (1)	ignore carbon dioxide and its consequences	
	which are corrosive/toxic /cause acid rain (1)	allow adverse effect on ozone layer	
			(2)

Question Number	Acceptable Answer	Additional Guidance	Mark
(iii)	An answer that makes reference to the following:	90 to 92% AMBRADIA	
	any appropriate precautions to deal with toxic vapours/use fume cupboard etc.	allow good ventilation required allow gas mask/respirator do not award just mask ignore gloves, lab coat	(1)

Q11.

Question Number	Answer	Additional Guidance	Mark
(i)	 diagram showing bond polarity using partial charges δ+ on iodine and δ- on chlorine 	I ^{δ+} CI ^{δ −}	(1)

8	Answer	,	Additional Guidance	Mark
(ii)	 arrow from double bond to I^{δ+} and arrow from I–Cl bond to Cl^{δ-} intermediate secondary carbocation with positive charge on carbon in the 2 position 	(1)	H CH ₃ H CC H H CC H H CC H H CH ₃ H CC C H Award M1 if dipoles are reversed in (b)(i) and arrow to Cl ^{δ+} Arrows should come from, or very close to, bonds and go to, or very close to, atoms. Allow arrow to I with no δ+ if given correctly in (i) Mark is for secondary carbocation so TE from (b)(i) for carbocation from addition of Cl first in M1 Do not award δ+ instead of +	(3)
	arrow from lone pair on Cl- to electron deficient carbon of carbocation	(1)	Do not award δ- instead of – If dipole is reversed in (i) award mark for arrow from lone pair on I- to electron deficient carbon of carbocation Ignore missing final product Allow M1 & M3 for minor product	

Q12.

Question Number	Answer	Additional Guidance	Mark
(i)		Example of mechanism	(4)
	 M1 arrow from double bond to (δ+)Br in Br₂ (1) 	See below	
		Penalise lack of dipole only once in	
	 M2 arrow from bond in Br₂ to Br^δ-	M1 and M2	
		Award C+ in intermediate on either	
		С	
	(1)	from the double bond	
		Do not award M3 if four bonds are	
		shown on carbocation	
	M4 arrow from lone pair on Br to C+in carbocation and final product (1)	Br atoms can be shown either	
		upwards or downwards in final product	
		product	
		Award (0) if just electrophilic	
		substitution mechanism given.	
		If both electrophilic substitution	
		and	
		addition shown allow 2 max	
		Penalise errors in structure of	
		methyl	
		cinnamate once only in either M3	
		or M4	
		IVIT	

Question Number	Answer	Mark
(ii)	The only correct answer is C (4)	(1)
	A is not correct because 2 chiral centres form in reaction, so 4 possible combinations of +/- forms	
	B is not correct because 2 chiral centres form in reaction, so 4 possible combinations of +/- forms	
	D is not correct because 2 chiral centres form in reaction, so 4 possible combinations of +/- forms	

Answer	Mark
The only correct answer is D (rotated)	(1)
A is not correct because diffracted is the wrong term	
B is not correct because reflected is the wrong term	
C is not correct because refracted is the wrong term	
	The only correct answer is D (rotated) A is not correct because diffracted is the wrong term B is not correct because reflected is the wrong term

Q13.

Question Number	Answ	er	Additional Guidance	Mar
	This question assesses the stude coherent and logically structure and fully sustained reasoning. Marks are awarded for indicate the answer is structured and slams. The following table shows how awarded for indicative contents.	ive content and for how nows lines of reasoning.	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with four indicative marking points that is partially structured with some linkages and lines of	(6)
	Number of indicative narking points seen in a	Number of marks warded for indicative marking points	reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure	
	6	4	and some linkages and lines of	
	5-4	3	reasoning).	
	3-2	2	If there were no linkages	
	1	1	between the points, then the	
	0	0	same indicative marking points	
	The following table shows ho awarded for structure and line Answer shows a coherent		would yield an overall score of 3 marks (3 marks for indicative content and zero marks for linkages).	
	logical structure with linkages and fully sustained lines of reasoning demonstrated throughout	2		
	Answer is partially structured with some linkages and lines of reasoning	1		
	Answer has no linkages between points and is unstructured	0		

Indicative content

- IP1 in both cases many monomers join (by covalent bonds to form polymers)
- IP2 cyclohexene forms an addition polymer / the polymer is formed by an addition reaction
- IP3 4-hydroxycyclohexanecarboxylic acid forms a condensation polymer / the polymer is formed by a condensation reaction
- IP4 no additional products from when cyclohexene polymerises, but water is also

Allow both polymerisations require a catalyst Allow both polymers are formed from a single type of monomer

Allow unsaturated monomer forms saturated polymer

formed when

4-hydroxycyclohexanecarboxylic acid polymerises

- IP5
- IP6

$$_{n}\left\langle \bigcirc\right\rangle \longrightarrow\left[\left\langle \bigcirc\right\rangle \right]_{n}$$

Allow 'only 1 product in addition but two products in condensation' Allow only one functional group is needed for addition polymerisation but two different functional groups are needed for condensation polymerisation Allow cyclohexene polymerisation has 100% atom economy, 4-hydroxycyclohexanecarboxylic polymerisation has less than 100% atom economy

Ignore omitted or misplaced n in IP5 and IP6

Allow 1 IP for IP5 and IP6 if both correct repeat units shown

Allow 2 oxygen atoms on RHS and none on LHS for IP6 repeat unit

Q14.

Question Number	Acceptable Answer	Additional Guidance	Mark
	2 (1)	Note: this must be a whole number	(2)
	number of C atoms in geraniol = 10, C atoms in isoprene = 5, $(10/5 = 2)$	Allow answers using C chain length ie isoprene = 4, geraniol = 8	
		Ignore number of hydrogens in both isoprene and geraniol	
		Do not award answers using M _r	

Q15.

Question Number	Acceptable Answer	Mark
	The only correct answer is B	(1)
	A is incorrect because this is an oxidising agent for alcohols not alkenes	
	C is incorrect because this would not react	
	D is incorrect because this would only produce an alcohol	

Q16.

Answer	Additional Guidance	Mark
 arrow from double bond to ∂+ H in HBr (1) 	Penalise lack of dipole only once in M1 or M2 Do not award M1 if arrow from C=C to C also shown	(4)
 arrow from bond in HBr to Br²- (1) 		
 structure of carbocation (1) 		
 arrow from lone pair on Br⁻ to C⁺ in carbocation and final products (1) 	Formation of 3-bromopropane can potentially score M1, M2 and M4 as a TE	
:Br	Br	
	 arrow from double bond to ∂+ H in HBr (1) arrow from bond in HBr to Br²-(1) structure of carbocation (1) arrow from lone pair on Br⁻ to C⁺ in carbocation and final products (1) 	 arrow from double bond to ô+ H in HBr (1) arrow from double bond to ô+ H in HBr (1) arrow from M1 or M2 Do not award M1 if arrow from C=C to C also shown structure of carbocation (1) arrow from lone pair on Br to C in carbocation and final products (1) Br Formation of 3-bromopropane can potentially score M1, M2 and M4 as a TE

Q17.

Question Number	Answer	Additional Guidance	Mark
	dipole on I- Cl and correct major product (1)	Example of mechanism $ \begin{array}{cccccccccccccccccccccccccccccccccc$	(4)
	curly arrow from C=C to I and curly arrow from I-Cl to, or just beyond, Cl (1)	Do not award C ⁶⁺ on intermediate Allow curly arrow from lone pair to C ⁶⁺ if penalised in M3 Notes If minor product formed, M2, M3 (with I on other carbon atom) and M4 can score	
	 intermediate (1) lone pair on Cl- and curly arrow from lone pair to C+ (1) 	If dipole shows Cl ⁵⁺ or no dipole shown and Cl joining first, M2 can score for curly arrow from C=C to Cl and curly arrow from Cl-I to, or just beyond, I and M4 can score for lone pair on I ⁻ and curly arrow from lone pair to C ⁺	

Q18.

Question Number	Acceptable Answer	Additional Guidance	Mark
(i)	hydrogen chloride / HCl((g)) / H-Cl	Do not award hydrochloric acid / HCl(aq)	(1)

Question Number	Answer	Mark
(ii)	The only correct answer is A (electrophilic addition)	(1)
	B is not correct because the reaction involves attack by an electrophile	
	C is not correct because the reaction is an addition not a substitution	
	D is not correct because the reaction is an addition involving attack by an electrophile	

Q19.

Question Number	Acceptable Answer	Additional Guidance	Mark
	H H H H H H	Additional Guidance Accept skeletal, structural or displayed formulae Accept any orientation of benzene ring Ignore brackets Ignore 'n' / '2n' / 'n/2' Allow syndiotactic and atactic forms Allow more than two units, as long as all correct. Neither of these diagrams scores Both have missing CH2	(1)

Q20.

Question Number	Acceptable Answer	Additional Guidance	Mark
(i)	Reagent: • B is hydrogen / H ₂ (gas) (1)	mark independently	
	nickel/ Ni (catalyst) (1)	allow any other suitable transition metal catalysts eg Pt, Pd	
		ignore additional information relating to the support for the catalyst	
		ignore references to heating/pressure/UV	(2)

Question Number	Acceptable Answer	Mark
(ii)	The only correct answer is C	
	A is not correct because water is not involved	
	B is not correct because there is no increase in number of oxygen atoms	
	D is not correct because no substitution has taken place	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
(iii)	margarine	allow <u>liquid</u> coal allow butter substitute do not award just butter	(1)

Q21.

Question Number	Answer	Additional Guidance	Mark	
(i)	An answer that makes reference to the following point: • the hydride ion will not attack / will be repelled by regions of high electron density	Allow the reduction by LiAlH4 is a nucleophilic addition / alkenes do not undergo nucleophilic reactions / H- is a nucleophile Allow alkenes react with H+ / H ⁶⁺ / H• Allow the hydride ion will not attack a pi-bond / C=C Allow like charges repel Ignore hydride ions cannot reduce alkenes Ignore hydride ions can only reduce carbonyl compounds	(1)	

Question Number			Mark	
(ii)	An answer that makes reference to the following points:	Mark independently		
	hydrogen / H ₂ (1)	Ignore reference to temperature		
	nickel / Ni or platinum / Pt / palladium / Pd (1)			

Question Number	Answer	Additional Guidance	Mark
(iii)	1-bromobutane / CH ₃ CH ₂ CH ₂ CH ₂ Br	If name and formula are given, both must be correct	(1)
		Allow Cl or I instead of Br	
		Allow skeletal or displayed formulae	

Question Number	Answer	Additional Guidance	Mark
(iv)	hydrochloric acid / HCl / H ⁺	Allow any (dilute) strong acid Ignore concentration of acid Do not award any weak acid	(1)

Q22.

Question Number	Answer		Additional Gui	dance	Mark
		Example of ta Reaction	Reagent and condition	Product	(3)
		1	(HBr at room temperature)	H—————————————————————————————————————	
		2	steam / H ₂ O(g) and acid / H+	H—C—C—OH	
	• product in Reaction 1 (1)	name for (1-)I	oromoethane	nolecular formula /	
	• reagent in Reaction 2 (1)			entrated) phosphoric	
	 condition in Reaction 2 (1) 	Do not award	ecific temperatu acid if mention water e.g. acidif	of any reagent other	