AQA

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s) \qquad
Candidate signature
I declare this is my own work.

GCSE PHYSICS

Foundation Tier Paper 2

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- a protractor
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Information

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
\qquad

0	1	Figure 1 shows a water wave.

Figure 1

0	1	1

Tick (\checkmark) one box.

Electromagnetic

Longitudinal

Transverse

$\mathbf{0}$	$\mathbf{1} .2$	$\mathbf{2}$ Which statement describes the movement of the water at point \mathbf{X} ?

Tick (\checkmark) one box.

The water at point \mathbf{X} does not move.

The water at point \mathbf{X} moves to the left and right. \square
The water at point \mathbf{X} moves up and down. \square

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{3}$ The wave has a frequency of 2.0 hertz.

The wavelength is 0.032 metres.

Calculate the wave speed.
Use the equation:

$$
\text { wave speed }=\text { frequency } \times \text { wavelength }
$$

Choose the unit from the box.

$\mathrm{m}^{2} / \mathrm{s}$	m / s	\mathbf{s}^{2}

\qquad
\qquad
\qquad
Wave speed $=$ \qquad Unit \qquad

0	$\mathbf{1} .4$	What is transferred by all waves?

Tick (\checkmark) one box.

Question 1 continues on the next page

Figure 2 shows four water waves.
The waves are all drawn to the same scale.

The waves all travel at the same speed.
Figure 2
$A \cap \bigcap \Omega \bigcap \Omega$
B NWNWMNMN

D

0	1	$\mathbf{5}$	Which wave has the longest wavelength?

Tick (\checkmark) one box.
A

B

C

D

| 0 | $\mathbf{1}$ |
| :--- | :--- |\(. \begin{aligned} \& 6

\& Which wave has the highest frequency?\end{aligned}\)
Tick (\checkmark) one box.
A

B

C

D

Do not write outside the

| 0 | 2 |
| :--- | :--- | Figure 3 shows a cyclist on a bicycle.

The cyclist is moving at a constant velocity.
Arrows \mathbf{A} and \mathbf{B} represent the horizontal forces acting on the bicycle and cyclist.

Figure 3

| 0 | 2 | 1 |
| :--- | :--- | :--- | What is force \mathbf{A} ?

Tick (\checkmark) one box.

Air resistance

Friction

Tension

Upthrust \square

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{2}$ What is force \mathbf{B} ?

Tick (\checkmark) one box.

Air resistance

Magnetic

Tension

Upthrust

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ What is the relationship between force \mathbf{A} and force \mathbf{B} when the cyclist travels at a |
| :--- | :--- | :--- | :--- | :--- | constant velocity?

Tick (\checkmark) one box.
$A=B$ \square
$A>B$ \square
A < B \square

Question 2 continues on the next page

$\mathbf{0}$	$\mathbf{2} .4$	The cyclist applies a force of 150 N to one of the bicycle pedals.

Figure 4 shows the distance between the force applied and the pivot.
Figure 4

Calculate the moment about the pivot caused by the force applied to the pedal in Figure 4.

Use the equation:

$$
\text { moment of a force }=\text { force } \times \text { distance }
$$

\qquad
\qquad
\qquad
Moment $=$ \qquad N m

0	2	5
5	Figure	
5		

Figure 5

Complete the sentence.
Choose the answer from the box.

| axle chain \quad cog |
| :---: | :---: |

The force from the cyclist pushing down on the pedal is transmitted to the back wheel by the \qquad .

Question 2 continues on the next page

Figure 6 shows how the velocity of the cyclist changes during a journey.
Figure 6

$\mathbf{0}$	$\mathbf{2} .6$	6

Tick (\checkmark) one box.
$5.2 \mathrm{~m} / \mathrm{s}$

$5.4 \mathrm{~m} / \mathrm{s}$

$5.6 \mathrm{~m} / \mathrm{s}$ \square
$5.8 \mathrm{~m} / \mathrm{s}$

Use your answer from Question 02.6
Use the equation:

$$
\text { acceleration }=\frac{\text { change in velocity }}{\text { time taken }}
$$

\qquad
\qquad
\qquad
Acceleration of the cyclist $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$

0	2	8

Choose the answer from the box.

deceleration	speed	velocity

Between 30 and 40 seconds the cyclist moves with a constant \qquad .

Question 2 continues on the next page

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{9}$ The cyclist travels from home to school.

Figure 7 shows the route the cyclist followed.
Figure 7

Draw an arrow on Figure 7 to show the displacement of the cyclist.

| $\mathbf{0}$ | $\mathbf{3}$ There are different groups of waves in the electromagnetic spectrum..$~$ |
| :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1}$	Figure 8 shows the position of three groups of the waves.

Figure 8

A	Microwaves	B	Visible light	C	D	Gamma rays

Which letter shows the position of infrared?
Tick (\checkmark) one box.
A \square
B \square
C \square
D \square

Question 3 continues on the next page

A student investigated how the colour of a surface affects the amount of infrared the surface absorbs.

Figure 9 shows the equipment used.
Figure 9

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{2}$ Complete the sentence.

Choose the answer from the box.

In this investigation the distance between each flask and the infrared heater
is \qquad variable.

| 0 | $\mathbf{3}$ | $\mathbf{3}$ The student wrote the hypothesis: |
| :--- | :--- | :--- | :--- |

'Surface colour of the flask affects the amount of infrared absorbed when the heater is switched on for five minutes.'

Describe how the equipment in Figure 9 could be used to test this hypothesis.
\qquad

Question 3 continues on the next page

Table 1 shows the results.
Table 1

Colour of flask	Temperature increase in ${ }^{\circ} \mathrm{C}$		
	Test 1	Test 2	Test 3
Black	19	17	27
Silver	10	12	11

| $\mathbf{0}$ | $\mathbf{3} .4$ Which one of the results for the black flask is anomalous? |
| :--- | :--- | :--- |

\qquad

| 0 | 3 | $\mathbf{5}$ The anomalous result was caused by reading the thermometer incorrectly. |
| :--- | :--- | :--- | :--- |

What should the student do with the anomalous result?
\qquad
\qquad

0	3	6

\qquad
\qquad
Mean temperature increase = ${ }^{\circ} \mathrm{C}$

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{7}$ |
| :--- | :--- | :--- | What conclusion can be made from Table 1?

Tick (\checkmark) one box.

Both flasks absorbed the same amount of infrared during the five minutes.

The black flask absorbed the most infrared during the five minutes.

The silver flask absorbed the most infrared during the five minutes.
\square

| 0 | 4 | A student investigated how the angle of a ramp affects the force required to hold a |
| :--- | :--- | :--- | trolley stationary on the ramp.

Figure 10 shows the equipment used.
Figure 10

0	4	1	Measure the angle Y in Figure 10

Angle $\mathbf{Y}=$ degrees

Figure 11 shows the newtonmeter before the investigation started.
Figure 11

0	$\mathbf{4}$	$\mathbf{2}$ What type of error is shown on the newtonmeter in Figure 11?

Tick (\checkmark) one box.

Human error

Random error

Zero error

| 0 | $\mathbf{4}$ | $\mathbf{3}$ How can this error be corrected after the measurements have been taken? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.

Add 0.5 N to each measurement \square
Multiply each measurement by 0.5 N

Subtract 0.5 N from each measurement \square

Table 2 shows the corrected results.
Table 2

Angle of ramp in degrees	Force in newtons
5	0.9
10	1.7
15	2.6
20	3.4
25	4.2
30	5.0

Figure 12 is an incomplete graph of the results
Figure 12

0	4	4	Plot the missing results from Table 2 on Figure 12.

Do not write outside the

0	4	5	Figure 13 shows a person in a wheelchair using two different ramps to enter a van.

Figure 13

The ramps are at different angles to the ground.
Explain one advantage of using the long ramp compared with using the short ramp. [2 marks]
\qquad
\qquad
\qquad
\qquad

The ramp is 2.5 m long.

Calculate the work done to move the wheelchair up the ramp.
Use the equation:

$$
\text { work done }=\text { force } \times \text { distance }
$$

[2 marks]
\qquad
\qquad
\qquad
Work done $=\quad \mathrm{J}$

0	5	Figure 14 shows how a lens forms an image of an object.

Figure 14

| 0 | 5 | 1 |
| :--- | :--- | :--- | What type of lens is represented in Figure 14?

Tick (\checkmark) one box.

Concave

Convex

Diverging

0	5	2	Measure the image height and the object height in Figure 14.

Image height = \qquad cm

Object height $=$ \qquad cm

0	$\mathbf{5}$.	3

Use the equation:

$$
\text { magnification }=\frac{\text { image height }}{\text { object height }}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
Magnification $=$

| 0 | 5 | 4 |
| :--- | :--- | :--- | Which two words describe the image in Figure 14?

Tick (\checkmark) two boxes.

Enlarged

Inverted

Real

Upright

Virtual

Question 5 continues on the next page

0	5	$\mathbf{5}$

A student looked at the blue object through a green filter.

Complete the sentences.
Choose answers from the box.

| black blue | green | red | white |
| :--- | :--- | :--- | :--- | :--- |

Looking at the blue object through a green filter makes the object appear
\qquad .

This is because the green filter only transmits the light that is \qquad .

Do not write outside the box

0	6	The Sun is the closest star to the Earth.

Calculate the gravitational field strength at the surface of the Sun.
Use the equation:

$$
\text { gravitational field strength }=\frac{\text { weight }}{\text { mass }}
$$

\qquad
\qquad
\qquad
\qquad
Gravitational field strength = N / kg

0	6	2

Which of the following is also a non-contact force?
Tick (\checkmark) one box.

Air resistance

Electrostatic

Friction

Tension

0	6	3	All stars have a life cycle.

Figure 15 shows part of the life cycle of a star that becomes a black dwarf.

Complete Figure 15.
Choose answers from the box.

Black hole	Neutron star	
Red giant	Supernova	White dwarf

Figure 15

Question 6 continues on the next page

Table 3 gives the mass of three stars compared to the mass of the Sun.

Table 3

Star	Mass compared to the mass of the Sun
\mathbf{X}	$\times 25.0$
\mathbf{Y}	$\times 15.0$
\mathbf{Z}	$\times 0.9$

0	6	4	Which letter represents the star most likely to become a black dwarf?

Give a reason for your answer.

Tick (\checkmark) one box.

Reason \qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{6}$. | $\mathbf{5}$ In which stage of the life cycle of a star are elements heavier than iron produced? |
| :--- | :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.

Nebula

Protostar

Supernova

Do not write outside the box

0	7	Figure 16 shows the magnetic field pattern around a bar magnet.

Figure 16

| $\mathbf{0}$ | $\mathbf{7} .1$ | Draw an arrow at point \mathbf{A} and point \mathbf{B} to show the direction of the magnetic field at |
| :--- | :--- | :--- | each point.

$\begin{array}{lll}0 & \mathbf{7} . & 2\end{array}$ A bar magnet produces its own magnetic field.
Complete the sentence.
Choose the answer from the box.
an electromagnet an induced magnet a permanent magnet

A bar magnet is an example of \qquad .

| $\mathbf{0}$ | $\mathbf{7}$. | 3 |
| :--- | :--- | :--- | Which graph shows how the strength of the magnetic field varies with distance from the bar magnet?

Give a reason for your answer.
Tick (\checkmark) one box.
Strength
of
magnetic
field
Distance

Reason

Question 7 continues on the next page

Figure 17 shows an electromagnet being used to separate aluminium cans from steel cans.

Figure 17

| $\mathbf{0}$ | $\mathbf{7} .4$ | Explain how the electromagnet and conveyor belt are used to separate the steel cans |
| :--- | :--- | :--- | :--- | from the aluminium cans.

[2 marks]
\qquad
\qquad
\qquad
\qquad

| 0 | 7 |
| :--- | :--- | $\mathbf{5}$ At the top of the table the strength of the magnetic field is only just enough to pick the cans up.

Describe two ways to increase the strength of magnetic field at the top of the table.

1
\qquad
2 \qquad
\qquad
$\begin{array}{lll}0 & 7 & 6\end{array}$ Write down the equation which links distance travelled (s), speed (v) and time (t).
\qquad

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{7}$ |
| :--- | :--- | :--- | The conveyor belt moves a can at a speed of $1.7 \mathrm{~m} / \mathrm{s}$.

Calculate the time taken to move the can 3.3 m at this speed.
Give your answer to 2 significant figures.
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
Time taken (2 significant figures) $=$ \qquad s

0	8 The thinking distance and braking distance for a car vary with the speed of the car.

Do not refer to speed in your answer.
\qquad

Question 8 continues on the next page

Tick (\checkmark) one box.
resultant force $=$ mass \times acceleration

resultant force $=$ mass \times acceleration 2

resultant force $=\frac{\text { mass }}{\text { acceleration }^{2}}$

resultant force $=\frac{\text { mass }}{\text { acceleration }}$

| $\mathbf{0}$ | $\mathbf{8}$. | 3 |
| :--- | :--- | :--- | The mean braking force on a car is 7200 N.

The car has a mass of 1600 kg .

Calculate the deceleration of the car.
\qquad
\qquad
\qquad
\qquad
\qquad
Deceleration = $\mathrm{m} / \mathrm{s}^{2}$

0 8. 4 Figure 18 shows how the thinking distance and braking distance for a car vary with the speed of the car.

Figure 18

Determine the stopping distance when the car is travelling at $80 \mathrm{~km} / \mathrm{h}$.
\qquad
\qquad
\qquad
Stopping distance $=$ \qquad m

Question 8 continues on the next page

Figure 19 shows part of the braking system for a car.

Figure 19

| $\mathbf{0}$ | $\mathbf{8} .5$ | $\mathbf{5}$ Which equation links area of a surface (A), the force normal to that surface (F) and |
| :--- | :--- | :--- | pressure (p)?

Tick (\checkmark) one box.
$p=F \times A$

$p=F \times A^{2}$

$p=\frac{F}{A}$

$p=\frac{A}{F}$ \square

| $\mathbf{0}$ | $\mathbf{8} .6$ | 6 |
| :--- | :--- | :--- | The pressure in the brake fluid is 120000 Pa .

Calculate the surface area of the piston.
Give your answer in standard form.
Give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Surface area (in standard form) = \qquad Unit

0	9	Figure 20
20		

Figure 20

| 0 | 9 | 1 |
| :--- | :--- | :--- | The springs have been elastically deformed.

Explain what is meant by 'elastically deformed'.
\qquad
\qquad
\qquad
\qquad

Question 9 continues on the next page

A student investigated the relationship between the force applied to a spring and the extension of the spring.

Figure 21 shows the results.
Figure 21

Force in newtons
$\begin{array}{ll}0.06 & 0.08 \\ \text { Extension in metres }\end{array}$

| $\mathbf{0}$ | $\mathbf{9}$. | $\mathbf{2}$ Describe a method the student could use to obtain the results given in Figure 21. |
| :--- | :--- | :--- | You should include a risk assessment for one hazard in the investigation.

Your answer may include a diagram.
\qquad

Tick (\checkmark) one box.
force $=$ spring constant $\times(\text { extension })^{2}$
force $=$ spring constant \times extension

force $=\frac{\text { extension }}{\text { spring constant }}$

force $=\frac{\text { spring constant }}{\text { extension }}$

Figure 21 is repeated below.
Figure 21

0	$\mathbf{9}$.	$\mathbf{4}$ Determine the spring constant of the spring.

Use Figure 21.
\qquad
\qquad
\qquad
\qquad
\qquad
Spring constant $=$ \qquad N / m

0	$\mathbf{9}$	$\mathbf{5}$ The student concluded:

'The extension of the spring is directly proportional to the force applied to the spring.'

Describe how Figure 21 supports the student's conclusion.
\qquad
\qquad
\qquad
\qquad

Question 9 continues on the next page

| 0 | 9 | 6 |
| :--- | :--- | :--- | of $13 \mathrm{~N} / \mathrm{m}$.

Calculate the elastic potential energy of the spring when the extension of the spring was 20 cm .

Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Elastic potential energy = \qquad J

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved.

