GCSE (9-1)

Mathematics

J560/04: Paper 4 (Higher tier)
General Certificate of Secondary Education

Mark Scheme for November 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations used in the detailed Mark Scheme.

Annotation	
\checkmark	Correct
x	Incorrect
BOD	Benefit of doubt
FT	Follow through
ISW	lgnore subsequent working (after correct answer obtained), provided method has been completed
M0	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MR	Misread
SC	Special case
Λ	Omission sign

These should be used whenever appropriate during your marking.
The M, A, B etc annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks.
It is vital that you annotate these scripts to show how the marks have been awarded.
It is not mandatory to use annotations for any other marking, though you may wish to use them in some circumstances.

Subject-Specific Marking Instructions

1. \mathbf{M} marks are for using a correct method and are not lost for purely numerical errors.

A marks are for an accurate answer and depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded.
B marks are independent of \mathbf{M} (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage.
SC marks are for special cases that are worthy of some credit.
2. Unless the answer and marks columns of the mark scheme specify \mathbf{M} and \mathbf{A} marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.
3. Where follow through (FT) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, eg FT $180 \times\left(\right.$ their ' $37^{\prime}+16$), or FT $300-\sqrt{ }\left(\right.$ their ${ }^{\prime} 5^{2}+7^{2}$ '). Answers to part questions which are being followed through are indicated by eg FT $3 \times$ their (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.
4. Where dependent (dep) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
5. The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- cao means correct answer only.
- figs 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg

237000, 2.37, 2.370, 0.00237 would be acceptable but 23070 or 2374 would not.

- isw means ignore subsequent working (after correct answer obtained).
- nfww means not from wrong working.
- oe means or equivalent.

rot means rounded or truncated.

- seen means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line, even if it is not in the method leading to the final answer.

soi means seen or implied.

6. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise, indicated for example by the instruction 'mark final answer'.
7. As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).
8. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for \mathbf{A} and \mathbf{B} marks. Deduct 1 mark from any \mathbf{A} or \mathbf{B} marks earned and record this by using the MR annotation. M marks are not deducted for misreads.
9. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75, which is seen in the working. The candidate then rounds or truncates this to $15.8,15$ or 16 on the answer line. Allow full marks for the 15.75.
10. If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says 'mark final answer' or 'cao'. Place the annotation \checkmark next to the correct answer.

If the answer space is blank but the correct answer is seen in the body allow full marks. Place the annotation \checkmark next to the correct answer.

If the correct answer is seen in the working but a completely different answer is seen in the answer space, then accuracy marks for the answer are lost. Method marks would still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation x next to the wrong answer.
11. Ranges of answers given in the mark scheme are always inclusive.
12. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
13. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

Question		Answer	Mark	Part Marks and Guidance	
1		Correct working leading to correct reason e.g. yes and 21.[3..] and 24 or 1280 and 1440 or [80 and] 90 or $2.6[.$.$] or 2.7$ [and 3] or 7.[1..] and 8	5	M1 for unit calculation e.g. $48 \div 3$ M1 for scale factor e.g. 80×16 possibly in one stage M1 for first conversione.g. $1280 \div 60$ M1 for second conversione.g. 3×8 possibly in one stage A1 dep on M3 or M4 for 'Yes' and two correct comparative figures	Accept any correct method e.g. M1 for $48 \div 3$ soi by 16 M1 for $80 \times$ their 16 soi by 1280 M1 for their $1280 \div 60$ soi by $21.33 \ldots$ M1 for 3×8 soi by 24 A1 for yes and 21.33... <24 Allow 21 hours 20 minutes
2		1.5×10^{3}	4	B3 for 1500 or $1.50[0] \times 10^{3}$ or $1.48[9 ..] \times 10^{3}$ or 1.49×10^{3} or B2 for 1489.1... or M1 for $\frac{5.8 \times 10^{6}}{\sqrt{4.1 \times 10^{8} \times 3.7 \times 10^{-2}}}$ and M1 for writing their answer correct to 2s.f. and in standard form	implied by $3894.8 \ldots$ or 3894.9 need to see where their answer comes from e.g. longer figure or a simple fraction
3		1145 [am]	4	SC3 for 1145 pm OR B2 for LCM as 225 and M1 for their LCM correctly converted to hours and minutes OR M1 for $25=5 \times 5$ and $45=3 \times 3 \times 5$ and M1 for [0] 800 plus their LCM OR B1 for listing [0] 8:25, [0]8:50, [0]9:15... or $25,50,75 .$. and B1 for listing [0]8:45, [0]9:30, 10:15 .. or 45, 90, 135.	condone 1145 h[ours] or 11 h[ours] 45 $\mathrm{m}[\mathrm{ins}]$ as answer implied by $3[\mathrm{~h}] 45$ [m] including $1[\mathrm{~h}] 15[\mathrm{~m}]$ for 75 including $1[\mathrm{~h}] 30[\mathrm{~m}]$ and $2[\mathrm{~h}] 15[\mathrm{~m}]$

Question		Answer	Mark	Part Marks and Guidance	
4	(a)	$\begin{aligned} & 50 \times 30 \\ & \frac{50 \times 30}{1+2+3}[\times 1,2 \text { or } 3] \\ & 2 \times 250=500 \end{aligned}$	1 1 1	Accept any correct method e.g. M1 for $\frac{2}{1+2+3}=\frac{2}{6}$ M1 for $\frac{2}{6} \times 50$ or $50 / 3$ M1 for $\frac{50}{3} \times 30=500$ Alternative method M1 for $30 \div 6=5$ M1 for their $(30 \div 6) \times 2$ M1 for $50 \times 10=500$	watch for wrong method $\begin{aligned} & 50 \times 20=1000 . \\ & 1000 \div 2=500 \end{aligned}$ Mark to candidates advantage
	(b)	32	5	M1 for $\frac{250}{25}$ or $\frac{500}{20}$ or $\frac{750}{15}$ M1 for their $10 \times 5.5[0]$ or their $25 \times 2[.00$] or their 50×3.9 [0] M1 for their $10 \times 5.5[0]+$ their $25 \times 2[.00]+$ their 50 $\times 3.9[0]$ M1 for $\frac{396}{\text { their } 300}$ or $\frac{396-\text { their } 300}{\text { their } 300}$ Alternative method M1 for $\frac{\frac{30}{6} \times 1}{25}$ or $\frac{\frac{30}{6} \times 2}{20}$ or $\frac{\frac{30}{6} \times 3}{15}$ or $\frac{396}{50}$ M1 for $5.5[0] \times$ their [0]. 2 or 2[.00] \times their [0]. 5 or 3.9[0] \times their 1 M1 for their (5.5[0] × [0].2) + their (2[.00] $\times .[0] .5)+$ their (3.9[0] $\times 1$) M1 for $\frac{7.92}{\text { their } 6}$ or $\frac{7.92-\text { their } 6}{\text { their } 6}$	M1 may be implied by 10 or 25 (no. of bags/part bags of cement, sand, stone) M2 may be implied by 55 and 195 (cost of cement, sand, stone) M3 may be implied by 300 or 6 nfww (total production cost) M1 may be implied by $0.2,0.5$ or 1 or 7.92 (no. of bags/part bags of cement, sand, stone or price of 1 bag) M2 may be implied by 1.1 [0], 1[.00] or 3.9[0] (cost of cement, sand, stone for 1 bag) M3 may be implied by 6 nfww (total production cost of 1 bag)

Question			Answer	Marks	Part Marks and Guidance	
5			$4 x^{2}-11 x y-3 y^{2}$ final answer	3	M2 for three correct terms from $4 x^{2}-12 x y+[1] x y-3 y^{2} \text { oe }$ or M1 for two correct terms in the expansion above	M1 implied by two correct terms in answer
6			$\frac{21}{50}$	3	M1 for two ratios with a common number of sherberts e.g. $14: 21$ or $21: 15$ or 50 and M1 for $\frac{\text { their } 21}{\text { their }(14+21+15)}$ only after valid attempt to create a triple ratio eg $\mathbf{0}$ for $\frac{3+7}{2+3+7+5}$ etc allow any correct method	Alternative : M1 for $7 \div 3$ implied by $2.3[3 . .$.$] oe or better$ and M1 for $5 \div 2.3[3 \ldots$.] oe implied by $2.1428 \ldots .$. $\left(\text { exact }=\frac{15}{7}\right) \text { or } 2 \times 2.3[3 . .] \text { oe }$ and e.g. $2: 3:$ their $\frac{15}{7}(=14: 21: 15)$ or their $\frac{14}{3}: 7: 5$
7	(a)		2 points plotted correctly	1		tolerance $\pm 1 / 2$ small square
	(b)		positive	1		Ignore embellishments
	(c)	(i)	acceptable ruled line	1		see overlay, it must be at least from $x=10$ to $x=45$ and between $(10,4)$ to $(10,12)$ and $(45,40)$ to $(45,50)$ if more than 1 line, both must be in tolerance, ignore horizontal and vertical lines.
		(ii)	35 to 44	1		for answers out of tolerance FT their ruled line with positive gradient with tolerance $\pm 1 / 2$ small square
	(d)		$\begin{aligned} & 42 \text { or } 41.7 \text { or } 41.66 \ldots \text { or } \\ & 41.67 \end{aligned}$	4	B1 for 5 M1 for $\frac{\text { their } 5}{12}$ M1 for (their $\left.\frac{5}{12}\right) \times 100$ If 0 scored SC2 for answer of 30 from $\frac{3}{10}$ or $36[.36 \ldots] \text { or } 36.4 \text { from } \frac{4}{11}$	their 5 must be less than 12 implied by [0].4166...

Question		Answer	Mark	Part Marks and Guidance	
8		$\begin{aligned} & {[\text { adult }=] 12[.00]} \\ & \text { [child }=] \end{aligned} 4.5[0]$	5	B1 for $5 \mathrm{a}+4 \mathrm{c}=78$ B1 for $3 a+6 c=63$ M1 for multiplying/dividing both equations to get the coefficient of one variable equal (allow one error) M1 for correctly adding or subtracting both equations to eliminate one variable (allow one error)	one error in total
9	(a)	6	3	B1 for 3($k-4$) $=k$ oe M1 for solving their equation to get k on one side and numbers on the other e.g. $3 k-k=12$	$\text { also } \frac{k}{3}+4=k$ condone use of other letters
	(b)	$\frac{y}{3}+4 \text { oe }$	2	M1 for $\div 3$ and +4 e.g. $\frac{y+4}{3}$	
	(c)	16	2	B1 for output of first function as 36 or $3(3(n-4)-4)=96$ or better	e.g. $9 n-48=96$
10	(a)	165000	1		
	(b)	3	1		
	(c)	165000×1.03^{7} 202929.1878 truncated or rounded to at least 3sf	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		

Question		Answer	Mark	Part Marks and Guidance	
11	(a)	Accept any correct reason e.g. No as lengths are unknown or lengths may be double each one or triangles are similar	1		See exemplars in appendix
	(b)	First correct reason Second correct reason Third correct reason and SAS	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Reasons are } \\ & \text { Angle }[] \mathrm{G}[\mathrm{H}]=\text { angle }[\mathrm{L}] \mathrm{J}[\mathrm{~K}] \\ & \mathrm{GH}=\mathrm{JK} \\ & \mathrm{GI}=\mathrm{JL} \end{aligned}$	Reasons can be given in any order Allow same angle, (36), but lines must be identified
12	(a)	24	1		condone 24000
	(b)	14 26 36 50 60	2	B1 for complete table with three correct	
	(c)	28.5	5	B1FT for frequencies 14, 12, 10, 14, 10 with one error (allowFT table in (b)). B1 for 5, 15, 25, 40, 65 (allow one error) M1 for \sum (their midpoint \times their frequency) M1 for their $1710 \div 60$	implied by $70+180+250+560+650$ or 1710 their midpoint must be within the group range
	(d)	Acceptable answer e.g. for the mean the figures used are approximate	1		See exemplars in appendix

Question		Answer	Mark	Part marks and Guidance	
13	(a)	241.[1...]	3	M2 for $90 \div 72^{3}$ [$\times 100^{3}$] or B1 for 72^{3} or 373248 or 100^{3} or 1000000	implied by e.g. 90000000
	(b)	392	3	M2 for $8 \times 7 \times 7$ or M1 for $8 \times 7 \times 8$ or $8,7,7$ clearly identified (e.g. summed) if $\mathbf{0}$ scored award SC2 for $8 \times 7 \times 6$ or SC1 for $8 \times 8 \times 8,6 \times 7 \times 6$	e.g. 448 as answer implied by 336 implied by 512 or 252
14		25	5	$\mathbf{M} \mathbf{1}$ for $m_{1}=\frac{16}{-12}$ oe M1 for $m_{2}=\frac{-1}{\text { their } m_{1}}$ or $\frac{12}{16}$ oe M1 for $y=\left(\right.$ their $\left.\frac{12}{16}\right) x+p$ M1 for substituting $(-12,16)$ into their equation accept any correct method	gradient of radius gradient of tangent
15	(a)	6.0[1...] or 6 nfuw	3	M2 for $\mathrm{DF}^{2}=10^{2}+12^{2}-2 \times 10 \times 12 \cos 30$ oe and allow one error or M1 for $\cos 30=\frac{10^{2}+12^{2}-D F^{2}}{2 \times 10 \times 12}$, condone one error	nfww i.e. not $12 \times \sin 30$ M2 implied by $\mathrm{DF}^{2}=36.15$ to 36.16 if they draw a perpendicular from F to P on DG award M1 for correct method to find both FP = 5 and $\mathrm{PG}=8.6[6 \ldots]$ or 8.67 or 8.7 M1 for correct use of Pythagoras' on triangle FPD
	(b)	57.3[...] or 57 nfww	4	$\begin{aligned} & \text { M2 for }[\sin \mathrm{B}=] \frac{12.4 \times \sin 63}{12.8} \\ & \text { or } \mathbf{M 1} \text { for } \frac{\sin B}{12.4}=\frac{\sin 63}{12.8} \text { oe } \\ & \text { and } \\ & \text { M1 for } 180-63 \text { - their } 59.67 \end{aligned}$	implied by [0].863 ... or 59.67 to 59.7

Question		Answer	Mark	Part Marks and Guidance	
16		$\begin{aligned} & \frac{4(x-1)}{x^{2}-1} \text { oe } \\ & x+9+4 x-4 \text { or } 5 x+5 \\ & \text { numerator }=5(x+1) \\ & \text { denominator }=(x+1)(x-1) \end{aligned}$	M1 M1 A1 A1	also allow method with denominator $\left(x^{2}-1\right)(x+1)$ e.g. M1 for $\frac{(x+9)(x+1)}{\left(x^{2}-1\right)(x+1)}$ or $\frac{4\left(x^{2}-1\right)}{\left(x^{2}-1\right)(x+1)}$ M1 for $x^{2}+9 x+x+9+4 x^{2}-4$ or better If $\mathbf{0}$ scored $\mathbf{S C} \mathbf{1}$ for $x^{2}-1=(x+1)(x-1)$	
17			2	B1 for either an acceptable curve and no/incorrect y intercept marked or any curve with 1 marked at the y intercept	
18	(a)	330	2	M1 for $\frac{1}{2} \times 10 \times 6 \times 11$	
	(b)	$\begin{aligned} & \tan [\ldots]=\frac{6}{10} \mathrm{oe} \\ & 30.9[\ldots] \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	accept any correct method, equivalents include $\tan ^{-1}(0.6)$	
	(c)	$\sqrt{257}$ cao	4	M3 for $\sqrt{11^{2}+10^{2}+6^{2}}$ or better or M2 for $11^{2}+10^{2}+6^{2}$ or M1 for $11^{2}+10^{2}$ or $10^{2}+6^{2}$ or [FD $\left.=\right] \frac{10}{\cos 31}$ or $\frac{6}{\sin 31}$	implied by 16.0[3...] implied by 257 implied by [FD =] $\sqrt{136}$ or 11.6 to 11.7 or $[A C=] \sqrt{221}$ or 14.8 to 14.9

Question		Answer	Mark	Part Marks and	uidance
19		1.0 to 1.4 dep. on a tangent drawn	4	B3 for an answer within the given range with a slightly inaccurate tangent, i.e. touches curve in range $t=4.5$ to 5.5 but not at $t=5$ or an answer of 1.3 using a symmetric chord about $t=5$ e.g. from $(4,2)$ to $(6,4.6)$. OR B2 for an answer from using a symmetric chord about $t=5$, e.g. from $(4,2)$ to $(6,4.6)$, with at most one error OR M1 for an attempt to draw a tangent touching curve at $t=5$ and M2 for their distance \div their time e.g. $(7.4-1.2) \div$ (8-3) or M1 for an attempt at their distance \div their time with one error or a correct attempt to find the gradient of their line which is not a tangent e.g. line from $(0,0)$ to $(5,3)$ which gives the average speed of $\frac{3}{5}$ or 0.6	Note: $5 \div 3=1.66 \ldots$ scores 0

APPENDIX

Exemplar responses for Q11(a)

Response	Mark
No, lengths unknown	1
No, lengths may be different	1
No as triangles are similar	1

Exemplar responses for Q12(d)

Response	Mark
Because the median estimate is only affected by mistakes in measuring	$\mathbf{1}$
Because the mean relies on assumption that all values lie at midpoint	$\mathbf{1}$
Median is accurately read from graph, mean is estimated	$\mathbf{1}$
Number of people earning each amount is not evenly spread out	1(BOD)
Mean has no exact values ...	$\mathbf{1}$
Accurate line graph instead of an assumption	1(BOD)

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

[^0]
[^0]: Oxford Cambridge and RSA Examinations
 is a Company Limited by Guarantee
 Registered in England
 Cambridge
 Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
 Registered Company Number: 3484466
 OCR is an exempt Charity
 OCR (Oxford Cambridge and RSA Examinations)
 Head office
 Telephone: 01223552552
 Facsimile: 01223552553

