GCSE
 MATHEMATICS
 8300/1F

Foundation Tier Paper 1 Non-Calculator
Mark scheme
June 2021
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2021 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft

SC

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments
$\mathbf{1}$	2	B1	

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{2}$	$3 x$	B1	

Q	Answer	Mark	Comments
$\mathbf{3}$	26	B1	

Q	Answer	Mark	Comments
$\mathbf{4}$	trapezium	B1	

| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 5 | -40 | B1 | |
| | Additional Guidance | | |
| | Do not accept +40 | | |

Q	Answer	Mark	Comments	
6	$4 \times 0.35 \text { or } 1.4(0)$ or $4 \times 35 \text { or } 140$ or $3.7(0)-0.35 \text { or } 3.35$ or $370-35 \text { or } 335$	M1	oe ignore mixed units	
	$3.7(0)$ - their $1.4(0)$ or $2.3(0)$ or 370 - their 140 or 230 or their $3.35-3 \times 0.35$ or 2.30 or their $335-3 \times 35$ or 230	M1dep	oe ignore mixed units	
	their $2.3(0) \div 5$ or $(0) .46$ or their $230 \div 5$	M1dep	oe ignore mixed units	
	46	A1		
	Additional Guidance			
	Answer (£)(0). 46 or $£ 46$			M3A0
	46 seen with further work			M3A0

Q	Answer	Mark	Comments
7(a)	$1 \frac{1}{4}$ symbols added to Geography	B1	mark intention

Q	Answer	Mark	Comments
	Alternative method 1		
	53×3 or 159	M1	
	their $159 \div 12$	M1dep	oe eg $53 \div 4$ for build up method allow one error, must get as far as 1 minibus below their total number of passengers
8	13. or 13.2 or 13.25 or $13 r(3)$ or $13 \frac{3}{12}$ or build up method reaches 156 (for 13 minibuses) with no errors	A1	may be implied by correct answer oe fraction
	14	A1ft	ft their decimal or remainder value rounded up to the nearest whole number with M2 scored
	Alternative method 2		
	$53 \div 12$ or $4.4 \ldots$ or 4 r 5 or $4 \frac{5}{12}$	M1	
	their 4.4... $\times 3$ or $4 \frac{5}{12} \times 3$ or $12 \frac{15}{12}$	M1dep	oe fraction
	$\text { 13.(2 } \ldots \text {) or } 13 r(3) \text { or } 13 \frac{3}{12}$	A1	may be implied by correct answer oe fraction
	14	A1ft	ft their decimal or remainder value rounded up to the nearest whole number with M2 scored

Additional guidance for this question is on the next page

$\begin{gathered} 8 \\ \text { cont } \end{gathered}$	Additional Guidance	
	For answers of 14, please check for incorrect working eg $\quad 159 \div 12=14.1$ and answer 14 $159 \div 12$ with result 13.8 and answer 14 $159 \div 12$ with result $13 r 2$ and answer 14 159 with build up to 13 minibuses is 158 and answer 14	M2A0AOft M2A0A1ft M2A0A1ft M2A0A1ft
	$159 \div 12$ with no decimal or remainder value and answer 14 $159 \div 12=13$. Answer 13 $159 \div 12=13 \quad$ Answer 13	$\begin{gathered} \text { M2A2 } \\ \text { M2A1A0 } \\ \text { M2A0 } \end{gathered}$
	14 with no working	M2A2
	$159 \div 12$ with result 13.3 (bod from 13.25) and answer 14	M2A2
	$159 \div 12$ with result 13.3 (bod from 13.25) with no final answer	M2A1A0
	$53 \div 12=4()=5,.5 \times 3=15$, so 15 minibuses (conceptually incorrect) $53 \div 12=4.7,4.7 \times 3=14.1$, so 15 minibuses	M1M0A0AOft M2A0A1ft
	For build up method $\begin{aligned} & 53 \times 3=159,12 \times 13=156 \\ & 53 \times 3=159,12 \times 13=156,15 \text { minibuses } \end{aligned}$ $12 \times 13=156$, without their 159 (don't know what they are building up to)	M2A1A0 M2A1A0 MOAO
	Build up method reaches 156 (for 13 minibuses) with no errors and no answer, but says " 3 more seats needed"	M2A1A0

Q	Answer	Mark	Comments
$\mathbf{9}$	100°	B1	

Q	Answer	Mark	Comments
$\mathbf{1 0}$	6	B1	

Q	Answer	Mark	Comments
12	Method for finding a percentage other than 10\% or 2100×0.43 or $2100 \times \frac{43}{100}$ or $2100 \times 43 \div 100$ or 90300	M1	eg $\begin{aligned} & (1 \%=) 2100 \div 100 \\ & \text { or }(1 \%=) 210 \div 10 \text { or } 21 \end{aligned}$ or $(3 \%=) 63$ or $(5 \%=) 210 \div 2 \text { or } 105$ or $(20 \%=) 210 \times 2 \text { or } 420$ or $(40 \%=) 210 \times 4 \text { or } 840$ or $(50 \%=) 2100 \div 2$ or $(50 \%=) 210 \times 5$ or 1050
	Fully correct method that would lead to the correct answer or $90300 \div 100$	M1dep	eg their 21×43 or $210 \times 4+$ their 21×3 or their $420 \times 2+$ their 21×3 or their $105 \times 8+$ their 21×3 or their $840+$ their 21×3 or their $840+$ their 63 or 210×5 - their 21×7 or their 1050 - their 21×7 or their 1050 - their 147
	903	A1	SC2 1197 SC1 digits 903 (with M0 scored)
	Additional Guidance		
	Ignore a \% sign after 903 eg		M2A1

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Answer \& Mark \& \multicolumn{2}{|c|}{Comments} \\
\hline \multirow{5}{*}{13} \& There is an overlap \& B1 \& \multicolumn{2}{|l|}{oe eg 20 can go in two rows} \\
\hline \& There is no category above 50 \& B1 \& \multicolumn{2}{|l|}{\begin{tabular}{l}
oe \\
eg 53 can't go into the table
\end{tabular}} \\
\hline \& \multicolumn{4}{|c|}{Additional Guidance} \\
\hline \& \multicolumn{3}{|l|}{\begin{tabular}{l}
Criticism of overlapping categories, eg 10 (or 20, 30 or 40) can go in two places 20 (or 10 or 30 or 40) appears twice Should be 0-9, 10-19, 20-29 etc (minimal implied criticism) \\
0-10; 11-20; 21-30 etc (no criticism) \\
It doesn't give a clear number of cars \\
Repeats the same number (could refer to the number of cars)
\end{tabular}} \& B1
B1
B1

B0
B0
B0

\hline \& \multicolumn{3}{|l|}{| Criticism of missing categories, eg |
| :--- |
| There is no row for the 53 (or 57) |
| Doesn't go up high enough |
| There's not space for all the numbers |
| Some cars are left out |
| She only put up to 50 |
| The last group is not big enough |
| There should be another row (minimal implied criticism) |
| There is a number over 50 |
| Cars go up to 57 |
| Add another frequency box |
| Drawing another row to the table with no explanation |} \& | B1 |
| :--- |
| B1 |
| |
| B0 |
| B0 |
| B0 |
| B0 |

\hline
\end{tabular}

Q	Answer	Mark	Comments
15(a)	31	B1	

Q	Answer	Mark	Comments
15(b)	26.04	B1	

Q	Answer	Mark	Comments
15(c)	$\begin{array}{l}\text { Valid attempt to multiply 31 by 85 } \\ \text { or }\end{array}$		$\begin{array}{l}\frac{\text { M1 }}{\text { from traditional method their 155 + their }} \begin{array}{l}2480 \text { or their 85 + their 2550 at least one } \\ \text { correct and placeholder of zero correct or } \\ \text { implied } \\ \text { from grid method their 2400 + their 150 + }\end{array} \\ \text { their 80 + their 5 (at least three correct) } \\ \text { from Chinese / Napier's bones method at }\end{array}$
least three values correct from 2/4, 1/5,			
(0)/8 and (0)/5 and total calculated for			
each diagonal with at least one carrying			
figure placed correctly			

Q	Answer	Mark	Comments	
17	$\left(\frac{5}{6}=\right) \frac{10}{12}$ or converts both fractions to a common denominator with at least one correct	M1	$\text { eg } \frac{60}{72}(+) \frac{42}{72}$	
	$\frac{17}{12}$	A1	oe improper fraction eg $\frac{102}{72}$	
	$1 \frac{5}{12}$	B1ft	oe mixed number eg $1 \frac{30}{72}$ ft correct conversion of an improper fraction to a mixed number	
	Additional Guidance			
	$1 \frac{30}{72}$			M1A1B1
	$1 \frac{5}{12}$ seen in working with $\frac{17}{12}$ on answer line			M1A1B0
	$\frac{17}{12}(=) 1 \frac{5}{12}$ (final answer is the mixed number)			M1A1B1
	$1 \frac{5}{12}(=) \frac{17}{12}$ (final answer is the improper fraction)			M1A1B0

Q	Answer	Mark	Comments
18(a)	20	B1	

Q	Answer	Mark	Comments	
18(b)	$28-20$ or $\frac{36-20}{2}$ or $\frac{44-20}{3}$ or $\frac{52-20}{4}$ or $\frac{60-20}{5}$ or correct calculation using any two points, eg $\frac{60-44}{2}$ or 2×4	M1		
	8	A1		
	Additional Guidance			
	$(60 \div 5=12$			MOAO

Q	Answer	Mark	Comme	
18(c)	Alternative method 1			
	their $20+7 \times$ their 8	M1	oe	
	76	A1ft	correct answer or ft their values in (a) and (b)	
	Alternative method 2			
	$60+2 \times$ their 8	M1	oe	
	76	A1ft	correct answer or ft their values in (b)	
	Additional Guidance			
	For Alt 2, they may read off any cost for n minutes (from 1 to 5) and add on $(7-n) \times$ their (b) for M1. A1 or A1ft may follow from their working			

Q	Answer	Mark	Comments	
	Puts toffees in order or orders the numbers to at least the sixth number from either end $47,49,49,50,50,51$ or $57,55,55,55,54,51$ or gives median of toffees as 51	M1	allow one error or attempt at a full lis	n on an
	Identifies 48 and 50 for mints or gives median of mints as 49	M1	eg circled in list or vertical line between 48 and 50	
	51 for toffees and 49 for mints	A1	with no errors seen	
	Yes for toffees and No for mints	A1ft	correct decision for their values with M1M1 awarded and a single median given for each	
	Additional Guidance			
	Ignore modes or means if medians also given, but modes or means only scores zero			
	Beware of medians coming from only using the distinct values:$\begin{aligned} & 47,49,50,51,54,55,57 \\ & 46,47,48 \text { I } 50,53,54 \end{aligned}$			M0
	For the A1ft, the median may be a decimal eg $\quad 47,49,49,50,50,51,51,54,55,55,57 \quad$ median $=50.5$ $48+50=98,98 \div 2=44$ Yes for toffees, No for mints			M1M1A0A1ft

Q	Answer	Mark	Comments	
20	30 or 80 or 10	M1		
	$\frac{30+80}{10} \text { or } \frac{110}{10}$ or $\frac{112.62}{10}$ or 11.262	M1dep		
	11 with 30,80 and 10 seen	A1		
	Additional Guidance			
	11 with no working			MOMOAO

Q	Answer	Mark	Comments
21	b	B1	

Q	Answer	Mark	Comment	
22(a)	No and correct reason	B1	eg it should be $8 a$ two minuses make it +2	
	Additional Guidance			
	No and $8 a-7 b$			B1
	No and $4 a$ should be $8 a$			B1
	No and two minuses make it plus			B1
	No and it should be $+2 a$			B1
	No and $4 a$ is wrong			B1
	No and $8 a+7 b$			B0

Q	Answer	Mark	Comments	
22(b)	Not correct for Add 3 and 5 and Correct for Add 2 and 7	B1		
	Additional Guidance			
	Accept any clear indication of their answer			

Q	Answer	Mark	Comments	
22(c)	1 or -1	B1	oe fraction eg $\frac{10}{10}$	
	Additional Guidance			
	Embedded answer eg $10 \times 1=10 \div 1$	B1		
	1 and -1 or ± 1	B1		

Q	Answer	Mark	Comments	
24	No and correct reason	B1	eg it will still only take 4 hours it will be the same (time) they could do $48 \mathrm{~m}^{2}$ in that time even though it's twice the area there are twice as many people	
	Additional Guidance			
	No and there are two pe No and it'll be quicker (No and they'll do $12 \mathrm{~m}^{2}$ No and it'll be the same No and it'll be the same No and it depends on h No and it'll take 6h No and it might take the	take	long (as 8h)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 0 \\ & \mathrm{BO} \\ & \mathrm{BO} \\ & \mathrm{BO} \end{aligned}$

Question	Answer	Mark		
25(a)	$5 x-3 x$ or $2 x$ or $3 x-5 x$ or $-2 x$ or 15-6 or 9 or $6-15$ or -9	M1	may be seen as an annotation to the given inequality eg -6 written under +15	
	$2 x>9$ or $-9>-2 x$ or 4.5 or $\frac{9}{2}$ or $4 \frac{1}{2}$	A1	implied by correct answer	
	$x>4.5$ or $x>\frac{9}{2}$ or $x>4 \frac{1}{2}$	A1ft	ft solution of inequality of the form $2 x>k$ where k is a number or $m>-2 x$ where m is a number or $a x>9$ where a is an integer not equal to 1 or $-9>b x$ where b is an integer not equal to 1	
	Additional Guidance			
	In all cases accept the inequality written correctly in reverse order For example, for $2 x>9$ accept $9<2 x$			
	$4.5<x$			M1A1A1
	$2 x>21, x>10.5$			M1A0A1ft
	$8 x>9, x>1.125$			M1A0A1ft
	Do not allow a correct answer in working followed by an incorrect answer on the answer line eg $x>\frac{9}{2}$ in working with 4.5 on the answer line			M1A1A0
	Do not allow the correct answer with another answer eg $x>4.5$ and $x=4.5$ on the answer line			M1A1A0

Question	Answer	Mark	Comm	
25(b)	$2 \leqslant x<5$ or $5>x \geqslant 2$	B2	any letter B1 $2 \leqslant x$ or $x \geqslant 2$ or $x<5$ or $5>x$ SC1 $2<x \leqslant 5$ or $5 \geqslant x>$	
	Additional Guidance			
	$2 \leqslant x$ and $x<5$			B1
	$2 \leqslant x$ and $x>5$			B1
	$2 \leqslant x>5$			B1
	$2 \leqslant x \leqslant 5$			B1
	$2 \leqslant x \leqslant 4$			B1
	$2<x<5$			B1
	$2 \geqslant x>5$			B0
	$2 \leqslant 5$			B0

Question	Answer	Mark	Comments
$\mathbf{2 6}$	$(4,16)$	B2	may be on diagram B1 one correct coordinate SC1 (16, 4)
	Additional Guidance		

Question	Answer	Mark		
27(a)	$2 \times 10^{3} \text { or } 7 \times 10^{4}$ or 140000000	M1	oe correct value not in standard form eg 14×10^{7}	
	1.4×10^{8}	A1	SC1 Correctly converts an ordinary number with at least four digits to standard form	
	Additional Guidance			
	Condone extra zeros on 1.4 eg 1.40000000×10^{8}			M1A1
	1.4×10^{8} from 1400000000			MOAO
	2×10^{3} is implied by $(2 \times 7) \times\left(10^{3} \times 10^{a}\right)$ 7×10^{4} is implied by $(2 \times 7) \times\left(10^{b} \times 10^{4}\right)$			M1
	1400000000 converted to 1.4×10^{9}			SC1

Question	Answer	Mark	Comments	
27(b)	$180 \text { or } 0.3$ or $(1.8 \div 3=0.6$ or $\left(10^{2} \div 10^{-1} \Rightarrow 10^{3}\right.$ or calculation which would have the outcome 600 or correct value not given as an ordinary number	M1	$\text { eg } 1800 \div 3$ $\text { eg } 6 \times 10^{2}$	
	600	A1		
	Additional Guidance			
	$1800 \div 0.3=600$ scores M1 only, as 600 comes from incorrect working			M1A0
	$1800 \div 30=600$ scores zero, as 600 comes from incorrect working			MOAO

Question	Answer	Mark	Comments	
28	$62 \div 2$ or 62×0.5 or 31	M1	oe eg $62 \div 60 \times 30$	
	their 31-25 or 6	M1	their 31 must be >25	
	their 6×3 or 18 or their 6×4 or 24	M1dep	dep on 2nd M1	
	49	A1		
	Additional Guidance			
	49 from correct working, but a different answer given			M3A0

Question	Answer	Mark	Comments
29	$y=\frac{k}{x}$	B1	

Question	Answer	Mark	Comments	
30	200 written as a product of factors where at least one factor is prime	M1	eg 2 and 100 or 2×10^{2} or $200 \div 5=40$ may be on a factor tree or repeated division allow one strand to be incorrect if a previous value completes the product eg 10×20 followed by $5 \times 2 \times 5 \times 6$ implies $5 \times 2 \times 20$ for M1	
	2 and 2 and 2 and 5 and 5	A1	may be on a factor tree or repeated division	
	$2^{3} \times 5^{2}$ or $5^{2} \times 2^{3}$	A1		
	Additional Guidance			
	Allow any number of 1 s included as factors up to M1A1 only			
	M1 may be awarded for correct work with no or incorrect answer, even if this is seen among multiple attempts			
	$1 \times 2^{3} \times 5^{2}$			M1A1A0
	$2^{3} .5^{2}$ or $2^{3} \cdot 5^{2}$ or $2^{3} 5^{2}$ or $2^{3}, 5^{2}$			M1A1A1
	$2+2+2+5+5$			M1A1A0
	$2^{3}+5^{2}$			M1A1A0
	$2 \times 2 \times 2 \times 5 \times 5$ and $2^{3} \times 5^{2}$ on answer line but $2 \times 2 \times 2 \times 5 \times 5=2^{3} \times 5^{2}$ on answer line			M1A1A0 M1M1A1
	$2^{3} \times 5^{2}=10^{5}$			M1A1A0
	$2^{3} \times 5^{2}=200$			M1A1A1
	8×25 with no prime factorisation			MOAOAO

Question	Answer	Mark	Comments
31	Alternative method 1		
	$\sin 30=\frac{x}{10}$ or $(x=) 10 \sin 30$	M1	oe eg $\frac{x}{\sin 30}=\frac{10}{\sin 90}$
	$\sin 30=0.5$	M1	oe may be seen in a table $0.5=\frac{x}{10}$ oe scores M1M1
	5	A1	
	Alternative method 2		
	Correct trigonometric method to show that the length of the missing side is $5 \sqrt{3}$	M1	oe
	$\sqrt{(5 \sqrt{3})^{2}+x^{2}}=10$	M1dep	oe
	5	A1	
		itional G	dance
	Accept use of cos 60 instead of sin		

Question	Answer	Mark	Comments
35	$(x+a)(x+b)$	M1	where $a+b=7$ or $a b=10$
	$(x+2)(x+5)$	A1	
	Additional Guidance		
	Ignore attempts to solve their $(x+a)(x+b)=0$ for M1A0 or M1A1		
	Condone missing final bracket		
	lgnore a check of a correct solution (multiplying out or similar)		

