GCSE

MATHEMATICS

8300/2F
Foundation Tier Paper 2 Calculator
Mark scheme
June 2021
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2021 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments
$\mathbf{1}$	16	B1	

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{2}$	$y=x+3$	B1	

Q	Answer	Mark	Comments
$\mathbf{3}$	$\frac{3}{20}$	B1	

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{4}$	$2 s+2 w$		B 1

Q	Answer ${ }^{\text {a }}$ Mark		Comments	
6(a)	$\frac{9}{16}$	B1	oe fraction, decimal or percentage eg 0.5625 or 56.25%	
	Additional Guidance			
	Ignore incorrect simplific fraction, decimal or pe eg1 $\frac{9}{16} \quad 0.55$ eg2 $\frac{9}{16} \quad 9: 16$	rsion of a ratio	correct probability to a	B1 B0
	Ignore words alongsid eg1 $\frac{9}{16}$ unlikely eg2 9 out of $16 \frac{9}{16}$	ability		B1 B1
	Do not accept answer eg 9 out of 16	ras a		B0

Q	Answer	Mark	Comments	
6(b)	Linear scale starting at 0 and increasing in 1s or 2s on vertical axis Vertical axis labelled frequency or f or Number or How many Bars or horizontal axis labelled with four types of juice (accept A, G, O, M) Four bars with equal widths Equal gaps or no gaps between the four bars All four heights correct	B3	bar chart could be horiz bars may be in any ord B3 for all criteria met B2 for 4 or 5 criteria m B1 for 3 criteria met or a fully correct 2-bar	chart
	Additional Guidance			
	Mark intention throughout			
	If axes and labels do not match the criteria 4, 5 and 6 may be awarded	ntatic	the bar chart then only	B1 max
	All values not needed for axis scale spacing must be linear	or exa	0 can be implied, but	
	Allow words after 'Number' on axis 'Number of people'	el, eg ،	mber chosen' or	
	Condone a different gap between th the other, equal gaps	vertical	is and the first bar to	
	If no scale or a non-linear scale is g squares meet the height criterion	n, bar	heights $6,1,4,5$	
	Allow heights criterion if their height linear scale and it is linear between	match and 6	labels for their non-	
	Points only or vertical lines can scor	he mar	for criteria 1, 2, 3 and 6	B2 max

Q	Answer	Mark	Comments	
7	$10.74 \div 6 \times 11$ or 1.79 seen	M1	oe eg $2 \times 10.74-10.74 \div$	
	19.69	A1		
	Additional Guidance			
	$6 \div 10.74=1.79$ (recovered)			M1
	$6 \div 10.74$			M0

Q	Answer	Mark	Comments
$\mathbf{8}$	240	B1	

Q	Answer	Mark	Comments
9	Two multiples of 9 with a difference of 54 eg 9 and 63 or 18 and 72 or 27 and 81 or 36 and 90 or 45 and 99 or 54 and 108	B2	either order B1 at least one multiple of 9 other than 9 or 54 seen or two numbers with a difference of 54
	Additional Guidance		
	$11 \times 9=99,5 \times 9=45$, Answer 11		B1

Q	Answer	Mark	Comme
10	$11.2 \div 8 \times 5$ or 1.4 seen or 1.6 seen or 0.625 seen	M1	oe full method oe eg $\frac{7}{5}$ oe eg $\frac{8}{5}$ oe eg $\frac{5}{8}$
	7	A1	
	Additional Guidance		
	Build up methods may score for seeing the correct scale factor ie 1.6 or 0.625 but otherwise need a fully correct method for the first mark		
	Build up methods that do not reach exactly 7 but are then rounded to 7 will score M1 max for seeing 1.4, 1.6 or 0.625		
	M1 may be awarded for correct work, with no or incorrect answer, even if this is seen amongst multiple attempts		

Q	Answer	Mark	Comments
12(a)	20 home and 20 away	B1	
	8 home losses	B1ft	ft their $20 \times \frac{2}{5}$ rounded to the nearest whole number
	2 away wins	B1ft	ft their $20 \times \frac{1}{10}$ rounded to the nearest whole number
	5 home draws and 6 away draws	B1ft	ft their 8 and their 2 condone their 8 and their 2 as zero or non-integers award if total of home games is their 20 and total of away games is their 20 and total number of games is 40
	Additional Guidance		
	Mark the cells in the fre		

Q	Answer	Mark	Comments
12(b)	Any two of (home wins =) 7×6 or 42 or (home draws =) their 5×3 or 15 or (away wins =) their 2×6 or 12 or (away draws =) their 6×3 or 18	M1	may be implied by one of (total points for their wins) 54 or (total points for their draws) 33 or (total points for their home) 57 or (total points for their away) 30
	87	A1ft	ft their frequency tree with positive integers in all relevant sections
	Additional Guidance		
	Using non-integers		MOAO

Q	Answer	Mark	Comments
14	$\frac{3}{8}$	B 1	

Q	Answer	Mark	Comments
$\mathbf{1 5}$	It has 12 edges	B1	

Q	Answer	Mark	Comments	
16	$x+53+48=180$ or $53+48$ or 101 or $180-53$ or 127 or any correct angle marked as 53 or 127 on the diagram	M1	oe equation in x	
	$180-(53+48)$ or $360-53-53-(180-53)-48$	M1dep	oe eg 180-101 or 127-48	
	79	A1		
	Additional Guidance			
	M1 may be awarded for correct work, with no or incorrect answer, even if this is seen amongst multiple attempts			
	Correct angle on diagram may be credited even if alongside other incorrectly marked angles or incorrect or no working in working lines			
	Correct method in the working lines may be credited even with incorrect angles on the diagram			
	Method for 79 followed by further work to their 79			M1M1A0

Q	Answer	Mark	Comments	
18	$10 x=21+3 \text { or } 10 x=24$ or $(21+3) \div 10 \text { or } 24 \div 10$	M1	oe eg $-10 x=-3-21$	
	2.4	A1	oe eg $\frac{24}{10}$ or $\frac{12}{5}$ or $2 \frac{4}{10}$ or $2 \frac{2}{5}$ SC1 1.8 oe	
	Additional Guidance			
	$10 x-3+3=21+3$			M1
	$10 x-3=21+3$ or $10 x-$	unless	overed	M0
	$10 x \div 10-3 \div 10=21 \div$			M1
	$10 x \div 10-3=21 \div 10$ un			MO
	Embedded answer eg 10	1 with	or incorrect answer	M1A0

Q	Answer	Mark	Comments
19	Alternative method 1		
	$0.31(25)$ or 0.68	M1	oe eg 31(.25)\% or 68%
	$0.31(25)$ and 0.68 and $\frac{17}{25}$	A1	accept 0.68 as the answer with both values seen
	Alternative method 2		
	Converts both fractions to a valid common denominator with at least one numerator correct	M1	eg $\frac{125}{400}$ and $\frac{272}{400}$ with one numerator correct
	Two correct fractions with a common denominator and $\frac{17}{25}$	A1	accept $\frac{272}{400}$ oe as the answer with both values seen
	Alternative method 3		
	Gives differences from $\frac{1}{2}$ in same form with at least one correct	M1	eg $\frac{75}{400}$ and $\frac{72}{400}$ with one numerator correct or 0.1875 and 0.18 with one correct
	Both differences correct and $\frac{17}{25}$	A1	accept 0.18 as the answer with both values seen

Additional Guidance is on the next page

19 cont	Additional Guidance	
	Accept $\frac{17}{25}$ circled in question with both values seen	
	Ignore subsequent rounding or truncation once 0.31 and 0.68 seen	
	Ignore incorrect attempts at differences in Alt 1 and Alt 2 and award up to full marks	
	Choose the scheme that favours the student	
	Use of other methods requires comparable forms eg $0.5-\frac{5}{16}=\frac{3}{16}, 0.5+\frac{3}{16}=\frac{11}{16}$ and compares with $\frac{17}{25}$	

Q	Answer	Mark	Comments
20(b)	180	B1	

Q	Answer	Mark	Comments
20(c)	30	B1	

Q	Answer	Mark	Comments
21	Alternative method 1		
	$38 \times 10.8(0)$ or $410.4(0)$	M1	oe
	$10.8(0) \times 0.25$ or $2.7(0)$	M1	oe
	10.8(0) + their 2.7(0) or 13.5(0)	M1dep	dep on 2nd M1 $10.8(0) \times 1.25$ is 2 nd M1 and 3rd M1
	```(491.4(0) - their 410.4(0)) \div their 13.5(0) or 81 % their 13.5(0) or 6```	M1dep	$\begin{aligned} & \text { oe eg } 6 \times 13.5=81 \\ & \text { or } 410.4+13.5+13.5+13.5+13.5+ \\ & 13.5+13.5=491.4 \\ & \text { dep on M3 } \end{aligned}$
	44 with 410.4(0) and 13.5(0) seen	A1	
	Alternative method 2		
	$38 \times 10.8(0)$ or 410.4(0)	M1	oe
	491.4(0) - their 410.4(0) or 81	M1dep	
	their $81 \div 10.8(0)$ or 7.5	M1dep	oe
	their $7.5 \div 1.25$ or 6	M1dep	oe
	44 with $410.4(0)$ and 7.5 seen	A1	
	Alternative method 3		
	$491.4(0) \div 10.8(0)$ or 45.5	M1	oe
	their 45.5-38	M1dep	
	7.5	A1	oe may be implied by 6
	their $7.5 \div 1.25$ or 6	M1dep	oe dep on M2
	44 with 45.5 and 7.5 seen	A1	

Additional Guidance is on the next page

$\|c\|$ Additional Guidance     cont Choose the scheme that favours the student   Up to 3 marks may be awarded for correct work, with no or incorrect   answer, even if this is seen amongst multiple attempts		
	Build up attempts must be fully correct or show method	


Q	Answer	Mark	Comments
$\mathbf{2 2}$	256	B1	


Q	Answer	Mark	Comments	
$\mathbf{2 3}$	$p=11$ and $q=34$ and $r=91$	B2	B1 $p=11$ or $q=34$ or $r=91$   or $q+23=57$ oe equation in $q$	
	Additional Guidance			
	For example, 34 written next to $q$ in the sequence and not contradicted   implies $q=34$	B1		


Q	Answer	Mark	Comments
24(a)	Alternative method 1		
	$15^{2}$ or 225 and $7^{2}$ or 49 or $274$	M1	
	$\sqrt{7^{2}+15^{2}}$ or $\sqrt{49+225}$	M1dep	
	$16.55(\ldots)$ or 16.6 or $\sqrt{274}$	A1	accept 17 with M2 awarded
	Alternative method 2		
	$\tan ^{-1} \frac{7}{15} \text { or } 25.0 \ldots$	M1	
	$\begin{aligned} & \frac{15}{\cos (\text { their } 25 \ldots . .)} \\ & \text { or } \frac{7}{\sin (\text { their } 25 \ldots .)} \end{aligned}$	M1dep	
	16.55(...) or 16.6	A1	accept 17 with M2 awarded
	Alternative method 3		
	$\tan ^{-1} \frac{15}{7}$ or $64.98 \ldots$ or 65	M1	
	$\begin{aligned} & \frac{15}{\sin (\text { their } 64.98 . . .)} \\ & \text { or } \frac{7}{\cos (\text { their } 64.98 \ldots)} \end{aligned}$	M1dep	
	16.55(...) or 16.6	A1	accept 17 with M2 awarded

Additional Guidance is on the next page

24(a)   cont	Additional Guidance	
	Allow rounding or truncation after correct answer seen eg1 16.55, Answer 16   eg2 $\sqrt{274}$, Answer 16.5	M2A1   M2A1
	Misconception of square root eg $\sqrt{274}=137$	M2A0
	$15^{2}-7^{2}$	M1M0A0
	$\sqrt{176}$ without seeing $15^{2}$ or 225 and $7^{2}$ or 49	MOMOAO


Q	Answer	Mark	Comments
24(b)	It is more than $90^{\circ}$	B1	


Q	Answer	Mark	Comments	
	$3 h=g+1 \text { or } g+1=3 h$   or $h-\frac{1}{3}=\frac{g}{3} \text { or } \frac{g}{3}=h-\frac{1}{3}$   or $\frac{g+1}{3} \text { or } \frac{g}{3}+\frac{1}{3}$	M1	allow nega eg $-3 h=$   correct re	$\text { g } h=$
25	$h=\frac{g+1}{3}$ or $h=\frac{g}{3}+\frac{1}{3}$	A1	oe fully SC1 $h=$	oe
	Additional Guidance			
	$\frac{g+1}{3}=h$ or $\frac{g}{3}+\frac{1}{3}=h$			M1A1
	Not fully simplified correct rearrangement eg $h=\frac{-g-1}{-3}$			M1A0
	Correct solution followed by further incorrect simplification			M1A0


Q	Answer ${ }^{\text {a }}$ Mark	Comments	
26	Enlargement B1		
	$\frac{1}{4}$ B1	scale factor oe eg 0.25	
	$(3,9)$ or $A$ B1	centre do not allow $\binom{3}{9}$	
	Additional Guidance		
	Do not accept reduction or unenlargement or negative		1st B0
	Do not accept $\div 4$		2nd B0
	A combination of transformations cannot score the first B1 eg1 Enlarge sf $\frac{1}{4} \quad$ Translate $\binom{0}{6}$   eg2 Enlarge sf $\frac{1}{4} \quad 1.5$ right up $6 \quad(3,9)$		$\begin{aligned} & \text { B0B1B0 } \\ & \text { B0B1B1 } \end{aligned}$
	Do not allow $\binom{3}{9}$ for (3, 9) but do not regard as implying a combination of transformations eg Enlargement sf $0.25\binom{3}{9}$		B1B1B0
	Enlargement, sf 4 about (3, 9)		B1B0B1
	Enlarge(d) 0.25 A		B1B1B1
	Condone $A B C$ is an enlargement of $A D E$		1st B1
	Condone enlargement with other words unless referring to another transformation   eg1 Enlargement making shapes bigger   eg2 Enlarged then moved using a vector   eg3 Enlarged which means $B$ moves to $D$ and $C$ moves to $E$		$\begin{aligned} & \text { 1st B1 } \\ & \text { 1st B0 } \\ & \text { 1st B1 } \end{aligned}$
	If more than one point is listed it must be clear which point is their centre$\operatorname{eg}(1,1)(5,1)(3,9)(2,7)$		3rd B0
	Reflected in the point (3, 9)		B0B0B1


Q	Answer	Mark	Comments
27	Alternative method 1 Working out time to fill the ball		
	$4 \div 3 \times 15^{3} \times \pi$ or [4488, 4500] $\pi$ or [14092, 14139]	M1	oe   allow 1.33 or better
	```their [14092, 14 139] - 5000 or [9092, 9139] or their [14092, 14 139] % 160 or [88, 88.37]```	M1dep	oe
	$\begin{aligned} & \text { (their }[14092,14139]-5000) \div \\ & 160 \\ & \text { or }[56,57.12] \end{aligned}$	M1dep	oe eg their [9092, 9139] $\div 160$ or their [88, 88.37] - $5000 \div 160$
	[56, 57.12] and Yes	A1	
	Alternative method 2 Comparing volume needed with volume that could be filled		
	$\begin{aligned} & 4 \div 3 \times 15^{3} \times \pi \text { or }[4488,4500] \pi \\ & \text { or }[14092,14139] \end{aligned}$	M1	oe allow 1.33 or better
	their [14092, 14 139]-5000 or [9092, 9139]	M1dep	
	[58,60$] \times 160$ or [9280, 9600]	M1	oe
	[9092, 9139] and [9280, 9600] and Yes	A1	

Mark scheme and Additional Guidance continue on next page

$\begin{gathered} 27 \\ \text { cont } \end{gathered}$	Alternative method 3 Volume of ball compared with volume that could be filled +5000			
	$\begin{aligned} & 4 \div 3 \times 15^{3} \times \pi \text { or }[4488,4500] \pi \\ & \text { or }[14092,14139] \end{aligned}$	M1	oe allow 1.33 or better	
	[58,60$] \times 160$ or [9280, 9600]	M1	oe	
	$\begin{aligned} & \text { their }[9280,9600]+5000 \\ & \text { or }[14280,14600] \end{aligned}$	M1dep	dep on 2nd M1	
	$\text { [14092, } 14139]$ and [14280, 14600] and Yes	A1		
	Additional Guidance			
	Accept $\frac{4}{3} \pi 15^{3}$ without multiplication signs			
	Condone use of 1.3 for up to M3 if 1.3 shown			
	Up to M3 may be awarded for correct work, with no or incorrect answer, even if this is seen amongst multiple attempts			
	Using an incorrect power eg $15^{2}, 15 \pi^{3},(15 \pi)^{3}$ or omitting π unless recovered			1st M0
	NB 56.(59...) or 56.6 or 57 coming from $5000 \div 88.35 \ldots$			M1M1M0
	Yes can be implied eg Alt $157<60$			M3A1

Q	Answer	Mark	Comments	
28	Sometimes true Always true Always true Never true	B4	B1 for each	
	Additional Guidance			
	Allow any unambiguous indication eg all 4 correct boxes contain a cross with all other boxes blank			B4
	A row with one tick and some crosses - mark the tick			
	A row with more than one tick is B0 for that row			
	Mark the boxes not the working lines			

Q	Answer	Mark	Com
29(a)	Any one of 0.24 or 0.19 or 0.22 in the correct cell	M1	oe fraction, decim eg $\frac{36}{150}$ or $\frac{38}{200}$ implied by any corr three values
	At least two of their relative frequencies plotted accurately	M1dep	$\pm \frac{1}{2}$ square
	$(150,0.24),(200,0.19)$ and (250, 0.22) plotted and graph completed with straight lines	A1	$\pm \frac{1}{2}$ square allow dotted or solid
	Additional Guidance		
	Mark intention for straightness of lines		
	Ignore any continuation of line after the last point or any other lines drawn on the graph, for example a line of best fit		

Q	Answer	Mark	Comme	
29(b)	0.22	B1ft	oe fraction, decimal or percentage eg $\frac{55}{250}$ ft their relative frequency for 250 trains (>0 and <1) given in table or plotted on graph	
	Additional Guidance			
	The mark may be awarded for a correct restart or a follow through from their table or a follow through from their graph			
	Ignore attempts to convert a correct relative frequency once seen in (b)			
	NB $\frac{166}{750}=0.2213 \ldots$ is incorrect (unless it is given as their relative frequency for 250 trains)			BOft

Q	Answer	Mark	Comments
30	Alternative method 1 Shows algebraically that the angles are equal		
	$4 x+40$	M1	may be embedded or on the diagram
	$x+2(2 x+20)$ or $x+4 x+40$	M1	
	$x+4 x+40=5 x+40$ and Yes	A1	
	Alternative method 2 Derives and solves an equation for angles at a point and substitutes into $5 x+40$ or $x+2(2 x+20)$		
	$4 x+40$	M1	may be embedded or on the diagram or implied eg implied by $10 x+80=360$
	$x+2(2 x+20)+5 x+40=360$ or $x+4 x+40+5 x+40=360$ or $(x=) 28$	M1	oe equation eg $10 x+80=360$ $(x=) 28$ may be on the diagram
	$140+40=180$ and $Y e s$ or $28+152=180$ and Yes	A1	oe must obtain ($x=$) 28 from one expression and substitute $(x=) 28$ into a different expression
	Alternative method 3 Assumes line is a diameter. Derives and solves an equation for angles on a line using $5 x+40$ and substitutes into $x+2(2 x+20)$ or $x+2(2 x+20)+5 x+40$		
	$5 x+40=180$	M1	
	$\begin{aligned} & (x=)(180-40) \div 5 \\ & \text { or }(x=) 28 \end{aligned}$	M1dep	oe $(x=) 28$ may be on the diagram
	$28+152=180$ and $Y e s$ or $28+152+140+40=360$ and Yes	A1	oe must obtain ($x=$) 28 from one expression and substitute $(x=) 28$ into a different expression

Mark scheme and Additional Guidance continue on next two pages

$\begin{gathered} 30 \\ \text { cont } \end{gathered}$	$\begin{array}{ll}\text { Alternative method } 4 & \begin{array}{l}\text { Assumes line is a diameter. Derives and solves an equation for } \\ \text { angles on a line using } x+2(2 x+20)\end{array} \\ & 5 x+40 \text { ond substitutes into }\end{array}$		
	$x+2(2 x+20)=180$ or $x+4 x+40=180$	M1	
	$\begin{aligned} & (x=)(180-40) \div 5 \\ & \text { or }(x=) 28 \end{aligned}$	M1dep	oe ($x=$) 28 may be on the diagram
	$140+40=180$ and $Y e s$ or $28+152+140+40=360$ and Yes	A1	oe must obtain ($x=$) 28 from one expression and substitute $(x=) 28$ into a different expression
	Alternative method 5 Assum	e is a di n a line/	meter. Derives and solves two equations gles at a point
	$5 x+40=180$ or $x+2(2 x+20)=180$ or $x+4 x+40=180$ or $x+2(2 x+20)+5 x+40=360$ or $x+4 x+40+5 x+40=360$	M1	
	$\begin{aligned} & (x=)(180-40) \div 5 \\ & \text { or }(x=) 28 \end{aligned}$	M1dep	oe ($x=$) 28 may be on the diagram
	Obtains ($x=$) 28 from two equations for angles on a line/ angles at a point and Yes	A1	

Additional Guidance is on the next page

$\begin{gathered} 30 \\ \text { cont } \end{gathered}$	Additional Guidance	
	Choose the scheme that favours the student	
	Up to M2 may be awarded for correct work, with no or incorrect answer, even if this is seen amongst multiple attempts	
	Correct response with other incorrect work	M1M1A0
	Alt $12(2 x+20)=4 x+20$ followed by $x+4 x+20$ Alt $1 x+4 x+20$ with $2(2 x+20)=4 x+20$ not seen Apply marks in a similar way in alts 2,4 and 5	MOM1 MOMO
	$(x=) 28$	M1M1
	Allow ($x=$) 28 to be embedded	M1M1
	No method marks scored with a value of $x(\neq 28)$ substituted into $5 x+40$ and $x+2(2 x+20)$ giving the same value	MOMOAO
	Yes can be implied eg Alt $1 x+4 x+40=5 x+40$ and It is a diameter	M1M1A1

Q	Answer	Mark	Comments	
	Alternative method 1			
	$6 \times 3+c=19$	M1	oe eg $18+c=19$	
	$(c=) 19-6 \times 3$ or $(c=) 1$	M1dep	oe implied by (0,1)	
	$y=6 x+1$	A1	SC1 $y=6 x+c \quad c \neq 1$	
	Alternative method 2			
	$y-19=6(x-3)$	M1	oe	
	$y-19=6 x-18$	M1dep	oe correct equation with brackets expanded	
	$y=6 x+1$	A1	SC1 $y=6 x+c \quad c \neq 1$	
	Additional Guidance			
31	Allow $y=6 \times x+1$			
	$6 x+1$ on answer line, $y=6 x+1$ seen in working			M1M1A1
	$6 x+1$ on answer line, $y=6 x+1$ not seen in working			M1M1A0
	$m=6, c=1$ on answer line, $y=6 x+1$ seen in working			M1M1A1
	$m=6, c=1$			M1M1A0
	$y=m x+1$			M1M1A0
	Allow embedded value for c eg $19=6 \times 3+1$			M1M1A0
	$y=6 x+c$			SC1
	$y=6 x$			SC1
	$6 x+c$ on answer line with $c \neq 1, y=6 x+c$ seen in working			SC1
	$6 x+c$ on answer line with $c \neq 1, y=6 x+c$ not seen in working			MOMOAO

