GCSE
MATHEMATICS
8300/3H
Higher Tier Paper 3 Calculator
Mark scheme
June 2021
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2021 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{1}$	$b=\sqrt{a}+3$	B 1	

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{2}$	$0 . \dot{5}$	B1	

\mathbf{Q}	Answer	Mark	Comments
3	$\left(0,-\frac{2}{3}\right)$	B1	

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{4}$	$(x+8)(x-8)$	B1	

Q	Answer	Mark	Comments	
5	$6 \times 10-(12+7+15+3)$ or $60-37$ or 23	M1	implied by two numbers with a total of 23 eg -11 and 34	
	Two positive numbers with a total of 23	A1		
	Two positive numbers which make the range of the list 19	B1	eg a and 22, where $3 \leqslant a \leqslant 22$	
	Additional Guidance			
	2 and 21 is the only fully correct a			M1A1B1
	11.5 and 11.5			M1A1B0
	1 and 22			M1A1B0
	0 and 23			M1A0B0

Q	Answer	Mark	Comments	
6	480×0.4 or 192	M1	oe implied by 2400	
	$480 \times \frac{3}{8}$ or 180	M1	oe implied by 1440	
	480 - their 192 - their $180-67$ or 41	M1	oe implied by 287	
	their $192 \times 12.5+$ their $180 \times 8+$ their 41×7 or $2400+1440+287$	M1		
	4127	A1		
	Additional Guidance			
	Method marks may be awarded for correct work seen on Venn diagram or in working, with no or incorrect answer, even if this is seen amongst multiple attempts			
	For the $4^{\text {th }}$ method mark, incorrectly placed values from their Venn diagram may be used or values connected to the correct category eg if house only and museum only values transposed on the Venn diagram accept their $192 \times 12.5+$ their $41 \times 8+$ their 180×7 ξ			
	$\begin{aligned} & 40 \% \text { of } 413=165, \frac{3}{8} \text { of } 165=62,413-62-165=186 \\ & 165 \times 12.50+62 \times 8+186 \times 7=3860.50 \end{aligned}$			M0M0M1M1A0
	$\begin{aligned} & H=154.875, \mathrm{H} \& \mathrm{M}=165.2 \\ & 480-67-154.875-165.2 \end{aligned}$			M0M0M1

Additional guidance for this question is on the next page

$\begin{gathered} 8 \\ \text { cont } \end{gathered}$	Additional Guidance	
	$198 \times 0.45 \div 6.25$ oe	M1M1
	$198 \times 0.45 \times 6.25$ (which gives 556.875)	M1M0
	$198 \div 0.45 \div 6.25$ (which gives 70.4)	M0M1
	$198 \div 0.45 \times 6.25$ (which gives 2750)	MOMO
	Do not allow 6.25^{2} for 6.25 eg $198 \div 6.25 \div 6.25$	M0
	Ignore rounding or truncation after correct answer seen	

Q	Answer	Mark	Comments	
9	$(x=) 4 \times 2 \text { or }(x=) 8$ or area of top right rectangle is 12×2 or $12 \div 4 \times$ their 8 or 24 or area of bottom left rectangle is $56 \div 2$ or $4 \times 56 \div$ their 8 or 28	M1	may be on diagram implied by length of bottom left or bottom right vertical section is 7	
	Area of top right rectangle is 12×2 or $12 \div 4 \times$ their 8 or 24 and area of bottom left rectangle is $56 \div 2$ or $4 \times 56 \div$ their 8 or 28 or Total area is $(4+\text { their } 8) \times(12 \div 4+56 \div \text { their }$ 8) or 12×10 or 120	M1dep	may be on diagram	
	(Total shaded area is) 52	A1	implied by 52 : 68	
	$13: 17$ or $1: \frac{17}{13}$ or $\frac{13}{17}: 1$	B1ft	ft simplification of the into the form $1: n$ or M1M0A0 scored	tio or conversion 1 with M2AO or
	Additional Guidance			
	If their ratio cannot be simplified by dividing by a common factor they can only score B 1 ft by converting into the form $1: n$ or $n: 1$			
	$\frac{52}{120}: \frac{68}{120}$			M1M1A1B0
	68 : 52 simplified to 17:13			M1M1A0B1ft
	$13 \mathrm{~cm}^{2}: 17 \mathrm{~cm}^{2}$			M1M1A1B0
	For B1, accept values as decimals rounded or truncated to 2 dp or better eg 1:1.31 or $0.76: 1$			B1

Q	Answer	Mark	Comments	
10(a)	Rectangle with horizontal sides 3 cm and vertical sides 2 cm	B1	accept internal vertical line 1 cm from the right, but no other internal lines	
	Additional Guidance			
	\square or \square	with dime	sions 3 cm and 2 cm	B1
	Do not accept other internal lines			
	Mark intention			

Q	Answer	Mark	Comments
$\mathbf{1 2} \mathbf{2}$	$360 \div 15$ or 24 or $(15-2) \times 180$ or 2340	M1	oe may be seen on diagram
	156	A1	

Q	Answer	Mark	Comments
13	Alternative method 1		
	$4 \times 26 \times 15$ or 1560	M1	
	$\pi \times(26 \div 2)^{2} \times 15(\div 2)$ or $\pi \times 13^{2} \times 15(\div 2)$ or $2535 \pi(\div 2)$ or $\pi \times(26 \div 2)^{2} \div 2(\times 15)$ or $\pi \times 13^{2} \div 2(\times 15)$ or $\frac{169 \pi}{2}(\times 15)$ or $84.5 \pi(\times 15)$ or $[265.3,265.5](\times 15)$ or [7959.9, 7965] ($\div 2$)	M1	oe accept [3.14, 3.142] for π
	$\begin{aligned} & \frac{2535 \pi}{2} \text { or } 1267.5 \pi \\ & \text { or }[3979.95,3982.5] \end{aligned}$	M1dep	dep on previous mark
	[5539, 5543]	A1	
	Alternative method 2		
	4×26 or 104	M1	
	$\begin{aligned} & \pi \times(26 \div 2)^{2} \div 2 \\ & \text { or } \pi \times 13^{2} \div 2 \\ & \text { or } \frac{169 \pi}{2} \\ & \text { or }[265.3,265.5] \end{aligned}$	M1	accept [3.14, 3.142] for π
	(their $104+$ their $\frac{169 \pi}{2}$) $\times 15$ or $[369.3,369.5] \times 15$	M1dep	dep on M1M1
	[5539, 5543]	A1	

Q	Answer	Mark	Comments	
	$0.5 k+7 k-0.15+2.5 k=1$	M1	oe eg $10 k-0.15=1$	
	$k=0.115$	A1	oe	
15	0.655	A1ft	oe eg $\frac{131}{200}$ or 65.5% ft their 0.115 to 3 dp or better with M1 scored if their 0.115 and their answer are both in the range $(0,1)$	
	Additional Guidance			
	Accept working in percentages			
	$10 k-0.15=1, \quad 10 k=0.85, k=0.085$, answer 0.445			M1A0A1ft
	$10 k+0.15=1, \quad 10 k=0.85, k=0.085$, answer 0.445			MOAOAO

Q	Answer	Mark		
16	(Gradient of $P Q=\frac{14-8}{2-6}$ or $\frac{8-14}{6-2}$ or -1.5 or $\frac{-3}{2}$ or (gradient of $Q R=) \frac{8-5}{6-2}$ or $\frac{5-8}{2-6}$ or 0.75 or $\frac{3}{4}$ or $\frac{-3}{-4}$	M1	oe	
	(Gradient of $P Q=$) -1.5 or $\frac{-3}{2}$ and (gradient of $Q R=$) 0.75 or $\frac{3}{4}$ or $\frac{-3}{-4}$	M1dep	oe	
	No and $-1.5 \times 0.75 \neq-1$ or No and $-1.5 \times 0.75=-1.125$	A1ft	oe eg No and ft their two gr scored accept No an negative recip	$=-\frac{9}{8}$ with M1 not the 0.75
	Additional Guidance			
	Accept $-\frac{3}{2}$ or $\frac{3}{-2}$ for $\frac{-3}{2}$			
	Gradient of $P Q=\frac{-3}{2}$, gradient of $Q R=\frac{4}{3}$, No and $\frac{-3}{2} \times \frac{4}{3}=-2$			M1M0A1ft
	Answers involving Pythagoras' theorem or scale drawing			MOMOAO

Q	Answer	Mark	Comments
17	$-\frac{7}{2}$	B1	

Q	Answer	Mark	Comments
$\mathbf{1 8}$	w	B1	

Q	Answer	Mark	Comments
$\mathbf{1 9}$	$2 \sqrt{11}$	B1	

Q	Answer	Mark	Comments	
20	$b=2 c \text { or } b=16$ or $\frac{a}{b} \times \frac{b}{c}=3 c \times 2$	M1	oe eg $\frac{a}{2 c}=3 c$ or $\frac{a}{16}=3 c$	
	$(a=) 6 c^{2}$ or $3 \times 8 \times 2 \times 8 \text { or } 24 \times 16$ or $6 \times 8^{2} \text { or } 6 \times 64$	M1dep	oe	
	384	A1		
	Additional Guidance			
	$\frac{b}{8}=2$			M0
	$\frac{a}{b}=24$			M0

Q	Answer	Mark	Comments
21	(Class widths are) 5, 5, 10, 30	M1	
	$18 \div 5$ or 3.6 or $23 \div 5$ or 4.6 or $17 \div 10$ or 1.7 or $21 \div 30$ or 0.7	M1	implied by correct bar
	Any three of $18 \div 5$ or 3.6 and $23 \div 5$ or 4.6 and $17 \div 10$ or 1.7 and $21 \div 30$ or 0.7	M1dep	implied by correct bars
	All bars correct	A1	$\pm \frac{1}{2}$ square
	Additional Guidance		
	Four correct frequency density values imply first M1		

Q	Answer	Mark		
22	$\frac{2 n}{3 n+1}$	B3	oe eg $\frac{2 n}{2 n+(n+1)}$ B2 any two corre $2 n$ or $n+1$ B1 any one corre $2 n$ or $n+1$	
	Additional Guidance			
	May be seen in a fraction or added eg $2 n+(n+1)$			B2
	Do not accept $2 n$ embedded in an incorrect expression eg $2 n-2$			B0

Q	Answer	Mark	Comments
23(a)	$(2,256)$	B1	

Q	Answer	Mark	Comments	
23(b)	-1	B1	accept $\left(-1, \frac{1}{16}\right)$	
	Additional Guidance			
	$16^{-1}=\frac{1}{16}$	B0		

Q	Answer	Mark	Comments	
24	Any correct pair of values	B1	eg $\begin{aligned} & a=9 \quad b=\frac{1}{2} \\ & a=27 \quad b=\frac{1}{3} \\ & a=81 \quad b=\frac{1}{4} \end{aligned}$	
	Additional Guidance			
	$a=9 \quad b=\frac{1}{3}$			B0
	$a=3 \quad b=\frac{1}{1}$			B0
	$a=3 \quad b=1$			B0

Q	Answer	Mark	Comments
27(a)	Alternative method 1: DH + HX		
	$H E=\mathbf{a}-\mathbf{b}$	M1	implied by $H X=\frac{1}{4} \mathbf{a}-\frac{1}{4} \mathbf{b}$
	$\begin{aligned} & \left(\mathbf{b}+\frac{1}{4}(\mathbf{a}-\mathbf{b})=\right) \mathbf{b}+\frac{1}{4} \mathbf{a}-\frac{1}{4} \mathbf{b} \\ & =\frac{1}{4} \mathbf{a}+\frac{3}{4} \mathbf{b} \end{aligned}$	A1	
	Alternative method 2: $D E+E X$		
	$E H=\mathbf{b}-\mathbf{a}$	M1	implied by $E X=\frac{3}{4} \mathbf{b}-\frac{3}{4} \mathbf{a}$
	$\begin{aligned} & \left(\mathbf{a}+\frac{3}{4}(\mathbf{b}-\mathbf{a})=\right) \mathbf{a}+\frac{3}{4} \mathbf{b}-\frac{3}{4} \mathbf{a} \\ & =\frac{1}{4} \mathbf{a}+\frac{3}{4} \mathbf{b} \end{aligned}$	A1	

Q	Answer	Mark	Comments
27(b)	Alternative method 1: $D F$ from $D E+E F=D E+\frac{1}{4} E G$		
	$(E G=)-\mathbf{a}+9 \mathbf{b}$ or $(E F=)-\frac{1}{4} \mathbf{a}+\frac{9}{4} \mathbf{b}$	M1	oe
	$(E F=)-\frac{1}{4} \mathbf{a}+\frac{9}{4} \mathbf{b}$ and $(D F=) \mathbf{a}-\frac{1}{4} \mathbf{a}+\frac{9}{4} \mathbf{b}$	M1	oe
	$(D F=) \frac{3}{4} \mathbf{a}+\frac{9}{4} \mathbf{b}$	A1	
	$(D F=) 3\left(\frac{1}{4} \mathbf{a}+\frac{3}{4} \mathbf{b}\right)$ and Yes	A1	oe using a different correct scalar multiple for $D F$ and $D X$

Mark scheme for Question 27(b) continues on next page

Q	Answer	Mark	Comments
$\begin{aligned} & 27(b) \\ & \text { cont } \end{aligned}$	Alternative method 2: $D F$ from $D G+G F=D G+\frac{3}{4} G E$		
	$(G E=)-9 \mathbf{b}+\mathbf{a}$ or $(G F=)-\frac{27}{4} \mathbf{b}+\frac{3}{4} \mathbf{a}$	M1	oe
	$(G F=)-\frac{27}{4} \mathbf{b}+\frac{3}{4} \mathbf{a}$ and $(D F=) 9 \mathbf{b}-\frac{27}{4} \mathbf{b}+\frac{3}{4} \mathbf{a}$	M1	oe
	$(D F=) \frac{3}{4} \mathbf{a}+\frac{9}{4} \mathbf{b}$	A1	
	$(D F=) 3\left(\frac{1}{4} \mathbf{a}+\frac{3}{4} \mathbf{b}\right)$ and Yes	A1	oe using a different correct scalar multiple for $D F$ and $D X$

Mark scheme for Question 27(b) continues on next page

Q	Answer	Mark	Comments
$\begin{aligned} & 27(b) \\ & \text { cont } \end{aligned}$	Alternative method 3: $X F$ from $X E+E F=\frac{3}{4} H E+\frac{1}{4} E G$		
	$(X E=) \frac{3}{4} \mathbf{a}-\frac{3}{4} \mathbf{b}$ or $(E F=)-\frac{1}{4} \mathbf{a}+\frac{9}{4} \mathbf{b}$	M1	oe
	$(X F=) \frac{3}{4} \mathbf{a}-\frac{3}{4} \mathbf{b}-\frac{1}{4} \mathbf{a}+\frac{9}{4} \mathbf{b}$	M1	oe
	$(X F=) \frac{2}{4} \mathbf{a}+\frac{6}{4} \mathbf{b}$ or $(X F=) \frac{1}{2} \mathbf{a}+\frac{3}{2} \mathbf{b}$	A1	
	$(X F=) 2\left(\frac{1}{4} \mathbf{a}+\frac{3}{4} \mathbf{b}\right)$ and Yes	A1	oe using a different correct scalar multiple for $X F$ and $D X$

Mark scheme for Question 27(b) continues on next page

Q	Answer	Mark	Comments	
27(b) cont	Alternative method 4: $X F$ from $X H+H G+G F=\frac{1}{4} E H+H G+\frac{3}{4} G E$			
	$(X H=)=-\frac{1}{4} \mathbf{a}+\frac{1}{4} \mathbf{b}$ or $(G F=)-\frac{27}{4} \mathbf{b}+\frac{3}{4} \mathbf{a}$	M1	oe	
	$\begin{aligned} & (X F=)-\frac{1}{4} \mathbf{a}+\frac{1}{4} \mathbf{b}+8 \mathbf{b}-\frac{27}{4} \mathbf{b}+ \\ & \frac{3}{4} \mathbf{a} \end{aligned}$	M1	oe	
	$(X F=) \frac{2}{4} \mathbf{a}+\frac{6}{4} \mathbf{b}$ or $(X F=) \frac{1}{2} \mathbf{a}+\frac{3}{2} \mathbf{b}$	A1		
	$(X F=) 2\left(\frac{1}{4} \mathbf{a}+\frac{3}{4} \mathbf{b}\right)$ and Yes	A1	oe using a different multiple for $X F$ and D	ect scalar
		tional	idance	
	Method marks may be awarded for working, with no or incorrect answ multiple attempts	rect w ven if	seen on diagram or in is seen amongst	

Q	Answer	Mark	Comments
29	Alternative method 1		
	$O B D$ and $O C D$ are right angles and $B O C(\text { obtuse })=180-x$	M1	may be on diagram
	$B A C=90-\frac{x}{2}$	M1dep	oe may be on diagram
	$B O C(\text { reflex })=180+x$ and $A B O+A C O=360-\left(90-\frac{x}{2}+180\right.$ $+x$) or $90-\frac{x}{2}$ and $\begin{aligned} & A B O=\frac{1}{2}\left(90-\frac{x}{2}\right) \\ & =45-\frac{x}{4} \end{aligned}$ with M2 scored	A1	$\text { oe } 360-90+\frac{x}{2}-180-x$
	All reasons given tangent meets the radius at 90° angles in a quadrilateral add up to 360° angle at the circumference is half the angle at the centre angles around a point add to 360°	A1	

Mark scheme for Question 29 continues on next page

Q	Answer	Mark	Comments
$\begin{gathered} 29 \\ \text { cont } \end{gathered}$	Alternative method 2		
	$O B D$ and $O C D$ are right angles and $B O C(\text { obtuse })=180-x$	M1	may be on diagram
	$B A C=90-\frac{x}{2}$	M1dep	oe may be on diagram
	$B O C(\text { reflex })=180+x$ and $B A D=\frac{1}{2}\left(90-\frac{x}{2}\right) \text { or } 45-\frac{x}{4}$ and $\begin{aligned} & A B O=180-\left(45-\frac{x}{4}\right)-\left(90+\frac{x}{2}\right) \\ & =45-\frac{x}{4} \end{aligned}$ with M2 scored	A1	
	All reasons given tangent meets the radius at 90° angles in a quadrilateral add up to 360° angle at the circumference is half the angle at the centre angles in a triangle add up to 180°	A1	

Mark scheme for Question 29 continues on next page

Q	Answer	Mark	Comments
$\begin{gathered} 29 \\ \text { cont } \end{gathered}$	Alternative method 3		
	$O B D$ and $O C D$ are right angles and $B O C($ obtuse $)=180-x$	M1	may be on diagram
	$B A C=90-\frac{x}{2}$	M1dep	oe may be on diagram
	$\begin{aligned} & A B C=\frac{1}{2}\left[180-\left(90-\frac{x}{2}\right)\right] \\ & =45+\frac{x}{4} \end{aligned}$ and $O B C=\frac{1}{2}[180-(180-x)]$ $=\frac{x}{2}$ and $\begin{aligned} & A B O=45+\frac{x}{4}-\frac{x}{2} \\ & =45-\frac{x}{4} \end{aligned}$ with M2 scored	A1	
	All reasons given tangent meets the radius at 90° angles in a quadrilateral add up to 360° angle at the circumference is half the angle at the centre angles in a triangle add up to 180° (base angles in an) isosceles triangle (are equal)	A1	

Mark scheme for Question 29 continues on next page

Q	Answer	Mark	Comments	
30(a)	$\left(r_{2}=\right.$) 5.84(3...)	B1		
	$\left(r_{3}=\right) 6.39(5 \ldots)$ or 6.4(0)	B1ft	ft their 5.84(3...) to	etter
	Additional Guidance			
	eg $r_{2}=6.39(5 \ldots)$ and $r_{3}=6.11(3 \ldots)$			B0B1ft

Q	Answer	Mark	Comments			
$\mathbf{3 0} \mathbf{3 0 (b)}$	6.2		B1			
	6.20	Additional Guidance				B0

