

Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

GCSE CHEMISTRY

H

Higher Tier Paper 1

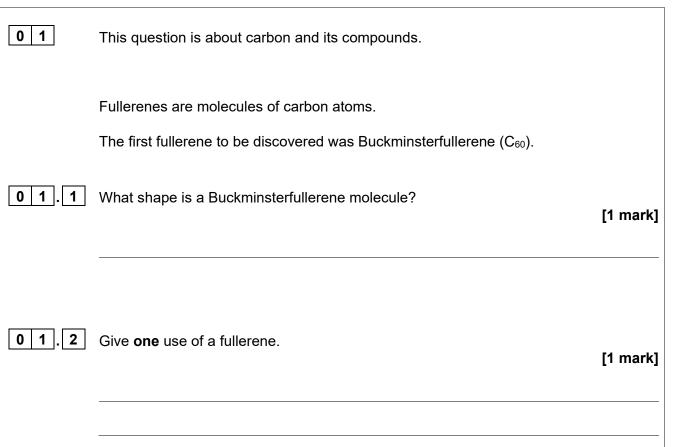
Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions


- Use black ink or black ball-point pen.
- · Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

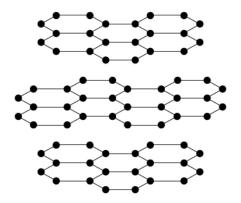
For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
TOTAL		



Propanone is a compound of carbon, hydrogen and oxygen.

Figure 1 shows the dot and cross diagram for a propanone molecule.

Figure 1


0 1.3	Complete Figure 2 to show a propanone molecule.
	Use a line to represent each single bond.
	Use Figure 1.
	[1 mark]
	Figure 2
0 1.4	— C — Use Figure 1.
	Molecular formula =
0 1.5	Propanone is a liquid with a low boiling point.
	Why does propanone have a low boiling point? [1 mark]
	Tick (✓) one box.
	The covalent bonds are strong.
	The covalent bonds are weak.
	The intermolecular forces are strong.
	The intermolecular forces are weak.

0 1.6 Figure 3 represents the structure of graphite.

Figure 3

Explain why graphite is:

- a good electrical conductor
- soft and slippery.

You should answer in terms of structure and bonding.

[6 marks]

11

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

Do not write outside the

0 2	-		structure and the periodic table.	
0 2.1		eaning of 'isotopes answer in terms o	s'. of subatomic particles.	[2 marks]
0 2.2	Table 1 sho		nbers and percentage abundance	es of the
			Table 1	
		Mass number	Percentage abundance (%)	
		69	60	
		71	40	
		ne relative atomic	mass (A _r) of gallium.	
	Give your a	miswer to 1 decime	ai piace.	[2 marks]
		Relative atomi	c mass (1 decimal place) =	

	Gallium (Ga) is in Group 3 of the modern periodic table.	Do not v outside box
0 2.3	Give the numbers of electrons and neutrons in an atom of the isotope $^{69}_{31}$ Ga [2 marks]	
	Number of electrons	
	Number of neutrons	
0 2 . 4	What is the most likely formula of a gallium ion? [1 mark] Tick (✓) one box.	
	Ga⁺	
	Ga ⁻	
	Ga ³⁺	
	Ga ³⁻	
0 2 . 5	Gallium was discovered six years after Mendeleev published his periodic table.	
	Give two reasons why the discovery of gallium helped Mendeleev's periodic table to become accepted.	
	[2 marks]	
	1	
	2	
		9

0 3	This question is about the extraction of metals.
	Element R is extracted from its oxide by reduction with hydrogen.
	The equation for the reaction is:
	$3 H_2 + RO_3 \rightarrow R + 3 H_2O$
0 3.1	The sum of the relative formula masses (M_r) of the reactants (3 H ₂ + RO_3) is 150
	Calculate the relative atomic mass (A_r) of \mathbf{R} .
	Relative atomic masses (A_r): $H = 1$ $O = 16$ [2 marks]
	Relative atomic mass (A_r) of R =
0 3 . 2	Identify clament D
0 3 . 2	Identify element R . You should use:
	your answer to question 03.1
	• the periodic table.
	[1 mark]
	Identity of R =

0 3.3	Carbon is used to extract tin (Sn) from tin oxide (SnO ₂).	
	The equation for the reaction is:	
	$SnO_2 + C \rightarrow Sn + CO_2$	
	Calculate the percentage atom economy for extracting tin in this reaction.	
	Relative atomic masses (A_r): $C = 12$ $O = 16$ $Sn = 119$	[3 marks]
	Percentage atom economy =	%

Question 3 continues on the next page

0 3 . 4

Tungsten (W) is a metal.

Tungsten is extracted from tungsten oxide (WO₃).

All other solid products from the extraction method must be separated from the tungsten.

Table 2 shows information about three possible methods to extract tungsten from tungsten oxide.

Table 2

Method	Reactant	Relative cost of reactant Products	
			Tungsten solid
1	Carbon	Low	Carbon dioxide gas
			Tungsten carbide solid
0	Llydronon	ما به ال	Tungsten solid
2	Hydrogen	High	Water vapour
3	Iron	Low	Tungsten solid
3	Iron	Low	Iron oxide solid

Evaluate the three possible methods for extracting tungsten from tungsten oxide. [4 marks]

0 4	This question is about Group 1 elements.	
0 4.1	Give two observations you could make when a small piece of potassium is adde to water.	
	1	marks]
	2	
0 4.2	Complete the equation for the reaction of potassium with water.	
	You should balance the equation. [2 i	marks]
	K + H_2O \rightarrow +	
0 4.3	Explain why the reactivity of elements changes going down Group 1. [4 i	marks]

Sodium reacts with oxygen to produce the ionic compound	d sodium oxide.
Oxygen is a Group 6 element.	

0 4 . 4 Draw a dot and cross diagram to show what happens when atoms of sodium and oxygen react to produce sodium oxide.

[4 marks]

Diagram

0 4 . 5	Why is oxygen described as being reduced in the reaction between sodium and	Do not wr outside th box
	oxygen? [1 mark]	
0 4.6	Explain why sodium oxide has a high melting point. [3 marks]	
		16

Turn over for the next question

Do not write outside the

	A student makes crystals of magnesium sulfate.
	This is the method used.
	1. Add sulfuric acid to a beaker.
	2. Warm the sulfuric acid.
	3. Add a spatula of magnesium oxide to the beaker.
	4. Stir the mixture.
	5. Repeat steps 3 and 4 until there is magnesium oxide remaining in the beaker.
	6. Filter the mixture.
	7. Evaporate the filtrate gently until crystals start to form.
	8. Leave the solution to finish crystallising.
0 5.4	Give one reason for:
	• step 2
	• step 5
	• step 6. [3 marks]
	Step 2
	Step 5
	Step 5
	Sten 6
	Step 6
	How should the fitterts be accompated another to store 70
0 5 . 5	How should the filtrate be evaporated gently in step 7 ? [1 mark]

0 5 . 6	Iron chloride is produced by heating iron in chlorine gas.						
	The equation for the reaction is:						
	$2\text{Fe} \ + \ 3\text{Cl}_2 \ \rightarrow \ 2\text{FeCl}_3$						
	Calculate the volume of chlorine needed to react with 14 g of iron.						
	You should calculate:						
	the number of moles of iron used						
	 the number of moles of chlorine that react with 14 g of iron 						
	the volume of chlorine needed.						
	Relative atomic mass (A_r) : Fe = 56						
	The volume of 1 mole of gas = 24 dm ³						
	្រុន ព	narks]					

Volume of chlorine = _____ dm³

10

0 6	This q	uestion is about	metals.							
0 6	. 1 Table	3 shows informa	tion about four su	ubstances.						
	Table 3									
	Substance Melting point in °C Boiling point in °C Does it conduct electricity in the solid state? Does it conduct electricity in the liquid state?									
	Α	-117	79	No	No					
	В	801	1413	No	Yes					
	С	1535	2750	Yes	Yes					
	D	1610	2230	No	No					
Tick (✓) one box. A B C D O 6.2 Explain why alloys are harder than pure metals. [3 marks]										

0 6 . 3	A student wants to compare the reactivity of an unknown metal, Q , with that of zinc.	ΟL
	Both metals are more reactive than silver.	
	The student is provided with: • silver nitrate solution	
	metal Q powder	
	• zinc powder	
	a thermometer	
	normal laboratory equipment.	
	No other chemicals are available.	
	Describe a method the student could use to compare the reactivity of metal Q with that of zinc.	
	Your method should give valid results. [4 marks]	

0 7	This question is about chemical reactions and electricity.
0 7.1	Electrolysis and chemical cells both involve chemical reactions and electricity.
	Explain the difference between the processes in electrolysis and in a chemical cell. [2 marks]
0 7.2	A teacher demonstrates the electrolysis of molten lead bromide.
	Bromine is produced at the positive electrode.
	Complete the half equation for the production of bromine.
	You should balance the half equation. [2 marks]

 $Br^{-} \rightarrow +$

0 7 . 3 Two aqueous salt solutions are electrolysed using inert electrodes.

Complete **Table 4** to show the product at each electrode.

[3 marks]

Table 4

Salt solution	Product at positive electrode	Product at negative electrode	
Copper nitrate		copper	
Potassium iodide			

Some students investigated the electrolysis of copper nitrate solution using inert electrodes.

Figure 4 shows the apparatus.

Positive electrode

Beaker

Figure 4

Ammeter to measure electric current

Negative electrode

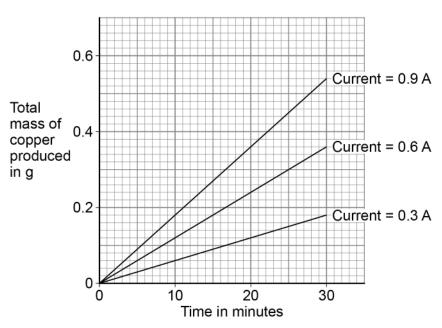
Copper nitrate solution

The students investigated how the mass of copper produced at the negative electrode varied with:

- time
- current.

This is the method used.

- 1. Weigh the negative electrode.
- 2. Set up the apparatus shown in Figure 4.
- 3. Adjust the power supply until the ammeter shows a current of 0.3 A
- 4. Switch off the power supply after 5 minutes.
- 5. Rinse the negative electrode with water and allow to dry.
- 6. Reweigh the negative electrode.
- 7. Repeat steps 1 to 6 for different times.
- 8. Repeat steps 1 to 7 at different currents.


0 7.4	Some of the copper produced did not stick to the negative electrode but fell to the bottom of the beaker.				
	Suggest how the students could find the total mass of copper produced.	[4 marks]			
	Question 7 continues on the next page				

The students plotted their results on a graph.

Figure 5 shows the graph.

A student correctly concluded that the total mass of copper produced is directly proportional both to the time and to the current.

0	7.	5	How do the results in Figure 5 support the conclusion that the total mass of c	opper
			produced is directly proportional to the time?	

[1 mark]

0 7.6 How do the results in **Figure 5** support the conclusion that the total mass of copper produced is directly proportional to the current?

Use data from Figure 5 in your answer.

[1 mark]

0 7.7	Copper nitrate solution is blue.
	Suggest why the blue colour of the copper nitrate solution fades during the electrolysis.
	[1 mark]
0 7.8	Determine the number of atoms of copper produced when copper nitrate solution is electrolysed for 20 minutes at a current of 0.6 A
	Give your answer to 3 significant figures.
	Use Figure 5 .
	Relative atomic mass (A_r) : Cu = 63.5
	The Avogadro constant = 6.02×10^{23} per mole
	[3 marks]
	Number of atoms (3 significant figures) =
	Turn over for the next question
	and other the mean queenen

0 8 This question is about the reaction between hydrogen sulfide (H₂S) and oxygen.

The equation for the reaction is:

$$2H_2S(g) + 3O_2(g) \rightarrow 2H_2O(g) + 2SO_2(g)$$

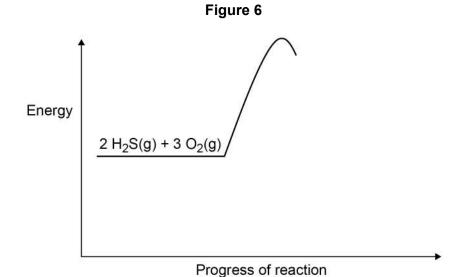
0 8 . 1 What does H₂O(g) represent?

[1 mark]

0 8. 2 Calculate the volume of oxygen required to react with 50 cm³ of hydrogen sulfide. [1 mark]

Volume = cm³

0 8. 3 Figure 6 shows part of the reaction profile for the reaction.


The reaction is exothermic.

Complete Figure 6.

You should:

- · complete the profile line
- · label the activation energy
- label the overall energy change.

[3 marks]

Do not write outside the

0 8 . 4

Figure 7 shows the displayed formula equation for the reaction of hydrogen sulfide with oxygen.

Figure 7

$$2H-S-H + 3O=O \rightarrow 2H-O-H + 2O=S=O$$

Table 5 shows some of the bond energies.

Table 5

Bond	$H\!-\!S$	0=0	H-O	S=0
Energy in kJ/mol	364	498	464	x

In the reaction the energy released forming new bonds is 1034 kJ/mol greater than the energy needed to break existing bonds.

Calculate the bond energy X for the S = O bond.

Use Figure 7 and Table 5.

[5	marks]
----	--------

X = ____

kJ/mol 10

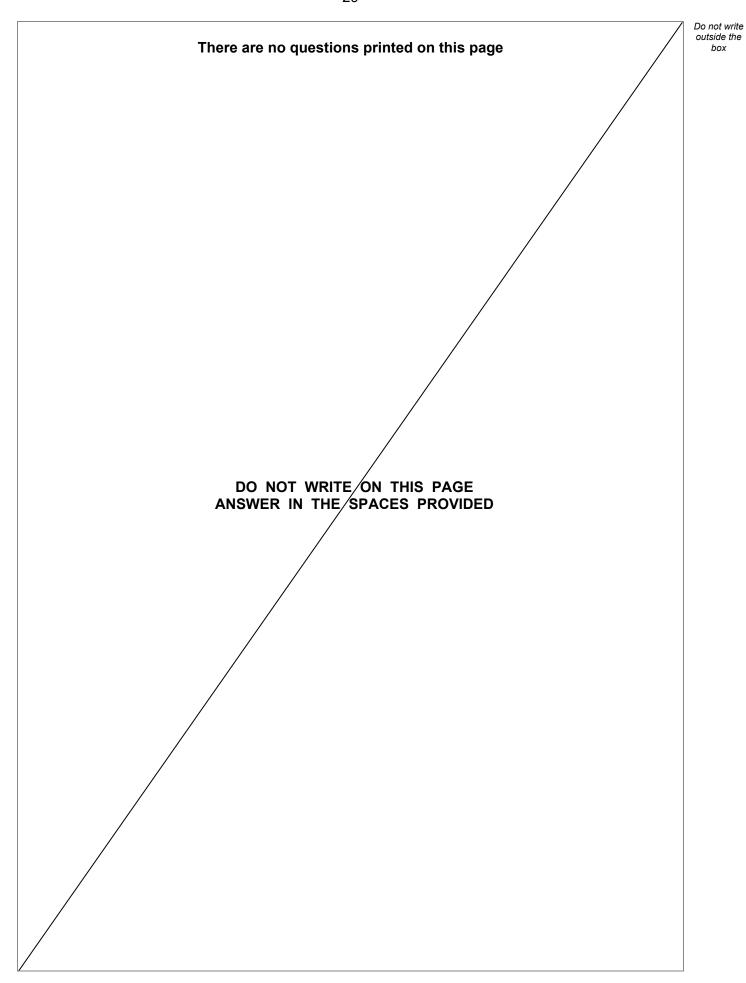
0 9	This question is about acids.	
	Hydrogen chloride and ethanoic acid both dissolve in water.	
	All hydrogen chloride molecules ionise in water.	
	Approximately 1% of ethanoic acid molecules ionise in water.	
0 9 . 1	A solution is made by dissolving 1 g of hydrogen chloride in 1 dm³ of water.	
	Which is the correct description of this solution?	[1 mark]
	Tick (✓) one box.	[1 mark]
	A concentrated solution of a strong acid	
	A concentrated solution of a weak acid	
	A dilute solution of a strong acid	
	A dilute solution of a weak acid	
0 9 . 2	Which solution would have the lowest pH?	[1 mark]
	Tick (✓) one box.	[
	0.1 mol/dm³ ethanoic acid solution	
	0.1 mol/dm³ hydrogen chloride solution	
	1.0 mol/dm³ ethanoic acid solution	
	1.0 mol/dm³ hydrogen chloride solution	

A student investigated the concentration of a solution of sodium hydroxide by titration with a 0.0480 mol/dm³ ethanedioic acid solution.

This is the method used.

- 1. Measure 25.0 cm³ of the sodium hydroxide solution into a conical flask using a 25.0 cm³ pipette.
- 2. Add two drops of indicator to the sodium hydroxide solution.
- 3. Fill a burette with the 0.0480 mol/dm³ ethanedioic acid solution to the 0.00 cm³ mark.
- 4. Add the ethanedioic acid solution to the sodium hydroxide solution until the indicator changes colour.
- 5. Read the burette to find the volume of the ethanedioic acid solution used.

0 9 . 3	Suggest two improvements to the method that would increase the accuracy of the result.	
	[2 marks	\$]
	1	_
		_
	2	_


Question 9 continues on the next page

0 9 . 4	Ethanedioic acid is a solid at room temperature.	
	Calculate the mass of ethanedioic acid ($H_2C_2O_4$) needed to make 250 cm ³ solution with concentration 0.0480 mol/dm ³	of a
	Relative formula mass (M_r): $H_2C_2O_4 = 90$	[2 marks]
	Mass =	g
	The equation for the reaction is: $H_2C_2O_4 \ + \ 2NaOH \ \rightarrow \ Na_2C_2O_4 \ + \ 2H_2O$	
	$H_2C_2O_4 + 2NaOH \rightarrow Na_2C_2O_4 + 2H_2O$ Calculate the concentration of the sodium hydroxide solution in mol/dm ³	
	Calculate the concentration of the couldn't hydroxide column in the wall	[2 montes]
		[3 marks]
	Concentration =	

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2021 AQA and its licensors. All rights reserved.

