$A Q A B$

Please write clearly in block capitals.

Centre number \square Candidate number \square

Surname
Forename(s) \qquad
Candidate signature \qquad

GCSE

Wednesday 12 June $2019 \quad$ Morning Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{2}$ Which two substances are used to sterilise fresh water?

Tick (\checkmark) two boxes.
Ammonia

Chlorine

Hydrogen

Nitrogen

Ozone \square

A large amount of aluminium sulfate was accidentally added to the drinking water supply at a water treatment works.

| $\mathbf{0}$ | $\mathbf{1}$. | $\mathbf{3}$ Scientists tested a sample of the drinking water to show that it contained dissolved |
| :--- | :--- | :--- | solids.

Which two methods show the presence of dissolved solids in the sample of drinking water?

Tick (\checkmark) two boxes.

Add damp litmus paper to the sample. \square
Evaporate all water from the sample. \square
Measure the sample's boiling point.

Test the sample with a glowing splint.

0	1	4	Scientists tested two water samples from the drinking water supply.

The scientists tested one sample for aluminium ions and the other sample for sulfate ions.

Draw one line from each ion to the compound needed to identify the ion.

Ion

| $\mathbf{0}$ | $\mathbf{1} .5$ | $\mathbf{5}$ How could pure water be produced from drinking water that contained dissolved |
| :--- | :--- | :--- | solids?

Tick (\checkmark) one box.

Chromatography

Cracking

Distillation

Sedimentation

Compound needed to identify ion
\square
Barium chloride
\square
Copper sulfate

\square
Sulfuric acid
Sodium hydroxide
(V)

$\mathbf{0}$	$\mathbf{2}$	Some central heating boilers use methane as a fuel.

Carbon monoxide detectors are placed near central heating boilers.

| $\mathbf{0}$ | $\mathbf{2} .1$ | Which three properties of carbon monoxide make it necessary to use carbon |
| :--- | :--- | :--- | monoxide detectors?

Choose answers from the box.

acidic		alkaline		colourless	
	insoluble		odourless		corrosive
			toxic		

1

2 \qquad
3 \qquad

$\mathbf{0}$	$\mathbf{2}$.
$\mathbf{2}$	Complete the sentence.

Methane produces carbon monoxide when burning in a limited supply of
\qquad .

| $\mathbf{0}$ | $\mathbf{2} .3$ | 8 g of methane has a volume of $12 \mathrm{dm}^{3}$ at room temperature and pressure. |
| :--- | :--- | :--- | :--- |

Calculate the mass of $36 \mathrm{dm}^{3}$ of methane.
\qquad
\qquad
\qquad
\qquad
Mass =

| 0 | 2 | 4 |
| :--- | :--- | :--- | Most methane is obtained from natural gas, which is a fossil fuel.

Methane can also be produced renewably.
Which two are renewable sources of methane?
Tick (\checkmark) two boxes.

Animal waste \square
Food in landfill

Nitrogen in the air

Non-biodegradable plastics

Scrap iron

Do not write

Turn over for the next question

Hydrogen is produced from methane.
The word equation for the reaction is:

$$
\text { methane }+ \text { steam } \rightleftharpoons \text { carbon monoxide }+ \text { hydrogen }
$$

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{1}$

\qquad
\qquad

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{2}$ The forward reaction is endothermic.

Name the type of energy change in the reverse reaction.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{3}$	A nickel catalyst is used in this reaction.

Why is a catalyst used in this reaction?
Tick (\checkmark) two boxes.

To increase the temperature \square
To produce less carbon monoxide \square
To reduce costs

To use less energy

To use less methane

Figure 1 shows how the world production of ammonia changed between 1950 and 2010.

Figure 1

Describe how the world production of ammonia changed between 1950 and 2010.
\qquad
\qquad
\qquad
\qquad

Most of the ammonia produced is used to make fertilisers.

$\mathbf{0}$	$\mathbf{3} .5$	$\mathbf{5}$ Why did the world production of ammonia change between 1950 and 2010?

Tick (\checkmark) two boxes.

The demand for food changed.

The demand for fuels changed. \square
The nitrogen percentage in air changed.

The number of cars changed.

The world population changed.

Table 1 shows data about four fertilisers, A, B, C and D.
Table 1

Fertiliser	Percentage by mass of nitrogen (\%)	Percentage by mass of phosphorus (\%)	Percentage by mass of potassium (\%)
A	35.0	0.0	0.0
B	21.2	0.0	0.0
C	21.2	23.5	0.0
D	0.0	0.0	52.3

| $\mathbf{0}$ | $\mathbf{3} .6$ Which combination of fertilisers A, B, C and D provides all of the elements needed for |
| :--- | :--- | :--- | an NPK fertiliser?

Use Table 1.

Tick (\checkmark) one box.

A and C

A and D

B and C

C and D

| 0 | $\mathbf{3}$ | $\mathbf{7}$ Which fertiliser is not made using ammonia? |
| :--- | :--- | :--- | :--- |

Use Table 1.
Tick (\checkmark) one box.

A

B

C

D

0 4	Titan is a moon of the planet Saturn. Table 2 shows the percentages of some gases in the atmosphere of Titan and atmosphere of the Earth.		
	Table 2		
	Gas	Percentage of gas in atmosphere (\%)	
		Titan	Earth
	Nitrogen	98	78
	Oxygen	Zero	21
	Methane	1.4	0.0002
	Argon	0.14	0.9
	Carbon dioxide	0.0001	0.04

0	4	1	Which two gases are present in smaller percentages on the Earth than on Titan?

and

| $\mathbf{0}$ | $\mathbf{4}$. | $\mathbf{2}$ Complete the bar chart in Figure 2 to show the percentages of nitrogen gas and |
| :--- | :--- | :--- | oxygen gas in the Earth's atmosphere.

Figure 2

Percentage of gas in Earth's atmosphere (\%)

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{3}$ Why are algae less likely to photosynthesise on Titan than Earth? |
| :--- | :--- | :--- | :--- |

Use Table 2.

Tick (\checkmark) one box.

Titan's atmosphere contains too little argon.

Titan's atmosphere contains too little carbon dioxide.

Titan's atmosphere contains too little methane.

Titan's atmosphere contains too little nitrogen.

$\mathbf{0}$	$\mathbf{4} .4$	T Titan is warmer than the other moons of Saturn because of the greenhouse effect.

How do greenhouse gases trap energy from the sun?
Tick (\checkmark) one box.

All wavelengths of radiation are reflected back to the surface of Titan.

Long wavelength radiation is reflected back to the surface of Titan.

Short wavelength radiation is reflected back to the surface of Titan.

As well as methane, the atmosphere of Titan contains small amounts of propene gas. Methane is an alkane and propene is an alkene.

| 0 | $\mathbf{4}$ | $\mathbf{5}$ Bromine water is an orange solution used to identify alkenes. |
| :--- | :--- | :--- | :--- |

Draw one line from each gas to its effect on bromine water.

Gas

Effect on bromine water

Forms a blue solution

Forms a colourless solution

Forms a green solution
Propene
No effect

0	$\mathbf{4}$	6	Propene reacts with water (steam) to make propanol.

The ratio of the masses of propene and water that react is:
propene : water

$$
7: 3
$$

Calculate the mass of propene that reacts with 21 g water.
\qquad
\qquad
\qquad
\qquad
Mass = g
Calculate the mass of propene that reacts with 21 g water.

Turn over for the next question

$\mathbf{0}$	$\mathbf{5}$	Figure 3 shows a surfer on a surfboard.

Figure 3

Some surfboards are made from addition polymers.
Addition polymers are made from small alkene molecules.

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{1}$ Which type of bonding is present in small alkene molecules?

Tick (\checkmark) one box.

Covalent

Ionic

Metallic

$\mathbf{0}$	$\mathbf{5} .2$	$\mathbf{2}$ What is the functional group in these small alkene molecules?

Tick (\checkmark) one box.

$-\mathrm{COOH}$

$-\mathrm{OH}$

Figure 4 shows the structure of part of an addition polymer surfboard.
The outer surface of the surfboard is coated.
Figure 4

The coating is made from soda-lime glass fibres surrounded by a plastic.

| 0 | $\mathbf{5} .3$ What type of material is the coating of the surfboard? |
| :--- | :--- | :--- |

Tick (\checkmark) one box.

Alloy

Ceramic

Composite

Nanotube

0	5	$\mathbf{4}$	Complete the sentence.

Choose answers from the box.
[2 marks]

air	ammonia		copper
	limestone		sand

The materials used to make the soda-lime glass fibres are sodium carbonate,
\qquad and \qquad -

0	5	5
5	Suggest two reasons why surfboards are coated.	

1 \qquad
\qquad
2 \qquad
\qquad

Some surfboards are made from wood.
Table 3 contains information about the materials in an addition polymer surfboard and a wooden surfboard.

Table 3

	Addition polymer surfboard	Wooden surfboard
Relative strength	14	38
Cost $\left(£\right.$ per $\left.\mathbf{~ m}^{3}\right)$	140	390
Density $\left(\mathbf{k g} / \mathbf{m}^{3}\right)$	50	150
Disposal at end of life	Difficult to recycle	Can be used as fuel

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{6}$ | Suggest two advantages and two disadvantages of using addition polymers rather |
| :--- | :--- | :--- | :--- | than wood to make surfboards.

Use Table 3.

Advantages of addition polymers \qquad
\qquad
\qquad
\qquad
Disadvantages of addition polymers \qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{7}$ |
| :--- | :--- | :--- | Calculate the volume of wood in a wooden surfboard of mass 5.25 kg

Use Table 3 and the equation:

$$
\text { Density in } \mathrm{kg} / \mathrm{m}^{3}=\frac{\text { Mass in } \mathrm{kg}}{\text { Volume in } \mathrm{m}^{3}}
$$

\qquad
\qquad
\qquad
\qquad
Volume $=$ \qquad m^{3}

| 0 | 6 |
| :--- | :--- |\quad This question is about the corrosion of metals.

The corrosion of iron is called rusting.

0	6	1	Plan an investigation to show that both water and air are needed for iron to rust.

You should include the results you expect to obtain.
Use apparatus and materials from the list:

- test tubes
- stoppers
- iron nails
- tap water
- boiled water
- drying agent
- oil.
\qquad

Table 4

Nail	Mass of nail before rusting in $\mathbf{~}$	Mass of nail after rusting in $\mathbf{~}$	Increase in mass of nail in $\mathbf{~ g}$
A	1.22	1.30	0.08
B	1.25	1.36	\mathbf{X}
C	1.24	1.33	0.09

0	6	2

\qquad
\qquad

$$
\mathbf{X}=
$$

Use Table 4 and your answer to Question 06.2
\qquad
\qquad
Mean increase in mass = \qquad

$\mathbf{0}$	$\mathbf{7}$	Some students investigated the rate of decomposition of hydrogen peroxide.

The equation for the reaction is:
hydrogen peroxide \rightarrow water + oxygen

0	$\mathbf{7}$.	$\mathbf{1}$

Choose an answer from the box.

a burning splint	a glowing splint
damp litmus paper	limewater

The students tested the gas produced to show that it was oxygen.
The students used \qquad .

Student A investigated the effect of the particle size of a manganese dioxide catalyst on the rate of the reaction.

This is the method used.

1. Measure $25 \mathrm{~cm}^{3}$ hydrogen peroxide solution into a conical flask.
2. Add some fine manganese dioxide powder to the conical flask.
3. Measure the volume of oxygen produced every 30 seconds for 10 minutes.
4. Repeat steps 1 to 3 two more times.
5. Repeat steps 1 to 4 with coarse manganese dioxide lumps.

How could student A make the results repeatable?
Tick (\checkmark) one box.

Student A should make measurements every 2 minutes.

Student A should measure the mass of manganese dioxide. \square
Student A should use $50 \mathrm{~cm}^{3}$ hydrogen peroxide.

Student A should use a beaker instead of a conical flask.

Student B used a method which gave repeatable results.

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{3}$ How could student \mathbf{B} improve the accuracy of these results?

Tick (\checkmark) one box.

Calculate a mean but do not include any anomalous results.

Calculate a mean but do not include the first set of results.

Record the results in a table and plot the results on a bar chart.

Record the results in a table and plot the results on a line graph.

Figure 5 shows student B's results for coarse manganese dioxide lumps.
Figure 5

| 0 | $\mathbf{7} .4$ | Calculate the mean rate of reaction between 30 and 250 seconds for coarse |
| :--- | :--- | :--- | manganese dioxide lumps.

Use Figure 5 and the equation:

$$
\text { Mean rate of reaction }=\frac{\text { Volume of oxygen formed }}{\text { Time taken }}
$$

Give your answer to 3 significant figures.

Volume of oxygen formed \qquad
Time taken \qquad
\qquad
\qquad
\qquad
\qquad
Mean rate of reaction $=$ \qquad $\mathrm{cm}^{3} / \mathrm{s}$

| $\mathbf{0}$ | $\mathbf{7} .5$ | Fine manganese dioxide powder produces a higher rate of reaction than coarse |
| :--- | :--- | :--- | manganese dioxide lumps.

Sketch on Figure 5 the results you would expect for student B's experiment with fine manganese dioxide powder.

0	7	6
	Hydrogen peroxide molecules collide with manganese dioxide particles during the	

Why does fine manganese dioxide powder produce a higher rate of reaction than coarse manganese dioxide lumps?

Tick (\checkmark) one box.

Fine manganese dioxide powder has a larger surface area.

Fine manganese dioxide powder has larger particles.

Fine manganese dioxide powder produces less frequent collisions.

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{8}$ | This question is about crude oil and hydrocarbons. |
| :--- | :--- | :--- |\quad| Do not write |
| :--- |
| outside the |
| box |

Figure 6 shows a fractionating column used to separate crude oil into fractions.
Figure 6

Table 5 gives information about some of the fractions.
Table 5

Fraction	Boiling point range in ${ }^{\circ} \mathrm{C}$
Petroleum gases	Below 30
Petrol	$40-110$
Kerosene	$180-260$
Diesel oil	$260-320$
Heavy fuel oil	$320-400$
Bitumen	$400-450$

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{1}$	Suggest a suitable temperature for the furnace in Figure 6.

| $\mathbf{0}$ | $\mathbf{8} .2$ | Explain why diesel oil collects above heavy fuel oil but below kerosene in the |
| :--- | :--- | :--- | fractionating column.

Use Table 5.
\qquad
\qquad
\qquad
\qquad

0	8	3	Suggest two reasons why bitumen is not used as a fuel.

\qquad
\qquad
2 \qquad
\qquad

Question 8 continues on the next page

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{4}$	Petrol contains mainly alkanes.

Which of the following compounds is an alkane?
Tick (\checkmark) one box.
$\mathrm{C}_{2} \mathrm{H}_{4}$

$\mathrm{C}_{4} \mathrm{H}_{8}$

$\mathrm{C}_{6} \mathrm{H}_{14}$

$\mathrm{C}_{8} \mathrm{H}_{16}$

Large hydrocarbon molecules in the diesel oil fraction are cracked to produce smaller hydrocarbon molecules.

| $\mathbf{0}$ | $\mathbf{8} .5$ | Describe the conditions needed to crack hydrocarbon molecules from the diesel oil |
| :--- | :--- | :--- | fraction.

\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{8} .6$	$\begin{array}{l}\text { Explain why large hydrocarbon molecules in the diesel oil fraction are cracked to } \\ \text { produce smaller hydrocarbon molecules. }\end{array}$

\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{7}$ Complete the equation for the cracking of $\mathrm{C}_{15} \mathrm{H}_{32}$

$$
\mathrm{C}_{15} \mathrm{H}_{32} \rightarrow \mathrm{C}_{12} \mathrm{H}_{26}+
$$

\qquad

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{9} \quad$ This question is about lithium carbonate. |
| :--- | :--- | :--- |

Lithium carbonate is used in medicines.
Figure 7 shows a tablet containing lithium carbonate.
Figure 7

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{1}$ Lithium carbonate contains lithium ions and carbonate ions.

A student tested the tablet for lithium ions and for carbonate ions.
The student used:

- a metal wire
- dilute hydrochloric acid
- limewater.

Plan an investigation to show the presence of lithium ions and of carbonate ions in the tablet.

You should include the results of the tests for the ions.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{1}$	$\mathbf{0} \quad$ This question is about rate of reaction.

A student investigated the rate of the reaction between magnesium and dilute hydrochloric acid.

The equation for the reaction is:

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

$\begin{array}{lll}1 & \mathbf{0} . & \mathbf{1} \text { Which state symbol in the equation for the reaction does not represent one of the }\end{array}$ three states of matter?
\qquad

The student determined the rate of production of hydrogen gas.

| $\mathbf{1}$ | $\mathbf{0} .2$ | What two pieces of measuring apparatus could the student use to find the rate of |
| :--- | :--- | :--- | production of hydrogen gas?

1
2 \qquad

Question 10 continues on the next page

Table 6 shows the results of the investigation.
Table 6

Time in s	Rate of production of gas in $\mathbf{c m}^{3} / \mathbf{s}$
10	6.9
20	3.9
30	2.0
40	0.9
50	0.3
60	0.0

1	$\mathbf{0}$	$\mathbf{3}$ Plot the data from Table 6 on Figure 8.

You should draw a line of best fit.

Figure 8

| 1 | 0 | $\mathbf{4}$ Give three conclusions that can be drawn about the rate of reaction between |
| :--- | :--- | :--- | magnesium and dilute hydrochloric acid in this investigation.

Use data from Figure 8 and Table 6.

1
\qquad
2 \qquad
\qquad
3 \qquad
\qquad

| 1 | 0 |
| :--- | :--- | $\mathbf{5}$ The student repeated the investigation using dilute hydrochloric acid at a higher temperature.

All the other variables were kept the same.
Which two statements are correct?
Tick (\downarrow) two boxes.

More bubbles were produced in the first 10 seconds.

The activation energy for the reaction was higher.

The magnesium was used up more quickly.

The reaction finished at the same time.

The total volume of gas collected was greater.

END OF QUESTIONS

Do not write

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

