$A Q A=$

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

GCSE
 CHEMISTRY

Foundation Tier
 Paper 1

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

$\begin{array}{lllll}0 & \mathbf{1} & \mathbf{2} & \text { Substance B contains two types of atoms. }\end{array}$
The atoms are chemically combined together in fixed proportions.
Which type of substance is B?

Tick (\checkmark) one box.

Compound

Metallic element

Mixture

Non-metallic element

\section*{| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ What is the name of the elements in Group 0 of the periodic table? |
| :--- | :--- | :--- | :--- |}

Tick (\checkmark) one box.

Alkali metals \square

Halogens

Noble gases

Transition metals \square

0	1	4	Which statement about the elements in Group 0 is correct?

Tick (\checkmark) one box.

All elements in the group are very reactive.

All elements in the group form negative ions.

The boiling points increase down the group.

The relative atomic masses $\left(A_{r}\right)$ decrease down the group.

0 1		Neon is in Group 0. What type of particles are in a sample of neon?	[1 mark]
		Tick (\checkmark) one box.	
		Atoms	
		Ions	
		Molecules	

What type of particles are in a sample of neon?
Tick (\checkmark) one box.

Atoms

Molecules

0	1.	6

Figure 1

Determine the empirical formula of this oxide.

Empirical formula $=\mathrm{XO}$

A nanoparticle of a metallic element is a cube.
Figure 2 shows a diagram of the nanoparticle.
Figure 2

| 0 | 1 | .7 |
| :--- | :--- | :--- | The surface area of a cube is given by the equation:

$$
\text { surface area }=(\text { length of side })^{2} \times 6
$$

Calculate the surface area of the cube in Figure 2.
Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Surface area (2 significant figures) $=$ \qquad $n m^{2}$

$\mathbf{0}$	$\mathbf{1}$.8	Fine and coarse particles of the metallic element are also cubes.

The length of a fine particle cube is 10 times smaller than the length of a coarse particle cube.

How does the surface area to volume ratio of the fine particle cube compare with that of the coarse particle cube?

Tick (\checkmark) one box.

Both surface area to volume ratios are the same.

The surface area to volume ratio of the fine particle is 10 times greater.

The surface area to volume ratio of the fine particle is 10 times smaller.

Turn over for the next question

02	This question is about chemical cells and batteries.			
02	Three different types of battery can be used to power a TV remote control. Table 1 gives information about these batteries. Table 1			
		Zinc-carbon battery	Alkaline battery	Nickelmetal hydride battery
	Cost of battery in $£$ (pounds)	0.17	0.50	1.50
	Rechargeable?	No	No	Yes
	Time before needing to replace or recharge in months	5	12	8

Give one advantage of each type of battery.

Zinc-carbon \qquad
\qquad
Alkaline \qquad
\qquad
Nickel-metal hydride \qquad

0	2	2

Figure 3

This symbol shows that batteries should not be put in household waste.
Suggest why batteries should not be put in household waste.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$ The order of reactivity of three metals is shown below.

Iron	(Most reactive)
Tin	
Copper	(Least reactive)

Which combination of metal electrodes would give the highest voltage in the chemical cell in Figure 4?

Tick (\checkmark) one box.

Copper and iron

Iron and tin

Tin and copper \square

| $\mathbf{0}$ | $\mathbf{2} .4$ | $\mathbf{4}$ The voltage produced by the cell in Figure $\mathbf{4}$ depends on the type of electrodes and |
| :--- | :--- | :--- | the type of electrolyte.

Suggest one other factor that could affect the voltage produced.
\qquad
\qquad

| 0 | 2 | 5 |
| :--- | :--- | :--- | Water is produced in a hydrogen fuel cell.

Complete the word equation to show the reaction that produces water in a hydrogen fuel cell. ell.

0	3		This question is about Group 1 elements.		
0	3	1	Complete Table 2 to show the electronic structure of a potassium at		
			Table 2		
			Atom	Number of electrons	Electronic structure
			Sodium	11	2,8,1
			Potassium	19	

Table 2

| 0 | 3 | 2 |
| :--- | :--- | :--- | Why do Group 1 elements have similar chemical properties?

Tick (\checkmark) one box.

They have the same number of electron shells.

They have the same number of outer shell electrons.

They have two electrons in the first shell. \square

| 0 | 3 |
| :--- | :--- | $\mathbf{3}$ What is the type of bonding in sodium?

Tick (\checkmark) one box.

Covalent

Ionic

Metallic

Table 3 shows observations made when lithium, potassium and rubidium react with water.	
Element	Table 3
Lithium	Observations Bubbles slowly Floats Moves slowly
Potaum	1
Rubidium	Mubbles very quickly Melts into a ball Floats Moves very quickly Flame

0	3	4

Write your answers in Table 3.

| $\mathbf{0}$ | $\mathbf{3} . \boxed{5}$ | How does the reactivity of the elements change going down Group 1? |
| :--- | :--- | :--- | :--- | :--- |

| $\mathbf{0}$ | $\mathbf{3} .6$ |
| :--- | :--- | :--- | Give two ways in which the observations in Table $\mathbf{3}$ show the change in reactivity going down Group 1.

1
\qquad
2
\qquad

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{7}$ Which gas is produced when Group 1 elements react with water?

Tick (\checkmark) one box.

Carbon dioxide \square

Hydrogen \square
Nitrogen

Oxygen \square

0	3	8	Sodium fluoride is an ionic compound.

Figure 5 shows dot and cross diagrams for a sodium atom and a fluorine atom.

Complete Figure 5 to show what happens when a sodium atom and a fluorine atom react to produce sodium fluoride.

You should:

- complete the electronic structures of the sodium ion and the fluoride ion
- give the charges on the sodium ion and the fluoride ion.

Figure 5

Sodium atom

Sodium ion

Fluorine atom

Fluoride ion
Turn over for the next question Turn over

0	4	A student investigated the reactivity of metals with hydrochloric acid.

This is the method used.

1. Measure $50 \mathrm{~cm}^{3}$ of hydrochloric acid into a polystyrene cup.
2. Measure the temperature of the hydrochloric acid.
3. Add one spatula of metal powder to the hydrochloric acid and stir.
4. Measure the highest temperature the mixture reaches.
5. Calculate the temperature increase for the reaction.
6. Repeat steps 1 to 5 three more times.
7. Repeat steps 1 to 6 with different metals.

Table 4 shows the student's results.
Table 4

Metal	Temperature increase in ${ }^{\circ} \mathbf{C}$			Mean temperature								
	Trial 1	Trial 2	Trial 3	Trial 4	increase in ${ }^{\circ} \mathbf{C}$	$	$	Cobalt	6	7	5	9
:---	:---:	:---:	:---:	:---:								
Magnesium	54	50	37	55								
Zinc	18	16	18	20								

$\mathbf{0}$	$\mathbf{4}$.	$\mathbf{1}$ Calculate the mean temperature increase \mathbf{X} for magnesium in Table 4.

Do not include the anomalous result in your calculation.
Do not include the anomalous result in your calculation.
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4}$. | $\mathbf{2}$ Determine the order of reactivity for the metals cobalt, magnesium and zinc. |
| :--- | :--- | :--- | :--- |

Use Table 4.

Most reactive \qquad
\qquad
Least reactive \qquad

| 0 | 4 | 3 |
| :--- | :--- | :--- | The range of measurements either side of the mean shows the uncertainty in the mean temperature increase.

Complete the sentence.
Use Table 4.

The mean temperature increase for zinc is $18 \pm$ \qquad ${ }^{\circ} \mathrm{C}$
$\begin{array}{lll}0 & 4 & 4 \\ 4\end{array}$ What type of variable is the volume of hydrochloric acid in this investigation?
[1 mark]
Tick (\checkmark) one box.

Control

Dependent

Independent

0	4	5
5	Suggest one way of improving step 3 in the method to give results which are more	

\qquad
\qquad
\qquad

| 0 | 4 | 6 | Figure 6 shows a reaction profile for the reaction of magnesium with |
| :--- | :--- | :--- | :--- | hydrochloric acid.

Figure 6

What do labels A, B and Crepresent on Figure 6?
Choose answers from the box.

activation energy	energy	overall energy change
products	progress of reaction	reactants

A

B \qquad
C

0	$\mathbf{5}$	This question is about acids and alkalis.

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{1}$ Which ion do acids produce in aqueous solution?

Tick (\checkmark) one box.
OH^{-} \square
O^{2-} \square
$\begin{array}{lll}0 & 5 & 2\end{array}$ Acids react with alkalis.
What is the name of this type of reaction?
Tick (\checkmark) one box.

Decomposition \square
Electrolysis

Neutralisation

Redox

0	5	3

$\mathrm{H}_{2} \mathrm{SO}_{4}+$ \qquad $\mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$

$\mathbf{0}$	$\mathbf{5} .4$	$\mathbf{4}$ Universal indicator turns purple in potassium hydroxide solution.

What is the pH of the solution?
Tick (\checkmark) one box.
1

4 \square
7
\square
14
\square

A student does a titration to find the volume of sulfuric acid that reacts with $25 \mathrm{~cm}^{3}$ of potassium hydroxide solution.

Figure 7 shows the equipment used.
Figure 7

Which piece of equipment could the student use to measure the $25 \mathrm{~cm}^{3}$ of potassium hydroxide solution more accurately?

Tick (\checkmark) one box.

Beaker

Evaporating basin \square
Pipette

Test tube

| 0 | 5 | 6 |
| :--- | :--- | :--- | complete the titration.

\qquad

Turn over for the next question

0	6	This question is about metal carbonates.

A student investigated the reaction of copper carbonate with an acid.
Figure 8 shows the apparatus.
Figure 8

This is the method used.

1. Pour $25 \mathrm{~cm}^{3}$ of the acid into a conical flask.
2. Weigh 0.10 g of copper carbonate.
3. Remove the stopper and add the copper carbonate to the flask.
4. Quickly replace the stopper.
5. Record the maximum volume of gas collected in the gas syringe.
6. Repeat steps 1 to 5 with different masses of copper carbonate.

0	6	1

Figure 9

What is the reading on the gas syringe?

$\mathbf{0}$	$\mathbf{6}$	$\mathbf{2}$	The student plotted the results on a graph.

Figure 10 shows the student's graph.
Figure 10

Determine the gradient of the line of best fit.
You should:

- calculate the values of the change in y and the change in x
- calculate the gradient of the line of best fit.
\qquad
Change in $\mathrm{x}=$
Gradient \qquad
\qquad
Gradient $=$ \qquad $\mathrm{cm}^{3} / \mathrm{g}$

| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{3}$ Copper chloride was produced in the reaction. |
| :--- | :--- | :--- | :--- |

Which acid reacts with copper carbonate to produce copper chloride?
Tick (\checkmark) one box.

Hydrochloric acid

Nitric acid

Sulfuric acid

0	6	4

What was the gas?
Tick (\checkmark) one box.

Carbon dioxide

Chlorine

Hydrogen

Oxygen \square

A different student produced a pure, dry sample of copper chloride using the same reaction.

This is the method used.

1. Add excess copper carbonate to the acid.
2. Filter the mixture.
3. Heat the solution gently until crystals start to form.
4. Leave for 24 hours.
5. Remove the crystals.
6. Rinse with water and dry the crystals.

$\mathbf{0}$	6	$\mathbf{5}$ Why was the solution heated gently in step 3 ?

Tick (\checkmark) one box.

To evaporate acid

To evaporate copper carbonate

To evaporate water

| 0 | 6 |
| :--- | :--- | :--- |$. \begin{aligned} & \text { How should the solution be heated gently in step 3? }\end{aligned}$

There are no questions printed on this page

$\mathbf{0}$	$\mathbf{7} \quad$ This question is about electrolysis.

Some students investigated the electrolysis of silver nitrate solution.
This electrolysis produces silver at the negative electrode.
Figure 11 shows the apparatus.
Figure 11

This is the method used.

1. Weigh the negative electrode.
2. Set up the apparatus shown in Figure 11.
3. Switch on the power supply.
4. Switch off the power supply after five minutes.
5. Rinse the negative electrode with water and allow to dry.
6. Reweigh the negative electrode.
7. Repeat steps 1 to 6 for different times.

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{1}$	Some silver did not stick to the negative electrode but fell to the bottom of the beaker.

The students needed to weigh this silver.
How could the students separate the silver from the silver nitrate solution?
[1 mark]
Tick (\checkmark) one box.

By chromatography \square
By crystallisation

By distillation \square
By filtration

Table 5 shows the students' results.
Table 5

Time in minutes	Mass of silver in \mathbf{g}
0	0.00
5	0.06
10	0.12
15	0.18
20	0.24
25	0.30

| 0 | $\mathbf{7}$ | $\mathbf{2}$ Draw a graph on Figure 12. |
| :--- | :--- | :--- | :--- |

You should:

- use a suitable scale for the x-axis
- plot the data from Table 5
- draw a line of best fit.

Figure 12

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{3}$ Determine the mass of silver that would be produced after 12 minutes.

Use Figure 12.

Question 7 continues on the next page

0	$\mathbf{7}$	$\mathbf{4}$	A student investigated the electrolysis of two aqueous salt solutions.

Hydrogen is produced at the negative electrode when the metal in the salt solution is more reactive than hydrogen.

Complete Table 6 to show what the student would observe at the negative electrode for each salt solution.

Table 6

Salt solution	Observation at negative electrode
Copper sulfate	
Sodium chloride	

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{5}$ A teacher demonstrates the electrolysis of molten lead bromide. |
| :--- | :--- | :--- | :--- |

The products at the electrodes are lead and bromine.

Why should the teacher do the demonstration in a fume cupboard?
\qquad
\qquad

$\mathbf{0}$	$\mathbf{7} .6$	Two other molten compounds are electrolysed.

Complete Table 7 to show the molten compounds and the products.

Table 7

Molten compound electrolysed	Product at the negative electrode	Product at the positive electrode
Zinc chloride		
	Potassium	lodine

Turn over for the next question Turn over

$\mathbf{0}$	$\mathbf{8}$	This question is about carbon and its compounds.

Fullerenes are molecules of carbon atoms.
The first fullerene to be discovered was Buckminsterfullerene $\left(\mathrm{C}_{60}\right)$.

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{1}$ What shape is a Buckminsterfullerene molecule?

\qquad

0	8	2	$G i v e ~ o n e ~ u s e ~ o f ~ a ~ f u l l e r e n e . ~$

\qquad
\qquad

Propanone is a compound of carbon, hydrogen and oxygen.
Figure 13 shows the dot and cross diagram for a propanone molecule.
Figure 13

0	8	3	Complete Figure 14 to show a propanone molecule.

Use a line to represent each single bond.
Use Figure 13.

Figure 14

0	8	4

Use Figure 13.
\qquad

0	8	5
5		

Why does propanone have a low boiling point?
Tick (\checkmark) one box.

The covalent bonds are strong.

The covalent bonds are weak.

The intermolecular forces are strong.

The intermolecular forces are weak.

0	8	6	Figure 15 represents the structure of graphite.

Figure 15

Explain why graphite is:

- a good electrical conductor
- soft and slippery.

You should answer in terms of structure and bonding.
.
\qquad

0	9	This question is about atomic structure and the periodic table.

Gallium (Ga) is an element that has two isotopes.

$\mathbf{0}$	$\mathbf{9} .1$	$\mathbf{1}$ Give the meaning of 'isotopes'.

You should answer in terms of subatomic particles.
\qquad
\qquad
\qquad
\qquad

| 0 | 9 | 2 | Table 8 shows the mass numbers and percentage abundances of the |
| :--- | :--- | :--- | :--- | isotopes of gallium.

Table 8

Mass number	Percentage abundance (\%)
69	60
71	40

Calculate the relative atomic mass $\left(A_{r}\right)$ of gallium.
Give your answer to 1 decimal place.
\qquad
\qquad
\qquad
\qquad
Relative atomic mass (1 decimal place) $=$ \qquad

Gallium (Ga) is in Group 3 of the modern periodic table.					
(9.3 Give the numbers of electrons and neutrons in an atom of the isotope ${ }_{31}^{9} \mathrm{Ga}$ [2 marks]					
Number of electrons					
Number of neutrons					
0 9			What is the most likely formula of a gallium ion?		
Tick (\checkmark) one box.					
Ga^{+}					
Ga^{-}					
Ga^{3+}					
Ga^{3-}					

Number of electrons \qquad

Number of neutrons \qquad

Tick (\checkmark) one box.

Ga+

Ga^{-}

Ga
\square

0	9	5

Give two reasons why the discovery of gallium helped Mendeleev's periodic table to become accepted.
[2 marks]
1
\qquad
2 \qquad

Element \mathbf{R} is extracted from its oxide by reduction with hydrogen.
The equation for the reaction is:

$$
3 \mathrm{H}_{2}+\mathbf{R O}_{3} \rightarrow \mathbf{R}+3 \mathrm{H}_{2} \mathrm{O}
$$

| $\mathbf{1}$ | $\mathbf{0}$. | $\mathbf{1}$ The sum of the relative formula masses $\left(M_{r}\right)$ of the reactants $\left(3 \mathrm{H}_{2}+\mathbf{R O}_{3}\right)$ is 150 |
| :--- | :--- | :--- | Calculate the relative atomic mass $\left(A_{r}\right)$ of \mathbf{R}.

Relative atomic masses $\left(A_{r}\right): \quad H=1 \quad O=16$
\qquad
\qquad
\qquad
\qquad
Relative atomic mass $\left(A_{r}\right)$ of $\mathbf{R}=$

$$
{ }^{2}
$$

\qquad

1	0	2
	2	
Identify element R.		

You should use:

- your answer to question 10.1
- the periodic table.

Identity of $\mathbf{R}=$ \qquad

$\mathbf{1}$	$\mathbf{0}$.3	$\mathbf{3}$

The equation for the reaction is:

$$
\mathrm{SnO}_{2}+\mathrm{C} \rightarrow \mathrm{Sn}+\mathrm{CO}_{2}
$$

Calculate the percentage atom economy for extracting tin in this reaction.
Relative atomic masses $\left(A_{r}\right): \quad C=12 \quad O=16 \quad S n=119$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Percentage atom economy = \qquad \%

Question 10 continues on the next page

1	0	4

Tungsten is extracted from tungsten oxide $\left(\mathrm{WO}_{3}\right)$.
All other solid products from the extraction method must be separated from the tungsten.

Table 9 shows information about three possible methods to extract tungsten from tungsten oxide.

Table 9

Method	Reactant	Relative cost of reactant	Products
1	Carbon	Low	Tungsten solid Carbon dioxide gas Tungsten carbide solid
2	Hydrogen	High	Tungsten solid Water vapour
3	Iron	Low	Tungsten solid Iron oxide solid

Evaluate the three possible methods for extracting tungsten from tungsten oxide.
\qquad

END OF QUESTIONS

There are no questions printed on this page

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team

Copyright © 2021 AQA and its licensors. All rights reserved.

