Oxford Cambridge and RSA

GCE

Physics A

Unit H156/02: Depth in physics
Advanced Subsidiary GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
3	Incorrect response
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
TE	Transcription error
NBOD	Benefit of doubt not given
POT	Power of 10 error
\wedge	Omission mark
SF	Error in number of significant figures
\checkmark	Correct response
2	Wrong physics or equation
BP	Blank Page

Abbreviations, annotations and conventions

Annotation	Meaning
reject	alternative and acceptable answers for the same marking point
not	Answers which are not worthy of credit
Ignore	Answers which are not worthy of credit
Allow	Answers that can be accepted
$\mathbf{(l)}$	Words which are not essential to gain credit
-	Error carried forward
ECF	Alternative wording
ORA	Or reverse argument

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: \quad These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent Amarks can be scored

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C-mark is given

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored

Note about significant figures:

If the data given in a question is to 2 sf, then allow to 2 or more significant figures.
If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.
Any exception to this rule will be mentioned in the Guidance.

Question			Answer	Marks	Guidance
1	(a)		Transverse: vibrations /oscillations are perpendicular / right angles to the direction of travel / energy transfer (AW) Longitudinal: vibrations /oscillations are parallel to / in the same direction as the direction of travel / energy transfer (AW)	B1 B1	Allow 1 mark for 'For one of the waves, the oscillations / vibrations are at right angles and for the other they are parallel to the direction of travel' (AW) Not move for vibrations / oscillations Allow 1 mark for transverse (waves) can be polarised ORA
	(b)	(i)	40 (mV)	B1	
		(ii)	$\begin{aligned} & (T=) 3 \times 0.5=1.5(\mathrm{~ms}) \\ & f=670(\mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: Answer to 3 SF is $667(\mathrm{~Hz})$ Note: 0.67 or 0.667 scores 1 mark
		(iii)	$\begin{aligned} & (330=670 \times \lambda) \\ & \lambda=0.49(\mathrm{~m}) \end{aligned}$	B1	Possible ECF from (b)(ii) Note: $\lambda=0.495(\mathrm{~m})$ if 667 Hz is used, therefore allow 0.50 or $0.5(\mathrm{~m})$ here
	(c)		Amplitude / height (of trace / signal) is smaller $I \propto A^{2}$ and amplitude (of sound or signal) is halved / amplitude is 2 div / amplitude is $20(\mathrm{mV})$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Note this will also score the first B1 mark
			Total	8	

Question			Answer	Marks	Guidance
2	(a)	(i)	(When two or more waves meet at a point) the resultant displacement is equal to the sum of the displacements of the (individual) waves.	B1	Allow: net / total for 'resultant' Not amplitude
		(ii)	There is a constant / fixed phase difference (between the waves)	B1	Allow constant / fixed phase relationship Ignore 'the frequency / wavelength is the same' Not the same phase difference Not zero phase difference
	(b)		1. λ 2. $\frac{3 \lambda}{2}$ or 1.5λ	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
	(c)		$\lambda=\frac{a x}{D}$ stated and D and λ are constants. Separation decreases (AW)	M1 A1	Allow $x \propto a^{-1}$ Allow other correct answers, e.g. in terms of path difference and angles
			Total	6	

Question			Answer	Marks	Guidance
4	(a)		$\begin{aligned} & (1 \mathrm{C}=)(1) \mathrm{A} \mathrm{~s} \\ & (1 \mathrm{~J}=)(1) \mathrm{kg} \mathrm{~m} \mathrm{~s}^{-2} \times \mathrm{m} \quad \text { or } \quad \text { (1) } \mathrm{N}=(1) \mathrm{kg} \mathrm{~m} \mathrm{~s}^{-2} \\ & V=\frac{\mathrm{kg} \mathrm{~ms}^{-2} \times \mathrm{m}}{\mathrm{As}}=\frac{\mathrm{kgm}^{2} \mathrm{~s}^{-2}}{\mathrm{As}} \\ & \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~A}^{-1} \mathrm{~s}^{-3} \end{aligned}$	C1 C1 M1 AO	Allow alternative methods Note this mark is for clear substitution and working
	(b)	(i)	$\begin{aligned} & \text { p.d. across } 1.2 \mathrm{k} \Omega=0.9 \mathrm{~V} \\ & \frac{R_{L D R}}{1200}=\frac{5.1}{0.9} \quad \text { or } \quad \text { determines current and } R=5.1 / \mathrm{l} \\ & R_{\mathrm{LDR}}=6800(\Omega) \\ & \text { Or } 5.1=\frac{R}{R+1.2} \times 6.0 \\ & 0.9 R=6.12 \quad \text { or } \quad 0.15 R=1020 \\ & R_{\mathrm{LDR}}=6.8(\mathrm{k} \Omega) \end{aligned}$	C1 C1 AO C1 C1 AO	Allow: $6.8 \mathrm{k}(\Omega)$ Allow $\frac{6.8}{6.8+1.2} \times 6.0=5.1$ for two marks Allow: 6800(Ω)
		(ii)	$\begin{aligned} & \left(I=\frac{5.1}{6800}=\frac{6}{8000}=\frac{0.9}{1200}\right) \\ & \text { current }=7.5 \times 10^{-4}(\mathrm{~A}) \end{aligned}$	B1	
	(c)		Resistance of LDR decreases / (total) resistance (of circuit) decreases (AW) Current / ammeter reading increases (AW) With increase in current the p.d. across (fixed) resistor / $1.2 \mathrm{k} \Omega$ resistor increases (AW) (For fixed e.m.f.) voltmeter reading decreases (AW)	M1 A1 B1 B1	Allow p.d. across resistor increases / p.d. across LDR decreases / resistor has greater share of p.d. / LDR has smaller share of p.d.
			Total	10	

Question		Answer	Marks		
$\mathbf{5}$	(a)		$\begin{array}{l}(V=) \frac{0.1}{5300} \\ 1.89 \times 10^{-5}\left(\mathrm{~m}^{3}\right)\end{array}$	M1	Note the mark is for substitution of values
	(b)	(i)	$\begin{array}{l}\text { To ensure whole cross-sectional area or end of the } \\ \text { conducting putty is in contact with the metal plate (AW) }\end{array}$	B1	$\begin{array}{l}\text { Not good electrical contact / reduces contact resistance } \\ \text { /surface area }\end{array}$
	(ii)	$\begin{array}{l}\text { Use a (Vernier) caliper } / \text { micrometer (screw gauge) } \\ \text { Repeat measurements along the conducting putty }\end{array}$	B1	Allow ruler	
B1					

Question			Answer	Marks	Guidance
6	(a)		Level 3 (5-6 marks) Clear procedure, measurements and analysis There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some procedure, some measurements and some analysis. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Limited procedure and limited measurements or limited analysis The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.	$\begin{aligned} & \text { B1 } \\ & \text { x6 } \end{aligned}$	Indicative scientific points may include: Procedure - labelled diagram - incremental increase in load / mass until wire breaks - method of attaching wire at fixed end - method of attaching load at other end - use of safety screen / goggles to protect eyes - method of securing retort stand Measurements - measurement of load / mass - measurement of diameter - use micrometer to measure diameter - averages diameter - repeats experiment Analysis - equation to determine force, e.g. mg - equation to determine cross-sectional area or $A=\pi r^{2}$ - $\quad(b r e a k i n g)$ stress $=(\max)$ force $/$ cross-sectional area or $\sigma=\frac{F}{A}$
	(b)		Glass: A straight line from the origin. Rubber: A correct sketch for loading and unloading sections, with the graph starting and finishing at the origin.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Ignore arrows Allow either arrows or labelled curves
			Total	8	

	uest	Answer	Marks	Guidance
7	(a)	Level 3 (5-6 marks) Clear explanation of observations and clear evidence of particulate nature of electromagnetic waves There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Clear explanation of observations or clear evidence of particulate nature of electromagnetic waves or has limited explanation of observations and limited evidence of particulate nature of EM radiation There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Has limited explanation of observations or limited evidence of particulate nature of EM radiation The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.	B1	Indicative scientific points may include: Explanation of Observations - Discharge due to the emission of electrons / negative charge - Intensity depends on distance - Rate of incident photons is more at smaller distances - Greater intensity / rate of uv photons linked to quicker fall - uv causes instantaneous discharge - No effect with light - Intensity of light has no effect on the discharge - Natural discharge over a long period of time Evidence of particulate nature of em - Wave theory suggests leaf would fall with light - Photon as packet of energy - One to one interaction - uv photon greater energy than work function/greater frequency than threshold frequency - Light photons have less energy than the work function - $E=h f /$ photon energy depends on frequency - Energy of photon independent of intensity - Energy conserved in interaction - Einstein's equation (words or symbol)

Question		Answer	Marks	Guidance
8	(a)	$\begin{aligned} & \text { (kinetic energy =) } 1.6 \times 10^{-19} \times 300 \\ & \mathrm{eV}=\frac{1}{2} m v^{2} \\ & v=\sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 300}{9.11 \times 10^{-31}}} \\ & \text { speed }=1.03 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 0 \end{aligned}$	Note 1.05×10^{14} scores 2 marks; omitted square rooting
	(b)	$\begin{aligned} & \lambda=\frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 1.0 \times 10^{7}} \\ & \lambda=7.3 \times 10^{-11}(\mathrm{~m}) \end{aligned}$	C1 A1	Allow ECF from (a) Allow 2 marks for $7.1 \times 10^{-11}, v=1.03 \times 10^{7}$ used
	(c)	Momentum / (kinetic) energy / speed (of electrons) increases / (de Broglie) wavelength decreases Radius / diameter of rings decreases / pattern becomes 'smaller' (AW) or the rings are now brighter	B1 B1	
		Total	7	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

