Oxford Cambridge and RSA

GCE

Physics A

Unit H156/01: Breadth in physics
Advanced Subsidiary GCE
Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations available in RM Assessor

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
3	Incorrect response
ECF	Error carried forward
L1	Level 1
L2	Level 2
43	Level 3
TE	Transcription error
NBOD	Benefit of doubt not given
POT	Power of 10 error
\bigcirc	Omission mark
SF	Error in number of significant figures
\checkmark	Correct response
2	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
reject	alternative and acceptable answers for the same marking point
not	Answers which are not worthy of credit
Ignore	Answers which are not worthy of credit
Allow	Statements which are irrelevant
()	Answers that can be accepted
-	Words which are not essential to gain credit
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the \mathbf{C}-mark is given.
\mathbf{M} marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Note about significant figures

If the data given in a question is to 2 sf, then allow to 2 or more significant figures.
If an answer is given to fewer than 2 sf , then penalise once only in the entire paper.
Any exception to this rule will be mentioned in the Guidance.

SECTION A

Question	Answer	Marks	
1	C	1	
2	B	1	
3	C	1	
4	D	1	
5	B	1	
6	A	1	
7	B	1	
8	B	1	
9	A	1	
10	C	1	
11	D	1	
12	B	1	
13	C	1	
14	C	1	
15	C	1	
16	A	1	
17	D	1	
18	C	1	
19	D	1	
20	B	1	
		20	

Question			Answer	Marks	Guidance
21	(a)		Mass is a scalar (quantity) and velocity is a vector (quantity). (Addition of) velocity depends on direction / sign / vector triangle / resolving (ORA)	B1 B1	Allow 'Velocity can be cancelled out'
	(b)	(i)	An arrow from trolley to ramp along the string (for the tension) and a downwards arrow from the trolley (for the weight).	B1	Allow arrows in correct directions anywhere on Fig. 21 Not arrow for the tension parallel to the ramp Not arrow perpendicular to the ramp for the weight Not two arrow heads in opposite directions along the string for the tension
		(ii)	$\begin{aligned} & \left(s=1 / 2 a t^{2}\right) ; 0.80=1 / 2 \times 3.0 \times t^{2} \quad \text { (Any subject) } \\ & t=0.73(\mathrm{~s}) \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { A1 } \end{aligned}$	Note: Apply SF penalty if 0.7 s is on the answer line or the final answer Allow 1 mark for $0.40(\mathrm{~s}) ; 9.8 \mathrm{~m} \mathrm{~s}^{-2}$ used instead of $3.0 \mathrm{~m} \mathrm{~s}^{-2}$ Allow full credit for alternative methods, e.g: $\begin{align*} & v^{2}=2 \times 0.80 \times 3.0 ; v=2.19\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & t=\frac{2.19}{3.0} \tag{C1}\\ & t=0.73(\mathrm{~s}) \end{align*}$
			Total	5	

Question			Answer	Marks	Guidance Not force $=$ mass \times acceleration Not 'force \propto change in momentum over time'
24	(a)		(Resultant) force is (directly) proportional / equal to the rate of change of momentum	B1	
	(b)	(i)	Any two from: momentum, (total) energy and mass	B1	Not: kinetic energy
		(ii)	The force will have the same magnitude (at any time t) The force is in the opposite direction / has negative value	B1 B1	Not 'This is because action = reaction' Not Newton's third law Allow 1 mark for a correct graph if there is no description or explanation
	(c)		Method 1: Momentum is conserved $\begin{aligned} & 1.7 \times 10^{-27} \times 500 \text { or } 1.7 \times 10^{-27} \times(-) 420 \text { or } 2.0 \times 10^{-26} \times v \\ & 1.7 \times 10^{-27} \times 500=1.7 \times 10^{-27} \times-420+2.0 \times 10^{-26} \times v \\ & v=78\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ Method 2: Kinetic energy is conserved $\begin{aligned} & 1 / 2 \times 1.7 \times 10^{-27} \times 500^{2} \text { or } 1 / 2 \times 1.7 \times 10^{-27} \times 420^{2} \text { or } \\ & 1 / 2 \times 2.0 \times 10^{-26} \times v^{2} \\ & 1 / 2 \times 1.7 \times 10^{-27} \times 500^{2}=1 / 2 \times 1.7 \times 10^{-27} \times 420^{2}+1 / 2 \times 2.0 \times \\ & 10^{-26} \times v^{2} \\ & v=79\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 C1 A1 C1 C1 A1	Allow 1 mark for $6.8\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$; +420 used instead of -420 Allow full credit for correct use of 'velocity of approach = velocity of recession', e.g: $\begin{aligned} & \text { 'speed' of approach }=(-) \text { 'speed' of recession C1 } \\ & 500=v+420 \\ & V=80\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$
			Total	7	

Question		Answer	Marks	Guidance		
(b)	Circuit with cell in series with an ammeter and variable resistor. A voltmeter is connected across the variable resistor / (terminals of the) cell	B1	Allow this B1 mark for a clearly drawn circuit with correct symbols for the cell, variable resistor, voltmeter and ammeter. Allow a battery symbol instead of symbol for a cell			
Measure current and p.d. / voltage across variable resistor						
/ cell					\quad B1	Allow 'terminal p.d.' for p.d. across the cell
:---						
Allow 'measure I and V if the circuit is correct						
Allow 'measure voltmeter and ammeter readings' if the						
circuit is correct						
Possible ECF for incorrect symbol for variable resistor						

Question			Answer	Marks	Guidance
26	(a)	(i)	\mathbf{A} and \mathbf{B} move in opposite directions	B1	Allow \mathbf{A} is moving up and \mathbf{B} is moving down (or vice versa) Allow they have a phase difference of $180^{(0)}$ or $\pi(\mathrm{rad})$ Allow they are in antiphase
		(ii)	$\begin{aligned} & \lambda=0.80(\mathrm{~m}) \\ & v=f \lambda ; \quad v=75 \times 0.80 \\ & v=60\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & \text { absolute uncertainty }=\frac{2.0}{40} \times 60 \\ & \text { absolute uncertainty }=3.0\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 A1 A1	Allow 80 (cm) for this C1 mark Allow 1 mark for $30\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ from the C1A1 marks; $\lambda=0.40$ m used Note $60 \pm 3\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ scores full marks Allow 2 marks for $6000 \pm 300\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$; λ in cm (POT error) Allow 2 marks for $30 \pm 1.5\left(\mathrm{~m} \mathrm{~s}^{-1}\right) ; \lambda=0.40 \mathrm{~m}$ used
	(b)	(i)	Reflection (of progressive waves) at (fixed) end(s) / X/Y Superposition (of these waves gives rise to the stationary wave)	B1 B1	Allow: 'interference' instead of 'superposition'
		(ii)	The wavelength is twice the length of cord / distance between \mathbf{X} and \mathbf{Y}	B1	Allow $\lambda=2 \mathrm{XY}$ or equivalent
			Total	7	

Question		Answer	Marks	Guidance
27	(a)	-1.0 V to $2.6 \mathrm{~V}: I=0 /$ negligible and $R=\infty /$ (very) large (AW) 2.6 V to 3.0 V : R decreases 3.0 V to 3.4 V : R decreases Justification of a B1 point in terms of $R=V / I$. For example to show: - R is infinite: $R=2.0 / 0=\infty$ - R decreases: R calculated once and has $R=\infty$, or R calculated twice	B1 B1 B1 B1	Allow 'rapid decrease in R ' Allow 'slow decrease in R ' Not R is constant (because it is a straight line) Not $R=$ gradient $^{-1}$ Ignore powers of 10 and units Note: V and I values within ± 1 small square
	(b)	(The circuit does not work because) the LED is reverse biased / incorrect polarity of the cell (AW) V must be greater than 2.6 (V for the LED to be lit) Use two (or more 1.5 V) cells (in series) / use a supply greater than 2.6 (V) / use a $3.0(\mathrm{~V})$ supply	B1 B1 B1	Allow: (For the circuit to work) the LED must be forwardbiased / 'reverse the LED' / 'reverse the cell' Allow $\pm 0.1 \mathrm{~V}$ Not V must be equal to / 'at least' 2.6 V Allow this mark even if the LED is reverse biased Note: This B1 mark can be scored on Fig. 27.2 Allow this mark even if the LED is reverse biased
	(c)	$\begin{aligned} & E=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{480 \times 10^{-9}} \text { or } E=4.1(4) \times 10^{-19}(\mathrm{~J}) \\ & N=\frac{1.2 \times 10^{-3}}{4.1(4) \times 10^{-19}} \\ & N=2.9 \times 10^{15}\left(\mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
		Total	10	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
GROUP
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

