AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s) \qquad
Candidate signature \qquad
AS

PHYSICS

Paper 1

Tuesday 14 May 2019
Morning
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
TOTAL	

- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70 .
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Answer all questions in the spaces provided.	
0 1	Deuterium is an isotope of hydrogen. Its nucleus contains one proton and one neutron.
	Calculate the specific charge of the deuterium nucleus.

specific charge $=$ \qquad $\mathrm{C} \mathrm{kg}^{-1}$

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ The proton and neutron in the deuterium nucleus are held together by the strong |
| :--- | :--- | :--- | :--- | nuclear force.

Which is an exchange particle of the strong nuclear force?
Tick (\checkmark) one box.
muon

photon

pion

W^{+}boson

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$ The deuterium nucleus is stable.

Describe how the variation of the strong nuclear force with distance contributes to the stability of the deuterium nucleus.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 1 continues on the next page

| $\mathbf{0}$ | $\mathbf{1}$ | .4 |
| :--- | :--- | :--- | Tritium is an isotope of hydrogen. Its nucleus contains one proton and two neutrons. Tritium undergoes radioactive decay.

Three modes of radioactive decay are

- alpha decay
- beta minus (β^{-}) decay
- electron capture.

Deduce which of these modes could produce the nucleus of another element when the tritium nucleus decays.
\qquad

| $\mathbf{0}$ | $\mathbf{2}$ | A battery of emf 7.4 V and negligible internal resistance is used to power a heating |
| :--- | :--- | :--- | element inside a glove. The heating element has a resistance of 3.7Ω.

$\mathbf{0}$	$\mathbf{2}$	l
$\mathbf{1}$		

Calculate the energy dissipated in the heating element in this time.
\qquad

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{2}$ The length of the heating element needed is about 0.85 m. |
| :--- | :--- | :--- | The designer considers using a carbon fibre tape for the heating element. Table 1 gives information for the carbon fibre tape.

Table 1

Cross-sectional area / m	
$\mathbf{2}$	Resistivity $/ \Omega \mathbf{m}$
4.9×10^{-6}	2.0×10^{-5}

Deduce whether the carbon fibre tape is suitable for making the heating element for the glove.

Question 2 continues on the next page

| $\mathbf{0}$ | $\mathbf{2}$. | 3 |
| :--- | :--- | :--- | A light emitting diode (LED) is used to indicate that the switch in the glove is closed,

Figure 1

Figure 2 shows part of the characteristic graph for the LED.
Figure 2

The circuit is designed so that the potential difference across the LED is 2.2 V when the switch is closed.

Calculate the resistance of R .
\qquad

0	3	$F i g u r e$
3		

Figure 3

Two identical stretched elastic ropes are fixed to a cage with passengers inside. The loaded cage is held in place by a clamp. When the clamp is released the elastic ropes accelerate the loaded cage vertically into the air.
\mathbf{P} is the point where the rope attaches to the top of the vertical tower.
\mathbf{Q} is the point where the rope attaches to the cage. \mathbf{Q} is level with the centre of mass of the loaded cage.

Before release, the tension T in each elastic rope is $3.7 \times 10^{4} \mathrm{~N}$ and each rope makes an angle of 20° with the vertical tower.

The total mass M of the loaded cage is $1.2 \times 10^{3} \mathrm{~kg}$ and the mass of the elastic ropes is negligible.

| $\mathbf{0}$ | $\mathbf{3} . \mathbf{1}$ Show that the downward force F exerted by the clamp on the loaded cage is about |
| :--- | :--- | :--- | $6 \times 10^{4} \mathrm{~N}$.

0	3	2

\qquad

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{3}$ The unstretched length of each elastic rope is 24 m . The ropes obey Hooke's Law for |
| :--- | :--- | :--- | :--- | all extensions used in the ride.

The vertical distance between points \mathbf{P} and \mathbf{Q} on Figure $\mathbf{3}$ is 35 m .
Show that the total elastic potential energy stored in both ropes before the loaded cage is released is about $5 \times 10^{5} \mathrm{~J}$.

| 0 | 3 | 4 |
| :--- | :--- | :--- | The designers of the ride claim that the loaded cage will reach a height of 50 m above \mathbf{Q}.

Deduce whether this claim is justified.

| 0 | 3 | 5 |
| :--- | :--- | :--- | $90 \mathrm{~km} \mathrm{~h}^{-1}$.

Calculate, in J, the kinetic energy of the loaded cage when it travels at $90 \mathrm{~km} \mathrm{~h}^{-1}$.
[3 marks]
kinetic energy = J

0	3	6

[1 mark]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	4	In 1870 John Tyndall sent a beam of light along a stream of water.

Figure 4 shows a modern version of Tyndall's experiment using a laser beam.
Water has a refractive index of 1.33

Figure 4

0	$\mathbf{4} .1$	Explain why the laser beam stays inside the stream of water.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	4	.2

Give your answer to an appropriate number of significant figures.

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{3}$ Calculate the critical angle for the water-air boundary. |
| :--- | :--- | :--- | :--- |

critical angle $=$ \qquad degrees

0	4	4	Tyndall's experiment led to the development of optical fibres.

Figure 5 shows a step-index optical fibre.
Figure 5

Discuss the properties of a step-index optical fibre.
Your answer should include:

- the names of part \mathbf{X} and part \mathbf{Y}
- a description of the functions of \mathbf{X} and \mathbf{Y}
- a discussion of the problems caused by material dispersion and modal dispersion and how these problems can be overcome.
\qquad
Question 4 continues on the next page

| 0 | 4 | 5 | Scientists use optical fibres to monitor earthquakes. Light travelling through an optical |
| :--- | :--- | :--- | :--- | fibre can be reflected by impurities in the fibre, as shown in Figure 6.

Figure 6

Earthquakes bend the optical fibre slightly, as shown in Figure 7. This changes the amount of reflected light.

Figure 7

Suggest why the amount of reflected light changes as the fibre bends.
You may draw on Figure 7 as part of your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	4	6

Describe the difference between longitudinal waves and transverse waves.
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| 0 | 5 | A student investigates moments by suspending a 100 cm ruler from two force meters, |
| :--- | :--- | :--- | \mathbf{A} and \mathbf{B}. A and \mathbf{B} are attached to the ruler 12.0 cm from each end. Their supports are adjusted to make \mathbf{A} and \mathbf{B} vertical and the ruler horizontal.

Figure 8 is a simplified diagram of the experiment.
Figure 8

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | The ruler is uniform and weighs 1.12 N .

Determine the reading on \mathbf{A}.
reading $=$ \qquad N

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{2}$ The student suggests that the forces exerted on the ruler by \mathbf{A} and \mathbf{B} act as a couple.

Discuss whether his suggestion is correct.
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\begin{array}{lll}\mathbf{0} & \mathbf{5} & .3\end{array}$ The student hangs a mass of weight W on the ruler between \mathbf{A} and \mathbf{B}, as shown in
Figure 9.
He adjusts the supports so that \mathbf{A} and \mathbf{B} are again vertical and the ruler is horizontal. The mass hangs at a distance d from \mathbf{A}.

Figure 9

The reading on \mathbf{A} is 0.82 N and the reading on \mathbf{B} is 0.62 N .
Determine

- W
- d.

$$
\begin{aligned}
W & =\mathrm{C}^{\mathrm{N}} \\
d & =\square \mathrm{m}
\end{aligned}
$$

0	5	.4	A second student sets up the same apparatus as shown in Figure 9.

She suspends the mass in the same position on the ruler as in question 05.3.
She moves the supports to make \mathbf{A} and \mathbf{B} vertical but does not make the ruler horizontal.

Discuss whether the readings on \mathbf{A} and \mathbf{B} taken by this student are different to those in question 05.3.
\qquad
\qquad
\qquad
\qquad
\qquad

0	6

An atom of antihydrogen contains the antiparticle of the proton and the antiparticle of the electron.

$\mathbf{0}$	$\mathbf{6} \cdot \mathbf{1}$	State what is meant by an antiparticle.

\qquad
\qquad
\qquad

0	6	2
2	Complete Table 2 with the names of the antiparticles in an atom of antihydrogen.	

[2 marks]
Table 2

Name of particle	Name of antiparticle
proton	
electron	

Question 6 continues on the next page

0	6	3	The particles in antihydrogen can be made by pair production.

Calculate the total minimum energy, in J, needed to produce the particles in one atom of antihydrogen.

Explain in terms of energy changes how line emission spectra are produced.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

