AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

AS

PHYSICS

Paper 1

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet
- a protractor.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70 .
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | Identify the number of neutrons in a nucleus of polonium-210 $\left({ }_{84}^{210} \mathrm{Po}\right)$.

Tick (\checkmark) one box.

84

126

210

294

| $\mathbf{0}$ | $\mathbf{1} .2$ | $\mathbf{2}$ polonium-210 nucleus is formed when a stationary nucleus of bismuth-210 decays. |
| :--- | :--- | :--- | A beta-minus (β^{-}) particle is emitted in this decay.

Outline, with reference to β^{-}decay, why bismuth-210 and polonium- 210 have different proton numbers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ | Explain how the data in Figure 1 support the hypothesis that a third particle is |
| :--- | :--- | :--- | :--- | produced during β^{-}decay.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 1 continues on the next page

| 0 | 1 | .4 |
| :--- | :--- | :--- | This third particle is an electron antineutrino.

Explain why an electron antineutrino, rather than an electron neutrino, is produced during β^{-}decay.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | $\mathbf{1}$ | .5 | A large tank of water is used as part of an electron antineutrino detector. |
| :--- | :--- | :--- | :--- | An electron antineutrino \bar{v}_{e} enters the tank and interacts with a proton (p).

Figure 2 represents this interaction.
Figure 2

Identify \mathbf{X} and \mathbf{Y}.
$\mathbf{X}=$ \qquad
$\mathbf{Y}=$ \qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{6}$ The positron produced in the interaction in Figure $\mathbf{2}$ slows down and collides with a |
| :--- | :--- | :--- | :--- | lepton in a molecule of water.

Describe the process that occurs when the positron collides with this lepton.
In your answer you should identify the lepton in the molecule of water.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$	l
$\mathbf{7}$	The range of the electromagnetic interaction is infinite.	

Table 1 gives the range of the strong nuclear interaction and the range of the weak nuclear interaction.

Table 1

Interaction	Range / m
strong nuclear	10^{-15}
weak nuclear	10^{-18}

Deduce whether the positron or the electron antineutrino is likely to travel the shorter distance in the tank of water before interacting.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$ A student removes the reflective layer from a DVD. She uses the DVD as a |
| :--- | :--- | :--- | transmission diffraction grating.

Figure 3 shows light from a laser pointer incident normally on a small section of this diffraction grating. The grooves on this section act as adjacent slits of the transmission diffraction grating.
A vertical pattern of bright spots (maxima) is observed on a circular screen behind the disc.

Figure 3
enlarged view of the small section of the DVD showing slits in this diffraction grating

| 0 | 2 | 1 | Light of wavelength λ travels from each illuminated slit, producing maxima on the |
| :--- | :--- | :--- | :--- | screen.

State the path difference between light from adjacent slits when this light produces a first-order maximum on the screen.
\qquad

| $\mathbf{0}$ | $\mathbf{2} . \mathbf{2}$ Explain how light from the diffraction grating forms a maximum on the screen. |
| :--- | :--- | :--- |

[3 marks]

Question 2 continues on the next page

The student has three discs: a Blu-ray disc, a DVD and a CD. She re reflective coating from the discs so that they act as transmission diffra These diffraction gratings have different slit spacings. The student also has two laser pointers A and B that emit different colour light. Table $\mathbf{2}$ and Table 3 show information about the discs and the laser p \qquadDisc Table $\mathbf{2}$ Blu-ray disc spacing / $\boldsymbol{\mu \mathbf { m }}$ DVD$\quad 0.32$
CD

Table 3

Laser pointer	Wavelength of light emitted $/ \mathbf{1 0}^{\mathbf{- 7}} \mathbf{~ m}$
A	4.45
B	6.36

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{3}$ Deduce the combination of disc and laser pointer that will produce the greatest |
| :--- | :--- | :--- | possible number of interference maxima.

\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{4}$ The student uses the CD and laser pointer \mathbf{B} as shown in Figure 4. A diffraction |
| :--- | :--- | :--- | :--- | pattern is produced on the screen. Laser pointer \mathbf{B} and the $C D$ are in fixed positions. The laser beam is horizontal and incident normally on the CD. The height of the screen can be adjusted.

Figure 4
laser pointer B in a fixed position

The screen has a diameter of 30 cm and is positioned behind the CD at a fixed horizontal distance of 15 cm .
The student plans to adjust the height of the screen until she observes the greatest number of spots.

The student predicts that, using this arrangement, the greatest number of spots on the screen will be 3 .

Determine whether the student's prediction is correct.

0	3

The spacecraft has an array of blocks designed to capture small dust particles from the comet's tail.

Figure 5

To test the blocks before launch, a spherical dust particle \mathbf{P} is fired at a right angle to the surface of a fixed, stationary block.
\mathbf{P} has a mass of $1.1 \times 10^{-9} \mathrm{~kg}$. It has a speed of $5.9 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$ when it hits the surface of the block.
P comes to rest inside the block.

\qquad J
 The resultant force on \mathbf{P} varies as it penetrates the block.

Calculate the average force acting on \mathbf{P} as it is brought to rest.

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{3}$ The block is rectangular with an area of cross-section of $8.0 \mathrm{~cm}^{2}$ and a thickness |
| :--- | :--- | :--- | :--- | of 3.0 cm .

Figure 6 shows how the density of the block varies with depth up to its maximum thickness.

Figure 6

Calculate the mass of the block.
\qquad kg

Question 3 continues on the next page

| $\mathbf{0}$ | $\mathbf{3} .4$ | $\mathbf{4}$ In another test, a spherical particle \mathbf{Q} is fired at a right angle to the surface of an |
| :--- | :--- | :--- | identical block.

\mathbf{Q} has the same mass as \mathbf{P} and is travelling at the same speed as \mathbf{P} when it strikes the surface of the block.
\mathbf{Q} is made from a less dense material than \mathbf{P}.
Compare the distance travelled by \mathbf{Q} with that travelled by \mathbf{P} as they are brought to rest. rest.
\qquad
\qquad
\qquad
\qquad
\qquad
Turn over for the next question Turn over

Figure 7 shows an athlete holding a vaulting pole at an angle of 40° to the horizontal.

Figure 7

Forces D and U are exerted on the pole by the athlete's right and left hands respectively.
U is applied at point \mathbf{Y} at an angle θ to the vertical.
The magnitude of D is 53 N and is applied at 90° to the pole at \mathbf{X}.
The uniform pole is in equilibrium. It has a weight of 31 N .
Figure 8 shows the forces acting on the pole.
Figure 8

| $\mathbf{0}$ | $\mathbf{4}$. | $\mathbf{2}$ The athlete now moves the pole to a horizontal position. The pole is held stationary in |
| :--- | :--- | :--- | this position.

The athlete's right hand applies a force S vertically downwards at \mathbf{X} as shown in Figure 9. The athlete's left hand applies a force V at \mathbf{Y}.

Figure 9

> not to scale

Discuss the differences between the magnitudes and directions of force U in Figure 7 and force V applied at \mathbf{Y} in Figure 9.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 5 | 1 |
| :--- | :--- | :--- | Figure 10 shows a ship leaving a harbour at a constant velocity.

The ship moves at the same velocity as a person walking on the harbour wall alongside the ship.

Figure 10

The momentum of the ship is approximately $1 \times 10^{7} \mathrm{~N} \mathrm{~s}$.
Estimate the mass of the ship.
\qquad kg

| 0 | 5 | $\mathbf{2}$ Figure 11 shows the direction of the thrust exerted by the ship's propeller as the |
| :--- | :--- | :--- | :--- | propeller rotates. The ship's engine makes the propeller rotate. When more water is accelerated, more work is done by the engine.

Figure 11

Explain, using Newton's laws of motion, how the thrust of the propeller on the water enables the ship to maintain a constant momentum.
[4 marks]
\qquad

| 0 | 5 | 3 | Figure 12 shows the bottom of the hull with a drag reduction system in operation. |
| :--- | :--- | :--- | :--- | Air bubbles are introduced into the water below the hull. This reduces the work done per second against the drag on the hull at any given speed.

However, when the air bubbles reach the propeller they decrease the mass of water being accelerated by the propeller every second. This decreases the thrust produced by the propeller at a given speed of rotation.

Figure 12

The system enables the ship to save fuel while maintaining the same momentum.
Explain why the system delivers this fuel saving.
In your answer, consider the effects of the introduction of the system on

- the thrust
- the drag on the hull.
\qquad

$\mathbf{0}$	6	A battery has an emf of 5.30 V and negligible internal resistance.

$\mathbf{0}$	$\mathbf{6}$	$\mathbf{1}$

\qquad
\qquad
\qquad
\qquad

0	6	2

Figure 13

The ammeter is ideal.
The voltmeter is non-ideal and has a resistance R.
The reading on the voltmeter is 1.05 V when it is connected across the 320Ω resistor.
Show that the reading on the ammeter is approximately 7 mA .

| 0 | 6 | 4 |
| :--- | :--- | :--- | The voltmeter is now connected across the battery terminals.

Calculate the power dissipated in the voltmeter.

| $\mathbf{0}$ | $\mathbf{6} .5$ |
| :--- | :--- | :--- | The voltmeter is now connected across the 640Ω resistor as shown in Figure 14.

Figure 14

The reading on the voltmeter is 2.10 V .
When the voltmeter was connected across the 320Ω resistor, as shown in Figure 13, the reading on the voltmeter was 1.05 V .

Explain why the sum of these voltmeter readings does not equal the emf of the battery.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{7} \quad$ Optical fibres are used to carry pulses of light. |
| :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{1}$	Explain what is meant by modal dispersion in an optical fibre.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 7 continues on the next page

Figure 15 shows a ray of light incident on the central axis of an optical fibre at an angle of incidence of 30°. The optical fibre is straight and horizontal and has a length of 10.0 km .

Figure 15

For light incident on the core at a given angle of incidence, the angle of refraction θ_{R} varies with the frequency f of the light.

Figure 16 shows how $\sin \theta_{\mathrm{R}}$ varies with f when the angle of incidence is 30°.

Figure 16

The transit time is the time between a pulse of light entering and leaving the optical fibre.
A single pulse of blue light is incident on the air-core boundary at an angle of incidence of 30°.

The transit time of this pulse along the 10 km length of the optical fibre is $5.225 \times 10^{-5} \mathrm{~s}$.

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{2}$ Show that the horizontal component of the velocity of the pulse is |
| :--- | :--- | :--- | approximately $1.9 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$.

Calculate the speed of the blue light in the core of the optical fibre.

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{4}$ Two pulses of monochromatic light are incident normally on the air-core boundary. |
| :--- | :--- | :--- | :--- | They then travel along the central axis of the core.

One pulse consists of blue light; the other consists of red light.
Explain, with reference to refractive index, why the pulse of red light has a shorter transit time than the pulse of blue light.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | $\mathbf{7}$ | $\mathbf{5}$ Another two pulses, identical to the pulses in Question 07.4, are incident on the |
| :--- | :--- | :--- | :--- | central axis of the optical fibre and travel along its length.

However, the pulse of red light and pulse of blue light are now incident on the air-core boundary at an angle of incidence of 30°.

Suggest one reason why the difference in their transit times may not be the same as in Question 07.4.
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved.

