AQA

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature \qquad

A-level PHYSICS

Paper 3

Section A

Monday 3 June 2019 Afternoon

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all your working.

For Examiner's Use	
Question	Mark
1	
2	
3	
TOTAL	

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 45 .
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

| 0 | 1 | .2 |
| :--- | :--- | :--- | A sealed source contains radium- $226\left({ }_{88}^{226} \mathrm{Ra}\right)$.

${ }_{88}^{226} \mathrm{Ra}$ decays by emitting α and β^{-}particles to produce ${ }_{82}^{206} \mathrm{~Pb}$ which is stable.
Figure 2 is a graph of neutron number N against proton number Z, showing the different ways that ${ }_{88}^{226} \mathrm{Ra}$ can decay into ${ }_{82}^{206} \mathrm{~Pb}$.

Points \mathbf{A} to \mathbf{M} represent all the unstable nuclei that may be formed as ${ }_{88}^{226} \mathrm{Ra}$ decays into ${ }_{82}^{206} \mathrm{~Pb}$.

Figure 2

Determine the number of routes by which \mathbf{B} can change into \mathbf{K}.
\qquad
 decays into ${ }_{82}^{206} \mathrm{~Pb}$.
\qquad

Question 1 continues on the next page

| 0 | 1 | 4 |
| :--- | :--- | :--- | The sealed source emits γ radiation in addition to α and β^{-}particles.

A student uses the sealed source to investigate the inverse-square law for γ radiation. The student begins by making measurements to find the count rate A_{b} for the background radiation.

State and explain procedures

- to eliminate systematic error in the measurements used to find A_{b}
- to reduce the percentage uncertainty in A_{b}.
\qquad

0	1	.	$\mathbf{5}$
Figure			
3	shows an aluminium absorber placed between the sealed source and a		

Figure 3

The sealed source emits:

- $\quad \alpha$ particles with energy E_{k} between 3.8 MeV and 7.8 MeV
- $\quad \beta^{-}$particles with energy E_{k} between zero and 5.5 MeV .

Figure 4 shows how the range of β^{-}particles in aluminium depends on E_{k}.
Figure 4

Deduce the minimum thickness of the aluminium absorber that should be used in the experiment.
\qquad
\qquad
\qquad
minimum thickness $=$ \qquad mm
Question 1 continues on the next page

| 0 | 1 | 6 |
| :--- | :--- | :--- | γ radiation from the source is $(d+e)$.

The distance e, shown in Figure 5, cannot be measured directly.

Figure 5

From the inverse-square law for γ radiation, it can be shown that

$$
(d+e)=\sqrt{\frac{k}{A}}
$$

where A is the count rate, corrected for background radiation k is a constant.
The student plots the graph of d against $\frac{1}{\sqrt{A}}$ shown in Figure 6.
Deduce k using Figure 6.
Explain your reasoning.
Give a suitable unit for your result.
\qquad
\qquad

Figure 6

0	$\mathbf{1}$	$\mathbf{7}$

0.1 Determine e using Figure 6.

Figure 7 shows apparatus used to investigate the rate at which water flows through a horizontal cylindrical tube \mathbf{T} of internal diameter d and length L.

Figure 7

The apparatus ensures that the water level in the can is at a constant height h above the centre of \mathbf{T}.

Water flows out of \mathbf{T} at a steady rate.

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | The volume flow rate through \mathbf{T} is Q, where Q is in $\mathrm{m}^{3} \mathrm{~s}^{-1}$.

A student wants to measure Q as water flows through \mathbf{T}.
Outline a procedure the student should follow to measure Q.
Include in your answer

- the measuring instruments used
- how uncertainty in the measurements can be reduced.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	2	2	It can be shown that

$$
Q=\frac{\pi \rho g h d^{4}}{128 L \eta}
$$

where ρ is the density of water
g is the gravitational field strength
η is a property of the water called the coefficient of viscosity.
What is the SI unit for η ?
Tick (\checkmark) one box.

Question 2 continues on the next page

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ An experiment is carried out to determine η by a graphical method.. .0 |
| :--- | :--- | :--- | :--- |

The rate at which water flows out of \mathbf{T} is varied by adjusting the height of the drain tube as shown in Figure 8.

Figure 8

During the experiment the temperature is kept constant.
Q is found for different values of h and a graph of these data is plotted, with Q on the vertical axis.
The percentage uncertainty in the gradient of the graph is 6.4%.
The dimensions of tube \mathbf{T} are measured and the uncertainties in these data are calculated.

The percentage uncertainty

- in d is 2.9%
- in L is 1.8%.

The percentage uncertainties in ρ and g are negligible.
Deduce the percentage uncertainty in the result for η.

| $\mathbf{0}$ | $\mathbf{2}$ | .4 | In a different experiment, the horizontal tube \mathbf{T} is connected to a vertical glass tube. |
| :--- | :--- | :--- | :--- | Marks have been made at regular intervals on the glass tube.

The student measures and records the vertical distance y between each of the marks and the centre of T .

She seals the open end of T and fills the glass tube with water, as shown in Figure 9.
Figure 9

T is opened and water flows into a beaker.
When the water level falls to the highest mark on the tube, she starts a stopwatch. She records the time t for the water to reach each of the other marks.

Explain how the student could check that the glass tube was vertical.
You may wish to add detail to Figure 9 to illustrate your answer.
\qquad
\qquad
\qquad
\qquad
Question 2 continues on the next page

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{5}$	Figure 10 shows part of the graph drawn from the student's data.

Figure 10

It can be shown that y decreases exponentially with t.
Show that λ, the decay constant for this process, is about $4.5 \times 10^{-3} \mathrm{~s}^{-1}$.
\qquad

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{6}$ | $T_{1 / 2}$ |
| :--- | :--- | :--- | :--- | is the time for y to decrease by 50%, as shown in Figure 11.

Figure 11

Determine $T_{1 / 2}$.

$$
T_{1 / 2}=
$$

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{7}$ The apparatus is adjusted so that the glass tube is inclined at 30° to the horizontal |
| :--- | :--- | :--- | tube T, as shown in Figure 12.

Figure 12

The student measures and records the new values of y, the mean vertical distance between each of the marks and the centre of \mathbf{T}.
She then carries out the experiment as before, recording new values of t corresponding to each new value of y.

Draw a line on Figure 13 to show the graph produced using the modified apparatus.
The dashed line is the original graph when the glass tube was vertical as shown in Figure 9.

Figure 13

Turn over for the next question

0	3	A stationary wave is formed on a stretched wire.

Figure 14 shows the wire, fixed at one end, supported by two bridges and passing over a pulley.

Figure 14

A 0.500 kg mass is attached to the free end of the wire.
A uniform horizontal magnetic field is applied perpendicular to the wire between the bridges.
A signal generator is connected to each end of the wire.
The oscilloscope shown is used to determine the frequency of the output of the signal generator. The wire oscillates because the alternating current in the wire interacts with the magnetic field.

Figure 15 shows the first harmonic stationary wave produced when the distance x between the bridges is adjusted.

Figure 15

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{1}$ The output potential difference (pd) of the signal generator is displayed on the |
| :--- | :--- | :--- | oscilloscope, as shown in Figure 16.

Figure 16

The time-base setting of the oscilloscope is $10 \mathrm{~ms} \mathrm{~cm}^{-1}$.
Determine f, the frequency of the alternating pd.

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{2}$ A metre ruler is placed next to the bridges supporting the wire, as shown in Figure 17.

Figure 17

Determine the wavelength λ of the stationary wave shown in Figure 17.
\qquad

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{3}$ The stationary wave is formed by two waves of frequency f and wavelength λ |
| :--- | :--- | :--- | travelling with speed c in opposite directions.

Determine c.

$$
c=
$$

0	3	4
4	Determine, in $\mathrm{kg} \mathrm{m}^{-1}$, the mass per unit length of the wire.	

\qquad $\mathrm{kg} \mathrm{m}^{-1}$

| 0 | 3 | 5 | A student uses digital vernier callipers to measure the diameter of a cylindrical metal |
| :--- | :--- | :--- | :--- | rod. The student places the rod between the jaws of the callipers and records the reading indicated. Without pressing the zero button, the student removes the rod and closes the jaws.

Figure 18 shows the calliper readings in millimetres, before and after the jaws are closed.

Figure 18

Calculate the diameter d of the rod.
\qquad mm

[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

0	$\mathbf{3}$.	$\mathbf{7}$
Determine the density of the rod.		

The mass per unit length of the rod is $3.54 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{-1}$.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	\qquad
	\qquad

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	\qquad
	\qquad

Copyright information
phblish in published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

