Please write clearly in	block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.)

AS PHYSICS

Paper 2

Friday 15 May 2020

Morning

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Time allowed: 1 hour 30 minutes You are advised to spend about 35 minutes on Section C

For Examiner's Use				
Question Mark				
1				
2				
3				
4				
5–34				
TOTAL				

 Table 1 shows the readings made by the student.

Table	1
10010	

<i>R</i> ₀ / mm	<i>R</i> ₁ / mm	<i>R</i> ₂ / mm
5.74	10.31	20.02

Do not write outside the box

0 1.3	The refractive index <i>n</i> of the block is given by	Do not write outside the box
	$n = \frac{R_2 - R_0}{R_2 - R_1}$	
	$R_2 - R_1$ Determine <i>n</i> .	
	[1 mark]	
	n =	
0 1.4	The absolute uncertainty in each of the readings R_0 , R_1 and R_2 is 0.04 mm.	
	State the absolute uncertainty in $R_2 - R_0$.	
	[1 mark]	
	absolute uncertainty in $R_2 - R_0 = $ mm	
0 1.5	The absolute uncertainty in $R_2 - R_1$ is the same as the absolute uncertainty in $R_2 - R_0$.	
	Calculate the percentage uncertainty in <i>n</i> . [3 marks]	
	percentage uncertainty in $n = $ %	10
	Turn over ▶	

		7
02.3	The maximum gradient G_{max} / V ${\rm A}^{-1}$ of a line passing through all the error bars in Figure 5 is -1.3	Do not write outside the box
	Determine, using G_{max} and G_{min} , the internal resistance of the cell. [2 marks]	
	internal resistance = Ω	
02.4	The line of best fit passes through the data point $(0.94, 0.37)$.	
	Determine the emf of the cell. [3 marks]	
	emf = V	10
	END OF SECTION A	
	Turn over ►	

) 3.2	The cross-sectional area of A is $7.0 \times 10^{-6} \text{ m}^2$. The unstretched length	of A is 150 m.
	Calculate the extension of \boldsymbol{A} when the tension in it is $430~N.$	
	Young modulus of steel = 210 GPa	[2 marks]
		[]
	extension =	m
3.3	The camera is moved horizontally to the right to a new stationary positic The tension in A is now different from that in Figure 6 .	on.
3.3		
3.3	The tension in A is now different from that in Figure 6 .	on. [3 marks]
3.3	The tension in A is now different from that in Figure 6 .	
3.3	The tension in A is now different from that in Figure 6 .	
3.3	The tension in A is now different from that in Figure 6 .	
3.3	The tension in A is now different from that in Figure 6 .	
3.3	The tension in A is now different from that in Figure 6 .	
3.3	The tension in A is now different from that in Figure 6 .	
3.3	The tension in A is now different from that in Figure 6 .	
3.3	The tension in A is now different from that in Figure 6 .	
03.3	The tension in A is now different from that in Figure 6 .	

The camera's signal is transmitted as a series of pulses through an optical fibre. **Table 2** shows data for two optical fibres **X** and **Y**. Both optical fibres are identical except for their core diameter.

Table	2
10010	_

Optical fibre	Core diameter / μm
x	8
Y	50

Deduce which fibre allows a greater pulse transmission rate.

[3 marks]

10

Do not write outside the

04		Do not write outside the box
0 4	Scintillation counters are used to detect beta particles. A scintillation counter consists of a scintillation material and a photomultiplier tube (PMT).	
04.1	Beta particles collide with atoms in the scintillation material, which emits photons of light as a result.	
	Explain how photons are produced by collisions between beta particles and atoms.	
	[2 marks]	
0 4 . 2	A photon of light from the scintillation material enters the PMT, as shown in Figure 7 . The front of the PMT contains a thin photocathode. The photon strikes the photocathode to release an electron.	
	Figure 7	
	PMT	
	photocathode	
	photon from scintillation	
	material	
	The longest wavelength of light that releases an electron from this photocathode is 630 nm.	
	Calculate the minimum photon energy required to remove an electron from the photocathode.	
	[2 marks]	
	minimum photon energy = J	

0 4.4 The electron hits the first electrode and causes the release of several electrons. **Figure 9** shows how a series of accelerations and collisions produces a large number of electrons. These electrons hit the anode and produce a pulse of current in an ammeter.

Figure 10

Do not write outside the

[4 marks]

number of electrons = _____

END OF SECTION B

10

Determine the number of electrons that flow through the ammeter.

		See	ction C			
E	ach of Questions	05 to 34 is follow	wed by four resp	onses, A , B , C a	and D .	
	For	each question s	elect the best res	sponse.		
	wer per questior stion, completely		alongside the ap	propriate answer		
RECT METHOD	• • •	VRONG METHODS		-		
ou want to	change vour ans		oss out your orig	inal answer as s	hown D	
		-			ŕ	~
ou wish to shown. 🍆	return to an ansv ≫	ver previously cr	ossed out, ring th	ne answer you n	ow wish to	o select
			round each ques	tion but this will	not be ma	rked.
not use ad	Iditional sheets fo	or this working.				
5 Which	n row shows SI u	nit prefixes in or	der of smallest v	alue to largest v	alue?	
						[1 mark]
	Smallest			Largest		
	Sinallest			Largest	1	
Α	р	n	с	μ	0	
В	р	n	μ	с	0	
С	n	р	с	μ	0	

μ

c

 \bigcirc

D

n

р

1 3	Two p	points on a progr	essive wave are out of pr	nase by 0.41 rad.		Do not writ outside th box
	What	is this phase dif	ference?			
					[1 mark]	
	A 23	0	0			
	B 47	0	0			
	C 74	0	0			
	D 14	8°	0			
1 4				to parallel slits of separation distance D from the slits.	<i>ז</i> .	
				duces a fringe spacing of <i>w</i>	?	
		·			[1 mark]	
		Wavelength	Slit separation	Distance between slits and screen		
	Α	2λ	2 <i>s</i>	2 <i>D</i>	0	
	В	2λ	4 <i>s</i>	2 <i>D</i>	0	
	С	2λ	2 <i>s</i>	4 <i>D</i>	0	
	D	4λ	2 <i>s</i>	2 <i>D</i>	0	
1 5				ent normally to a diffraction of 20° with the normal to the second		
	What	is the highest or	der visible with this gratin	g at this wavelength?	[1 mark]	
	A 2		0			
	B 3		0			
	C 4		0			
	D 5		0			

2 3	Two b	oall bearings X and Y	are projected from	norizontal ground at the	same time.	Do not write outside the box
	X has mass $2m$ and is projected vertically upwards with speed u .					
	Y has mass <i>m</i> and is projected at 30° to the horizontal with speed $2u$.					
	Air re	sistance is negligible				
	Which	n statement is correc	t?			
					[1 mark]	
	ΑX	and Y have the same	e initial momentum.		0	
	ВXа	and Y reach their ma	ximum heights at dif	ferent times.	0	
	C Th	e maximum height re	eached by Y is half th	nat reached by X .	0	
	DXa	and Y reach the grou	nd at the same time		0	
2 4						
	i				[1 mark]	
		Kinetic energy	Momentum			
	Α	conserved	conserved	0		
	В	not conserved	conserved	0		
	С	conserved	not conserved	0		
	D	not conserved	not conserved	0		
		Τι	irn over for the nex	t question		

			Do not write outside the
2 5	The drag force on a boat is kv^2 , where v is the	speed and $k = 64 \text{ kg m}^{-1}$.	box
	The boat's engine has a useful power output of	f 8000 W.	
	What is the maximum speed of the boat?	[4 mork]	
		[1 mark]	
	A 0.2 m s^{-1}		
	B 5 m s ⁻¹		
	C 11 m s^{-1}		
	D 125 m s^{-1}		
26	A tensile force F_1 causes a wire to stretch to ler	igth x_1 .	
	When the tensile force is increased to F_2 the ler	ngth of the wire is x_2 .	
	The wire obeys Hooke's Law.		
	What is the additional energy stored in the wire	e as the length increases from x_1 to x_2 ?	
		[1 mark]	
	$\mathbf{A} \frac{F_1 + F_2}{2} \times \frac{x_2 - x_1}{2} \qquad \qquad \bigcirc$		
	$\mathbf{B} \frac{F_1 + F_2}{2} \times \frac{x_2 + x_1}{2} \qquad \qquad \bigcirc$		
	$\mathbf{C} \frac{F_1 + F_2}{2} \times (x_2 - x_1) \square$		
	$\mathbf{D} \frac{F_1 + F_2}{2} \times \left(x_2 + x_1\right) \qquad \qquad \bigcirc$		

The table shows corresponding values of potential difference V and current I for four electrical components A, B, C and D. С Α В D V/VI/AI/AI/AI/A0.0 0.0 0.0 0.0 0.0 0.3 0.4 0.3 0.1 0.6 0.8 0.6 0.9 0.9 0.7 1.2 1.4 1.2 1.6 1.1 2.1 2.0 1.3 1.5 2.8 1.8 2.4 1.4

0

2

4

6

8

10

12

Do not write outside the

box

Α	0
В	0
С	0
D	0

2 9 Which row shows the resistances of an ideal ammeter and an ideal voltmeter?

[1 mark]

	Ideal ammeter	Ideal voltmeter	
Α	infinite	infinite	0
В	infinite	zero	0
С	zero	infinite	0
D	zero	zero	0

3 0	The capacity of a portable charger is rated in ampere hours (Ah).		Do not write outside the box
	A charger of capacity 1 A h can provide 1 A for 1 hour at its working voltage.		
	One charger has a capacity of $1800 \text{ mA} \text{ h}$ at a working voltage of 3.7 V .		
	What is the energy stored in this charger? [1 mark]		
	▲ 6.5 kJ ○		
	B 24 kJ ○		
	C 400 kJ		
	D 24 MJ		
3 1	A filament lamp with resistance 12Ω is operated at a power of $36~W.$		
	How much charge flows through the filament lamp during 15 minutes?	[1 mark]	
	A 26 C ○		
	B 1.6 kC		
	C 2.7 kC		
	D 6.5 kC		
	Turn over for the next question		

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	Do not write outside the
d margin.	box

number	Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2020 AQA and its licensors. All rights reserved.

Question

Additional page, if required.