AQA

Please write clearly in block capitals.

Centre number

| | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname

Forename(s)
Candidate signature
I declare this is my own work.

A-level PHYSICS

Paper 3

Section B Astrophysics

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet
- a protractor.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 50 minutes on this section.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
TOTAL	

- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 35 .
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Section B

Answer all questions in this section.

| 0 | 1 |
| :--- | :--- | Figure 1 shows the evolution of a star similar to the Sun on a Hertzsprung-Russell (HR) diagram.

Figure 1

w
X \qquad
Y \qquad
Z \qquad

Theta Carinae is a star with a radius five times that of the Sun. It has a surface temperature of 31000 K .

| 0 | 1 | .2 |
| :--- | :--- | :--- | Annotate Figure 1 with a \mathbf{T} to show the position of Theta Carinae.

$\begin{array}{llll}0 & 1 & 4 & 4\end{array}$ The astronomer suggests that the Earth-sized planet receives a similar amount of power from Theta Carinae as the Earth does from the Sun.

The average power output of the Sun is $3.8 \times 10^{26} \mathrm{~W}$.
Determine the orbital radius of the Earth-sized planet orbiting Theta Carinae.
[5 marks]

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$ Which graph shows the light curve for a typical type la supernova?

Tick (\checkmark) one box.

A \square
B \square
C \square

D

\square

Deduce whether a type la supernova which occurred in Andromeda can be observed from Earth with the naked eye.
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| 0 | 3 |
| :--- | :--- | Miaplacidus and Avior are two stars in the constellation Carina. Miaplacidus is a class A star.

Avior is a class K star.
Figure 2 shows how the intensity of radiation arriving at the Earth varies with wavelength for one of these stars. Only the important features of the variation are shown.

Figure 2

Deduce, with reference to Figure 2, the identity of the star.
In your answer you should:

- explain the overall shape of the graph
- describe the processes in the star that lead to the decreases in intensity
- state the identity of the star.

| 0 | 4 | IC2497 is a galaxy that contained a quasar. It is believed that the quasar stopped |
| :--- | :--- | :--- | emitting radiation several thousand years ago.

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{1}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{2}$	IC2497 has a red shift of 0.0516

Determine the distance from the Earth to IC2497.
Give an appropriate unit for your answer.
\qquad

$\mathbf{0}$	$\mathbf{5} .1$	$\mathbf{1}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Explain why this telescope must be located in space.
Go on to discuss one advantage that this telescope has compared to a telescope with the same aperture that uses visible light.
\qquad

Question 5 continues on the next page

0	5	3

Table 1

Telescope	Diameter / m	Dish shape
Arecibo	305	spherical
Lovell	76	parabolic

Each telescope detects radio waves with a wavelength of 21 cm .
Compare the performances of the telescopes in Table 1 when both are used to observe the same faint radio objects.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved.

