

GCE

Chemistry A

H432/03: Unified chemistry

Advanced GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2019

Annotations available in RM Assessor

Annotation	Meaning
✓	Correct response
×	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
LI	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

G	Question		Answer	Marks	AO element	Guidance	
1	(a)		Polar bonds F (atom) is more electronegative (than C atom) OR F is very/the most electronegative ✓	2	AO1.1 ×2	Mark independently ALLOW C and F have different electronegativities OR the atoms have different electronegativities BUT DO NOT ALLOW C is more electronegative	
			No overall dipole (CF₄ is) symmetrical OR tetrahedral OR dipoles cancel OR dipoles act in opposite directions ✓			 ALLOW C–F shown with correct dipole, i.e. C^{δ+}–F^{δ−}. IGNORE square planar IGNORE polar bonds cancel BUT ALLOW polarities cancel IGNORE charges cancel 	
	(b)		 (Molecules) contain ²H OR deuterium/D ³H OR tritium/T OR O/H atoms have more neutrons (than ¹H) OR (different) O/H isotopes are present OR (Molecules are) D₂O ✓ 	1	AO1.2	ALLOW Molecules contain ¹⁸ O Idea of isotopes is critical BUT DO NOT ALLOW isotopes of elements different from H and O (e.g. C)	
	(c)		$p(O_2) = 0.21 \times 1.00 \times 10^5$ = 21,000 / 2.1 × 10 ⁴ (Pa) \checkmark	1	AO2.2		

Qı	uest	ion	Answer	Marks	AO element	Guidance	
	(d)		FIRST, CHECK ANSWER IF answer = 231 000, award 2 marks $n(C_3H_8) = \frac{42.0 \times 10^3}{24.0} \text{ OR } \frac{42.0 \times 10^6}{24000} \text{ OR } 1750 \text{ (mol)} \checkmark$ Mass of CO ₂ mass CO ₂ = 3 × 1750 × 44 = 231 000 / 2.31 × 10 ⁵ (g) ✓ ALLOW 2 SF, e.g. 230 000	2	AO2.2 AO2.6	ALLOW use of ideal gas equation with a sensible temperature (20–25°C) and pressure (100/101 kPa) At 20°C and 100 kPa, $n(C_3H_8) = \frac{100 \times 10^3 \times 42.0}{8.314 \times 293} = 1724$ (mol) $\rightarrow \sim 227586$ (g) (dependent on roundings) At 25°C and 100 kPa, $n(C_3H_8) = \frac{100 \times 10^3 \times 42.0}{8.314 \times 298} = 1695$ (mol) $\rightarrow \sim 223767$ (g) (dependent on roundings) ALLOW use of 8.31 for <i>R</i> ALLOW ECF from $n(C_3H_8)$ Common errors from 24.0 dm ³ 231 \rightarrow 1 mark No conversion of m ³ to dm ³ 0.231 \rightarrow 1 mark No 3 × for CO ₂	
	(e)		Initial rate = $10^{-2} \times 2.4 \times 10^{-3} \text{ s}^{-1}$ = 2.4 × 10 ⁻⁵ (mol dm ⁻³ s ⁻¹) \checkmark	1	AO2.2		
	(f)		FIRST, CHECK ANSWER IF answer = 9.03×10^{22} , award 2 marks $n(P_2O_5) = \frac{4.26}{142.0}$ OR $0.03(00)$ (mol) \checkmark O atoms = $5 \times 0.0300 \times 6.02 \times 10^{23}$ = $9.03 \times 10^{22} \checkmark$ Minimum 3 SF required	2	AO2.2	Alternative approach $n(O \text{ atoms}) = \frac{4.26}{142.0} \times 5 = 0.15 \checkmark$ $O \text{ atoms} = 0.15 \times 6.02 \times 10^{23} = 9.03 \times 10^{22} \checkmark$ ALLOW ECF from incorrect $n(P_2O_5)$ ALLOW use of 6.022×10^{23} Common error 1.806×10^{22} OR $1.81 \times 10^{22} \rightarrow 1$ mark No $\times 5$	
			Total	9			

Question		Answer	Marks	AO element	Guidance	
2	(a)	$CO_3^{2^-} + H_2O \rightarrow OH^- + HCO_3^-$ OR $CO_3^{2^-} + H_2O \rightarrow 2OH^- + CO_2 \checkmark$	1	AO1.2	ALLOW $CO_3^{2^-} + 2H_2O \rightarrow 2OH^- + H_2CO_3$ IGNORE state symbols ALLOW inclusion of Na ⁺ as spectator ion, e.g. $2Na^+ + CO_3^{2^-} + H_2O \rightarrow 2OH^- + 2Na^+ + CO_2$ IGNORE Na ₂ CO ₃ + H ₂ O $\rightarrow 2NaOH + CO_2$ <i>lonic equation required</i> IGNORE equation with H ⁺ or H ₃ O ⁺ e.g. $CO_3^{2^-} + H^+ \rightarrow OH^- + CO_2$ <i>Question asks for reaction with H₂O</i>	
	(b)	 Acid/H⁺/HCI reacts with OR protonates benzoate / C₆H₅COO⁻ carboxylate / salt (to form benzoic acid) ✓ 	1	AO2.3	ALLOW suitable equation, e.g. $C_6H_5COO^- + H^+ \rightarrow C_6H_5COOH$ IGNORE responses purely in terms of neutralisation of alkali, e.g. Acid/H ⁺ /HCI neutralises / reacts with/removes alkali / OH ⁻ / $CO_3^{2^-}$ / Na ₂ CO ₃	
	(c)	$C_6H_5CH_2OH + 2[O] \rightarrow C_6H_5COOH + H_2O ✓$	1	AO2.6	ALLOW molecular, structural, displayed formulae, etc e.g. molecular: $C_7H_8O + 2[O] \rightarrow C_7H_6O_2 + H_2O$	

Question	Answer	Marks	AO element	Guidance
Question (d)	AnswerFIRST CHECK THE ANSWER ON ANSWER LINE If answer = 33.8 OR 33.9 (%) award 3 marksTheoretical moles $n(C_6H_5COOH)$ OR $n(C_6H_5CH_2OH)$ $= \frac{4.00 \times 1.04}{108.0}$ OR 0.0385 (mol) \checkmark Actual moles $n(C_6H_5COOH)$ $n(C_6H_5COOH)$ $= \frac{1.59}{122.0}$ OR $0.013(0)$ (mol) \checkmark % yield $= \frac{0.0130}{0.0385} \times 100$ $= 33.8\%$ OR 33.9 (3 sig fig) \checkmark Answer depends on some intermediate roundings to $3SF$	Marks 3	AO element AO2.8 ×1 AO2.8 ×1 AO1.2	GuidanceALLOW ECF for each stepCalculator = 0.03851851852 Calculator = 0.01303278689 Alternative method using mass1. Theoretical moles = 0.0385 mol2. Mass = $0.0385 \times 122.0 = 4.70$ g3. % yield = $\frac{1.59}{2} \times 100 = 33.8\%$
				3. 78 yield = $4.70 \times 100 = 33.078$ Common errors 35.2% → 2 marks • From $\frac{4.00}{108} = 0.0370$ (no use of density) 36.5 OR 36.6% → 2 marks • $\frac{4.00/1.04}{108} = \frac{3.846}{108} = 0.0356$ (÷ density instead of × density)

Questi	on	Answer	Marks AO element		Guidance
(e)		Dissolve in the minimum quantity of hot water/solvent ✓ Cool AND Filter AND (leave to) dry ✓ <i>All three needed</i>	2	AO3.3 ×2	 ALLOW any solvent DO NOT ALLOW use of drying agent (e.g. MgSO₄) IGNORE Initial filtering hot filtration to remove insoluble impurities
		Total	8		

Question		on	Answer	Marks	AO element	Guidance	
3	(a)	(i)	$\begin{array}{l} 4\text{Pb}_2\text{O}_3 + 3\text{CH}_4 \rightarrow 8\text{Pb} + 3\text{CO}_2 + 6\text{H}_2\text{O} \\ \textbf{OR} \\ \text{Pb}_2\text{O}_3 + \text{CH}_4 \rightarrow 2\text{Pb} + \text{CO} + 2\text{H}_2\text{O} \\ \textbf{OR} \\ 2\text{Pb}_2\text{O}_3 + 3\text{CH}_4 \rightarrow 4\text{Pb} + 3\text{C} + 6\text{H}_2\text{O} \checkmark \end{array}$	1	AO2.6	ALLOW multiples IGNORE state symbols	
		(ii)	ONE Safety issue AND precaution ✓ From: Safety issue: Compounds may be toxic/poisonous/flammable AND Precaution: Use a fume cupboard/good ventilation 	1	AO3.3	IGNORE use safety glasses, lab coat (<i>in question</i>) and tying hair back, safety screen Definite safety issue needed. Not just 'harmful' OR dangerous (Too vague). FOR OTHER SAFETY ISSUES AND PRECAUTIONS, CONTACT TEAM LEADER	

Question			Answer			Marks	AO element	Guidance
	(iii)	Any	2 modifications .	(√		2	AO3.4	ALLOW response that implies heating to constant
		from	ו				×2	mass, e.g.
		1.	Heat to constant	t mass				Heat again until the mass does not change
			/ -					
			(Ensures all lead	d oxide has reacted)				IGNORE 'heat for longer'
		2	Sprood/atir/broo	k up lood ovido				Needs link to constant mass
		Ζ.		face area				ICNOPE 'weigh straight after heating'
				rather than lumps				IGNORE weigh straight after heating
								IGNORF idea of repeating the experiment/
			(Ensures all lead	d oxide has reacted)				taking an average/ getting concordant results
		3.	Pass methane/i	nert gas/N₂ through tub	e as it cools			
		0.	OR don't pass o	old air				
			(Prevents O ₂ rea	acting with Pb)				
				-				
		4.	Use excess met	hane OR more methan	е			
			(Ensures all lead	d oxide has reacted)				
		-	Dubble (seesia	a) and the second line of the	1			
		5.	Bubble (escapin	g) gas through lime wa	ter			
			(Encured all load	d ovido has reacted				
				20, has been produced	4)			
	(iv			Ph · O	u)	2	AO2 8	
		'	Masses(/g):	3.132 AND 0.322		-	×2	
				0.400 0.000				
		OR	Mole ratios:	$\frac{3.132}{0.07.0}$; $\frac{0.322}{10.0}$				
			Mala ration	201.2 IO.U				
			wole ratios:	0.0151: 0.020125	v			NO ECE from incorrect masses
		Emr	oirical formula	Ph ₂ O ₄				
				(must come from mas	sses) ✓			

Question	Answer	Marks	AO element	Guidance
(b)	 Type of lattice 2 marks SiO₂: Giant (covalent lattice) ✓ CO₂: Simple molecular/covalent (lattice) ✓ 	4	AO1.1 ×2	Throughout, IGNORE 'ionic' for SiO ₂ FOR SiO ₂ , IGNORE macromolecular DO NOT ALLOW giant metallic
	Explanation 2 marks			Mark explanation independently on type of lattice i.e. no ECF from incorrect lattice
	 1. Forces in CO₂ Induced dipole–dipole interactions / London forces ✓ 		AO1.1 ×1	For CO ₂ IGNORE • covalent bonds • van der Waals' forces • idid • LDF DO NOT ALLOW hydrogen bonds OR permanent dipole interactions
	 2. Comparison of forces with strength / melting point (Covalent) bonds in SiO₂ are stronger THAN intermolecular forces in CO₂ OR More energy to break (covalent) bonds in SiO₂ THAN intermolecular forces in CO₂ ✓ ORA 		AO2.1 ×1	For SiO ₂ , comparison needs just 'bonds' OR 'forces' For intermolecular, ALLOW 'between molecules' For comparison, ALLOW strong in SiO ₂ AND weak in CO ₂ DO NOT ALLOW responses containing intermolecular forces in SiO ₂ IGNORE 'More bonds'
	Total	10		

stion	Answer		AO element	Guidance	
(i)	4-chloro-3,5-dimethylphenol ✓	1	AO1.2	ALLOW 3,5-dimethyl-4-chlorophenol	
	CARE: Look for dimethyl			ALLOW absence of hyphens or extra hyphen or space, e.g. 4 chloro 3,5 dimethylphenol	
				ALLOW full stops or spaces between numbers e.g. 4-chloro-3.5-dimethylphenol	
				ALLOW name based on benzene, if unambiguous e.g.1-chloro-4-hydroxy-2,6-dimethylbenzene	
				DO NOT ALLOW meth OR methy	
(ii)	5 ✓	1	AO2.5		
(iii)	Functional group Phenol ✓ Test Indicator/pH paper turns red / orange OR pH < 7 OR pH meter < 7	2	AO1.2	DO NOT ALLOW alcohol OR hydroxide IGNORE hydroxyl OR hydroxy IGNORE OH (<i>name asked for</i>) ALLOW Add bromine AND white precipitate	
	AND No reaction with Na ₂ CO ₃ /CO ₃ ^{2−} /carbonate ✓		AO2.3	ALLOW FeCl ₃ AND violet/blue colour	
	(iii)	<pre>(iii) Functional group Phenol ✓ Test Indicator/pH paper turns red / orange OR pH < 7 OR pH meter < 7 AND No reaction with Na₂CO₃/CO₃²⁻/carbonate ✓</pre>	(iii) Functional group Phenol ✓ Test Indicator/pH paper turns red / orange OR pH < 7 OR pH meter < 7 AND No reaction with Na ₂ CO ₃ /CO ₃ ^{2−} /carbonate ✓	(iii)Functional group Phenol \checkmark 2Test Indicator/pH paper turns red / orange OR pH < 7 OR pH meter < 7 AND No reaction with Na2CO3/CO32-/carbonate \checkmark AO1.2	

Question	Answer	Marks	AO element	Guidance
(iv)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.71×10^{-10} , award FOUR calculation marks CARE Separate mark for equation	5		
	Equation (1 mark) C ₈ H ₉ ClO ≓ H ⁺ + C ₈ H ₈ ClO ⁻ ✓ <i>Molecular formulae required (atoms in any order)</i>		AO1.2 ×1	ALLOW → for \rightleftharpoons DO NOT ALLOW C ₈ H ₈ ClOH in equation i.e. C ₈ H ₈ ClOH \rightleftharpoons H ⁺ + C ₈ H ₈ ClO ⁻ If equation is omitted, ALLOW equation mark for a correct K _a expression with molecular formula i.e. $[H^+][C_8H_8ClO^-]$
	$\begin{bmatrix} C_{8}H_{9}CIO \end{bmatrix} \text{ calculation (2 marks)} \\ \text{Molar mass } C_{8}H_{9}CIO = 156.5 \text{ (g mol}^{-1}) \checkmark \\ \text{ONLY correct answer} \\ \begin{bmatrix} C_{8}H_{9}CIO \end{bmatrix} = \frac{4.8 \times 10}{156.5} \text{ OR } 0.3067 \text{ (mol dm}^{-3}) \checkmark \\ \text{Subsumes mark for molar mass} = 156.5 \\ \textbf{K}_{a} \text{ calculation (2 marks)} \\ \begin{bmatrix} H^{+} \end{bmatrix} = 10^{-5.14} = 7.244 \times 10^{-6} \text{ (mol dm}^{-3}) \checkmark \\ \textbf{K}_{a} = \frac{(7.244 \times 10^{-6})^{2}}{0.3067} = 1.71 \times 10^{-10} \text{ (mol dm}^{-3}) \checkmark \end{bmatrix}$		AO2.8 ×4	NO ECF from an incorrect formula in equation ALLOW ECF from incorrect molar mass ALLOW 0.307 up to calculator value: 0.306709265 correctly rounded ALLOW 7.24 × 10 ⁻⁶ up to calculator value: 7.244359601 × 10 ⁻⁶ correctly rounded ALLOW 2 SF (1.7 × 10 ⁻¹⁰) up to calculator value, correctly rounded (but take care from acceptable intermediate rounding)
				COMMON ERRORS 2.36 × 10^{-5} 3/4 calculation marks No squaring of 7.24 × 10^{-6}

H432/03	5
---------	---

Question	Answer	Marks	AO element	Guidance
(b) (i)	ж v он	1	AO2.5	DO NOT ALLOW more than one * ALLOW a circle for *
	MAXIMUM OF 4 MARKS FROM 5 MARKING POINTS Requirement for E/Z isomerism 2 marks C=C/double bond ✓ Each C (in C=C) is attached to (two) different groups/atoms ✓ Identification as E- or Z- isomer 2 marks E/Z isomerism linked to (high) priority groups ✓ Z- isomer AND groups are on same side OR the ring carbons ✓ Reason why other E/Z isomer does not exist 1 mark ring would be strained OR ring would break/deform OR Cannot form ring if high priority groups are on opposite sides OR ring locks groups on one side of C=C bond ✓	4	AO1.2 ×2 AO2.5 ×2	IGNORE no H attached to C=C IGNORE functional', i.e. ALLOW different functional groups ALLOW in context of groups with largest atomic number ORA Award BOTH identification marks for: Z- isomer AND (high) priority groups on same side Mark independently of previous part Response MUST be linked to the ring/cyclic structure IGNORE just ' <i>E</i> isomer is impossible' IGNORE C=C bond cannot rotate IGNORE Groups can't swap sides

Question	Answer		Marks	AO element	Guidance
(iii)	 First group: Reagent AND Functional group: Alkene OR cycle <i>Examples of reagents</i> Br₂ or other halogen, HBr, H₂ AND H₂O(g)/steam AND H⁺ (catalyst) Organic product for reagent with C=C in ALLOW product from H₂ or H₂O if H⁺ cata omitted from reagent. 	oalkene ✓ Ni (catalyst), α-terpineol ✓ alyst has been	4	AO3.2 ×4	CONTACT TEAM LEADER FOR OTHER REACTIONS ALLOW GROUPS EITHER WAY ROUND IN BOXES Functional group MUST be named DO NOT ALLOW UV with halogens ALLOW H ₂ SO ₄ /H ₃ PO ₄ /acid for H ⁺ ALLOW addition of HBr/ H ₂ O either way across C=C
	Second group Reagent AND Functional group: (Tertiary) alcoho <i>Examples of reagents</i> NaBr/KBr/Br ⁻ AND acid/H ⁺ (OR HBr Acid/H ⁺ (catalyst) CH ₃ COOH AND acid/H ⁺ (catalyst) (CH ₃ COOCOCH ₃ CH ₃ COCI Organic product for reagent with OH in of <i>ALLOW product if catalyst omitted from r</i>	ol \checkmark (substitution), (elimination), (esterification) (esterification) (esterification) α -terpineol \checkmark reagent			ALLOW ANY HALIDE, i.e. CI^- , Br^- , I^- ALLOW H ₂ SO ₄ /H ₃ PO ₄ /acid for H ⁺ ALLOW HBr for H ⁺ and Br ⁻ ALLOW name or formula of any carboxylic acid or acyl chloride for esterification ALLOW Na \rightarrow product with –ONa OR –O ⁻ DO NOT ALLOW $Cr_2O_7^{2^-}/H^+$ (tertiary alcohol)
		Total	18		

Question	Answer	Marks	AO element	Guidance	
5 (a) (i)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Calculates CORRECT enthalpy change with correct – signs for $\Delta_{sol}H$ (CuSO ₄ (s)) for reaction 5.2 AND Δ_rH , for reaction 5.1. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Calculates a value of $\Delta_{sol}H$ (CuSO ₄ (s)) for reaction 5.2 from the: Energy change AND Amount in mol of CuSO ₄ . There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Processes experimental data to obtain the: Energy change from $mc\Delta T$ OR Amount in mol of CuSO ₄ .	6	AO3.1 ×4 AO3.2 ×2	Indicative scientific points may include: 1. Processing experimental data Energy change from $mc\Delta T$ • Energy in J OR kJ Using 50.70 g, 50.0 g = 50.70 × 4.18 × 13.5 = 2861 (J) OR 2.861 (kJ) 3SF or more (2.861001 unrounded) OR 50.0 × 4.18 × 13.5 = 2821.5 (J) OR 2.8215 (kJ) Amount in mol of CuSO ₄ • $n(CuSO_4) = \frac{7.98}{159.6} = 0.0500 \text{ (mol)}$ 	

Question		Answer	Marks	AO element	Guidance
		0 marks – No response or no response worthy of credit.			
(a)	(ii)	Temperature change = $0.2 \times \frac{100}{100} = 100$	1	AO2.8	IGNORE direction of temperature change
		Temperature change = $0.2 \times \frac{20}{20}$ = 1(.0) C ·			Working NOT required
(b)		FIRST CHECK THE ANSWER IN ON ANSWER LINE If answer = (+)156 (J K ⁻¹ mol ⁻¹) award 4 marks	4	AO2.4 ×4	
		Part 1: Calc of $\Delta_r S$ 1 markUse of 298 K (seen anywhere)1 mark• e.g. $-16.1 = -55.8 - 298 \times \Delta S$	_		Using 298 K, $\Delta S = \frac{-55.8 - (-16.1)}{298} = \frac{-39.7}{298}$
		CORRECT use of Gibbs' equation1 markusing candidate's temperature (e.g. 298)with $-16.1 \text{ AND } -55.8$ to calculate ΔS in kJ OR J			$= -0.133(kJ K^{-1}mol^{-1})$ OR -133 (J K^{-1}mol^{-1}) Sign required IGNORE units Calculator: -0.133221 (kJ K^{-1} mol^{-1})
		Part 2: Calc of S(Na₂S₂O₃) 1 mark			–133.221 (J K ⁻ ' mol ⁻ ') ALLOW ECF from incorrect temperature.
		 CORRECT use of standard S data in question Seen anywhere (could be within an expression) e.g. 372.4 - [S(Na₂S₂O₃) + (5 × 69.9)] OR 372.4 - (5 × 69.9) OR 372.4 - 349.5 OR 22.9 			
		IGNORE sign, i.e. ALLOW –22.9, etcCORRECT calculation of $S(Na_2S_2O_3)$ using candidate's calculated ΔS in Part 1 to 3 SF1 mark \checkmark	-		Using -133: $S(Na_2S_2O_3) = 372.4 - 349.5 - (-133)$ = 22.9 + 133 $= (+)156 (J K^{-1} mol^{-1})$ 3 SF required
					ALLOW ECF from incorrect $\Delta_r S$ (Part 1)

H432/03

Questi	on	Answer	Marks	AO element	Guidance
(c)	(i)	109.5(°) AND tetrahedral ✓	1	AO1.2	ALLOW 109–110(°)
	(ii)	$ \begin{array}{c} $	1	AO3.1	IGNORE charges ALLOW cyclic structures. Three 6-ring structures possible, e.g. 0 - 1 - 0 - 1 - 0 - 0 - 2 - 0 - 0 - 2 - 0 - 0 - 2 - 0 - 0
		Total	13		

Question		ion	Answer	Marks	AO element	Guidance
6	(a)	(i)	A: Fe(OH) ₃ (s) ✓	2	AO3.1	ALLOW Fe(OH) ₃ (H ₂ O) ₃
			B : $Ag_2S(s) \checkmark$		×2	IGNORE state symbols
		(ii)	Student is incorrect AND No oxidation numbers change OR example, e,g, Fe stays as +2 ✓	1	AO3.2	ALLOW no electron transfer
		(iiii)	$2[Fe(H_2O)_6]^{2+} + Cl_2 \rightarrow 2[Fe(H_2O)_6]^{3+} + 2Cl^- \checkmark$	1	AO3.1	ALLOW multiples e.g. $[Fe(H_2O)_6]^{2+} + \frac{1}{2}Cl_2 \rightarrow [Fe(H_2O)_6]^{3+} + Cl^-$ ALLOW $2[Fe(H_2O)_6]^{2+} + Cl_2 \rightarrow 2[Fe(H_2O)_5OH]^{2+} + 2HCl$ OR $2[Fe(H_2O)_6]^{2+} + Cl_2 \rightarrow 2[Fe(H_2O)_5Cl]^{2+} + 2H_2O$ NOTE: equation MUST be balanced by charge and oxidation number IGNORE state symbols
		(iv)	$5H_2S + 2MnO_4^- + 6H^+ \rightarrow 2Mn^{2+} + 5S + 8H_2O \checkmark \checkmark$ 1st mark ALL Correct species (SIX) OR Equation containing Mn and S species correctly balanced i.e. $5H_2S + 2MnO_4^- \dots \rightarrow 2Mn^{2+} + 5S \dots$ 2nd mark Complete correct balanced equation	2	AO3.1 ×2	ALLOW multiples, e.g. $2\frac{1}{2}$ H ₂ S + MnO ₄ ⁻ + 3H ⁺ \rightarrow Mn ²⁺ + $2\frac{1}{2}$ S + 4H ₂ O ALLOW equation with S ²⁻ , e.g. $5S^{2-}$ + $2MnO_{4}^{-}$ + $16H^{+} \rightarrow 2Mn^{2+}$ + $5S$ + $8H_2O$ IGNORE extra electrons for 1st mark

Question		on	Answer	Marks	AO element	Guidance
	(b)*		 Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Reaches a comprehensive conclusion to determine the correct formulae of almost all of C, D, E, F, G AND 9H₂O There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Reaches a sound conclusion to determine the correct formulae of at least half of C, D, E, F, G AND 9H₂O. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Reaches a simple conclusion to determine the correct formulae of some of C, D, E, F, G AND 9H₂O. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit. 	6	AO1.2 ×2 AO3.1 ×2 AO3.2 ×2	Indicative scientific points may include: Formula of C, D, E, F and G • C: Fe(NO ₃) ₃ •9H ₂ O OR FeN ₃ O ₉ •9H ₂ O • D: FeN ₃ O ₉ OR Fe(NO ₃) ₃ • E: Fe ₂ O ₃ • F: NO ₂ • G: O ₂ • 9H ₂ O Examples of evidence $n(H_2O) = \frac{0.486}{18.0} = 0.027 \text{ (mol)}$ $0.027 : 0.003 = 1 : 9 \rightarrow 9H_2O$ $n(F) = \frac{270-54}{24000} = \frac{216}{24000} = 0.009(00) \text{ (mol)}$ $M(E) = 55.8 \times 2 + 16.0 \times 3 = 159.6$ $M(F) = \frac{0.414}{0.009(00)} = 46 \text{ (g mol}^{-1})$ G: oxygen linked to relighting glowing split NOTE: Equations could include evidence e.g Fe(NO ₃) ₃ •9H ₂ O \rightarrow Fe(NO ₃) ₃ + 9H ₂ O 2Fe(NO ₃) ₃ \rightarrow Fe ₂ O ₃ + 6NO ₂ + 1½O ₂
			Total	12		

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2019