Oxford Cambridge and RSA

GCE

Chemistry A

H432/03: Unified chemistry
Advanced GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2019

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Level 1
L2	Level 2
L3	Benefit of doubt not given
NBOD	Noted but no credit given
SEEN	Ignore
I	

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Unds which are not essential to gain credit
ECF	Alternative wording
AW	Or reverse argument
ORA	

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Ques	Answer	Marks	$\begin{gathered} \mathrm{AO} \\ \text { element } \end{gathered}$	Guidance
(d)	FIRST, CHECK ANSWER IF answer = 231 000, award 2 marks $n\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ $n\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)=\frac{42.0 \times 10^{3}}{24.0}$ OR $\frac{42.0 \times 10^{6}}{24000}$ OR $1750(\mathrm{~mol}) \checkmark$ Mass of CO_{2} $\text { mass } \begin{aligned} \mathrm{CO}_{2} & =3 \times 1750 \times 44 \\ & =231000 / 2.31 \times 10^{5}(\mathrm{~g}) \end{aligned}$ ALLOW 2 SF, e.g. 230000	2	AO2.2 AO2.6	ALLOW use of ideal gas equation with a sensible temperature $\left(20-25^{\circ} \mathrm{C}\right)$ and pressure ($100 / 101 \mathrm{kPa}$) At $20^{\circ} \mathrm{C}$ and 100 kPa , $n\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)=\frac{100 \times 10^{3} \times 42.0}{8.314 \times 293}=1724 \ldots(\mathrm{~mol})$ $\rightarrow \sim 227586$ (g) (dependent on roundings) At $25^{\circ} \mathrm{C}$ and 100 kPa , $n\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)=\frac{100 \times 10^{3} \times 42.0}{8.314 \times 298}=1695 \ldots(\mathrm{~mol})$ $\rightarrow \sim 223767$ (g) (dependent on roundings) ALLOW use of 8.31 for R ALLOW ECF from $n\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ Common errors from $24.0 \mathrm{dm}^{3}$ $231 \rightarrow 1$ mark No conversion of m^{3} to dm^{3} $0.231 \rightarrow 1$ mark Confusion of cm^{3} and dm^{3} $77000 \rightarrow 1$ mark No $3 \times$ for CO_{2}
(e)	$\begin{aligned} \text { Initial rate } & =10^{-2} \times 2.4 \times 10^{-3} \mathrm{~s}^{-1} \\ & =2.4 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right) \end{aligned}$	1	AO2.2	
(f)	FIRST, CHECK ANSWER IF answer $=9.03 \times 10^{22}$, award 2 marks $n\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)=\frac{4.26}{142.0}$ OR $0.03(00)(\mathrm{mol})$ $\begin{aligned} \text { O atoms } & =5 \times 0.0300 \times 6.02 \times 10^{23} \\ & =9.03 \times 10^{22} \checkmark \\ & \text { Minimum } 3 \text { SF required } \end{aligned}$	2	AO2.2	Alternative approach $\begin{aligned} & n(\mathrm{O} \text { atoms })=\frac{4.26}{142.0} \times 5=0.15 \checkmark \\ & \mathrm{O} \text { atoms }=0.15 \times 6.02 \times 10^{23}=9.03 \times 10^{22} \end{aligned}$ ALLOW ECF from incorrect $n\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ ALLOW use of 6.022×10^{23} Common error $1.806 \times 10^{22} \text { OR } 1.81 \times 10^{22} \rightarrow 1 \text { mark No } \times 5$
	Total	9		

Question			Answer	Marks	AO element	Guidance
3	(a)	(i)	$4 \mathrm{~Pb}_{2} \mathrm{O}_{3}+3 \mathrm{CH}_{4} \rightarrow 8 \mathrm{~Pb}+3 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{Pb}_{2} \mathrm{O}_{3}+\mathrm{CH}_{4} \rightarrow 2 \mathrm{~Pb}+\mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O}$ OR $2 \mathrm{~Pb}_{2} \mathrm{O}_{3}+3 \mathrm{CH}_{4} \rightarrow 4 \mathrm{~Pb}+3 \mathrm{C}+6 \mathrm{H}_{2} \mathrm{O}$	1	AO2.6	ALLOW multiples IGNORE state symbols
		(ii)	ONE Safety issue AND precaution \checkmark From: Safety issue: Compounds may be toxic/poisonous/flammable AND Precaution: Use a fume cupboard/good ventilation Safety issue: Lead (compounds) is/are toxic/poisonous AND Precaution: Wear gloves Safety issue: Methane is flammable AND Precaution: Keep away from flame	1	AO3.3	IGNORE use safety glasses, lab coat (in question) and tying hair back, safety screen Definite safety issue needed. Not just 'harmful' OR dangerous (Too vague). FOR OTHER SAFETY ISSUES AND PRECAUTIONS, CONTACT TEAM LEADER

Question	Answer	Marks	AO element	Guidance
(iii)	Any 2 modifications from 1. Heat to constant mass (Ensures all lead oxide has reacted) 2. Spread/stir/break up lead oxide OR increase surface area OR use powder rather than lumps (Ensures all lead oxide has reacted) 3. Pass methane/inert gas/ N_{2} through tube as it cools OR don't pass cold air (Prevents O_{2} reacting with Pb) 4. Use excess methane OR more methane (Ensures all lead oxide has reacted) 5. Bubble (escaping) gas through lime water (Ensures all lead oxide has reacted OR ensures all CO_{2} has been produced)	2	$\begin{gathered} \mathrm{AO} 3.4 \\ \times 2 \end{gathered}$	ALLOW response that implies heating to constant mass, e.g. Heat again until the mass does not change IGNORE 'heat for longer' Needs link to constant mass IGNORE 'weigh straight after heating' IGNORE idea of repeating the experiment/ taking an average/ getting concordant results / larger sample size, etc.
(iv)	Pb $:$ O Masses(/g): 3.132 AND 0.322 OR Mole ratios: $\frac{\mathbf{3 . 1 3 2}}{207.2}: \frac{\mathbf{0 . 3 2 2}}{16.0}$ OR Mole ratios: $0.0151:$ Empirical formula $\mathrm{Pb}_{3} \mathrm{O}_{4}$ (must come from masses) \checkmark	2	$\begin{gathered} \mathrm{AO} 2.8 \\ \times 2 \end{gathered}$	NO ECF from incorrect masses

Quest	Answer	Marks	AO element	Guidance
(b)	Type of lattice 2 marks - SiO_{2} : Giant (covalent lattice) \checkmark - $\mathbf{C O}_{2}$: Simple molecular/covalent (lattice) \checkmark Explanation 2 marks 1. Forces in CO_{2} - Induced dipole-dipole interactions / London forces \checkmark	4	AO1.1 $\times 2$ AO1.1 $\times 1$	Throughout, IGNORE 'ionic' for SiO_{2} FOR SiO_{2}, IGNORE macromolecular DO NOT ALLOW giant metallic Mark explanation independently on type of lattice i.e. no ECF from incorrect lattice For CO_{2} IGNORE - covalent bonds - van der Waals' forces - idid - LDF DO NOT ALLOW hydrogen bonds OR permanent dipole interactions
	2. Comparison of forces with strength / melting point - (Covalent) bonds in SiO_{2} are stronger THAN intermolecular forces in CO_{2} OR - More energy to break (covalent) bonds in SiO_{2} THAN intermolecular forces in $\mathrm{CO}_{2} \checkmark$ ORA		$\begin{gathered} \mathrm{AO} 2.1 \\ \times 1 \end{gathered}$	For SiO_{2}, comparison needs just 'bonds' OR 'forces' For intermolecular, ALLOW 'between molecules' For comparison, ALLOW strong in SiO_{2} AND weak in CO_{2} DO NOT ALLOW responses containing intermolecular forces in SiO_{2} IGNORE 'More bonds'
	Total	10		

Question		Answer	Marks	AO element	Guidance
(b)	(i)		1	AO2.5	DO NOT ALLOW more than one * ALLOW a circle for *
	(ii)	MAXIMUM OF 4 MARKS FROM 5 MARKING POINTS Requirement for $E I Z$ isomerism 2 marks $\mathrm{C}=\mathrm{C} /$ double bond \checkmark Each C (in $\mathrm{C}=\mathrm{C}$) is attached to (two) different groups/atoms Identification as E - or Z - isomer 2 marks E / Z isomerism linked to (high) priority groups \checkmark Z - isomer AND groups are on same side OR the ring carbons \checkmark Reason why other EIZ isomer does not exist 1 mark ring would be strained OR ring would break/deform OR Cannot form ring if high priority groups are on opposite sides OR ring locks groups on one side of $\mathrm{C}=\mathrm{C}$ bond \checkmark	4	AO1.2 $\times 2$ AO2.5 $\times 2$	IGNORE no H attached to $\mathrm{C}=\mathrm{C}$ IGNORE functional', i.e. ALLOW different functional groups ALLOW in context of groups with largest atomic number ORA Award BOTH identification marks for: Z - isomer AND (high) priority groups on same side Mark independently of previous part Response MUST be linked to the ring/cyclic structure IGNORE just ' E isomer is impossible' IGNORE $\mathrm{C}=\mathrm{C}$ bond cannot rotate IGNORE Groups can't swap sides

Question	Answer	Marks	AO element	Guidance
(iii)	First group: Reagent AND Functional group: Alkene OR cycloalkene \checkmark Examples of reagents Br_{2} or other halogen, $\mathrm{HBr}, \mathrm{H}_{2}$ AND Ni (catalyst), $\mathrm{H}_{2} \mathrm{O}(\mathbf{g}) /$ steam AND H^{+}(catalyst) Organic product for reagent with $\mathbf{C = C}$ in α-terpineol \checkmark ALLOW product from H_{2} or $\mathrm{H}_{2} \mathrm{O}$ if H^{+}catalyst has been omitted from reagent. Second group Reagent AND Functional group: (Tertiary) alcohol \checkmark Examples of reagents $\mathrm{NaBr} / \mathrm{KBr} / \mathrm{Br}^{-}$AND acid $/ \mathrm{H}^{+}$ (substitution), OR HBr Acid $/ \mathrm{H}^{+}$(catalyst) (elimination), $\mathrm{CH}_{3} \mathrm{COOH}$ AND acid $/ \mathrm{H}^{+}$(catalyst) (esterification) $\mathrm{CH}_{3} \mathrm{COOCOCH}_{3}$ (esterification) $\mathrm{CH}_{3} \mathrm{COCl}$ (esterification) Organic product for reagent with $\mathbf{O H}$ in α-terpineol \checkmark ALLOW product if catalyst omitted from reagent	4	$\begin{gathered} \mathrm{AO} 3.2 \\ \times 4 \end{gathered}$	CONTACT TEAM LEADER FOR OTHER REACTIONS ALLOW GROUPS EITHER WAY ROUND IN BOXES Functional group MUST be named DO NOT ALLOW UV with halogens ALLOW $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{3} \mathrm{PO}_{4} /$ acid for H^{+} ALLOW addition of $\mathrm{HBr} / \mathrm{H}_{2} \mathrm{O}$ either way across $\mathrm{C}=\mathrm{C}$ ALLOW ANY HALIDE, i.e. $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$ ALLOW $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{3} \mathrm{PO}_{4} /$ acid for H^{+} ALLOW HBr for H^{+}and Br^{-} ALLOW name or formula of any carboxylic acid or acyl chloride for esterification ALLOW Na \rightarrow product with $-\mathrm{ONa} \mathrm{OR}-\mathrm{O}^{-}$ DO NOT ALLOW $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{H}^{+}$(tertiary alcohol)
	Total	18		

Question			Answer	Marks	AO element	Guidance
5	(a)	(i)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Calculates CORRECT enthalpy change with correct - signs for $\Delta_{\text {sol }} H\left(\mathrm{CuSO}_{4}(\mathrm{~s})\right)$ for reaction 5.2 AND $\Delta_{r} H$, for reaction 5.1. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Calculates a value of $\Delta_{\text {sol }} H\left(\mathrm{CuSO}_{4}(\mathrm{~s})\right)$ for reaction 5.2 from the: Energy change AND Amount in mol of CuSO_{4}. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Processes experimental data to obtain the: Energy change from $m c \Delta T$ OR Amount in mol of CuSO_{4}. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.	6	$\begin{gathered} \mathrm{AO} 3.1 \\ \times 4 \\ \\ \mathrm{AO} 3.2 \\ \times 2 \end{gathered}$	Indicative scientific points may include: 1. Processing experimental data Energy change from $m c \Delta T$ - Energy in J OR kJ Using $50.70 \mathrm{~g}, 50.0 \mathrm{~g}$ $=50.70 \times 4.18 \times 13.5=2861(\mathrm{~J}) \mathbf{O R} 2.861(\mathrm{~kJ})$ 3SF or more (2.861001 unrounded) OR $50.0 \times 4.18 \times 13.5=2821.5(\mathrm{~J})$ OR $2.8215(\mathrm{~kJ})$ Amount in mol of CuSO_{4} - $n\left(\mathrm{CuSO}_{4}\right)=\frac{7.98}{159.6}=0.0500(\mathrm{~mol})$ 2. \pm value of $\Delta_{\text {sol }} H\left(\mathrm{CuSO}_{4}(\mathrm{~s})\right)$ for reaction 5.2 From $m=50.70 \mathrm{~g}= \pm \frac{2.861}{0.0500}= \pm 57.22\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (-57.22002 unrounded) From $m=50.0 \mathrm{~g}= \pm \frac{2.8215}{0.0500}= \pm 56.43\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ 3. CORRECT enthalpy changes for reactions 5.2 and 5.1 with signs (using 50.70 g ONLY) Reaction $5.2 \quad=-57.22\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ 3SF or more with correct - sign Reaction 5.1 $\begin{aligned} & \Delta_{\mathrm{r}} H=\Delta_{\mathrm{sol} H\left(\mathrm{CuSO}_{4}(\mathrm{~s})\right)-\Delta_{\text {sol }} H\left(\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})\right)} \\ &=-57.22-8.43=-65.65\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & 3 \text { SF or more with correct }- \text { sign } \end{aligned}$ NOTE: A clear and logically structured response would include an energy cycle ALLOW omission of trailing zeroes ALLOW minor slips

Question		Answer	Marks	AO element	Guidance
		0 marks - No response or no response worthy of credit.			
(a)	(ii)	Temperature change $=0.2 \times \frac{100}{20}=\mathbf{1 (. 0)}{ }^{\circ} \mathrm{C} \checkmark$	1	AO2.8	IGNORE direction of temperature change Working NOT required
(b)		FIRST CHECK THE ANSWER IN ON ANSWER LINE If answer = (+)156 ($\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$) award 4 marks Part 1: Calc of $\Delta_{r} S$ Use of 298 K (seen anywhere) 1 mark - e.g. $-16.1=-55.8-298 \times \Delta S$ CORRECT use of Gibbs' equation 1 mark - using candidate's temperature (e.g. 298) - with -16.1 AND -55.8 - to calculate Δ S in $k J O R J$	4	$\begin{gathered} \mathrm{AO} 2.4 \\ \times 4 \end{gathered}$	ALLOW ECF from incorrect temperature.
		Part 2: Calc of $S\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ CORRECT use of standard S data in question Seen anywhere (could be within an expression) e.g. - $372.4-\left[\mathrm{S}\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)+(5 \times 69.9)\right]$ - OR 372.4-(5 $\times 69.9$) - OR 372.4 - 349.5 - OR 22.9 IGNORE sign, i.e. ALLOW -22.9, etc CORRECT calculation of $S\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ using candidate's calculated ΔS in Part 1 to 3 SF			Using -133: $\begin{aligned} S\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)= & 372.4-349.5-(-133) \\ = & 22.9+133 \\ = & (+) 156\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & \quad 3 \mathrm{SF} \text { required } \end{aligned}$ ALLOW ECF from incorrect $\Delta_{r} S$ (Part 1)

Question		Answer	Marks	AO element	Guidance
(c)	(i)	109.5(${ }^{\circ}$) AND tetrahedral \checkmark	1	AO1.2	ALLOW 109-110(${ }^{\circ}$)
	(ii)	 OR OR IGNORE absence of charges OR incorrect charges	1	AO3.1	IGNORE charges ALLOW cyclic structures. Three 6 -ring structures possible, e.g. NOTE: There MUST be 2 atoms in centre between 6-bonded S atoms. e.g. DO NOT ALLOW For other structures, contact TL
		Total	13		

Question			Answer	Marks	AO element	Guidance
6	(a)	(i)	$\mathrm{A}: \quad \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})^{\checkmark}$ B: $\quad \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s}) \checkmark$	2	$\begin{gathered} \mathrm{AO} 3.1 \\ \times 2 \end{gathered}$	ALLOW Fe(OH) $)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ IGNORE state symbols
		(ii)	Student is incorrect AND No oxidation numbers change OR example, e,g, Fe stays as $+2 \checkmark$	1	AO3.2	ALLOW no electron transfer
		(iii)	$2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{Cl}_{2} \rightarrow 2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+2 \mathrm{Cl}^{-} \checkmark$	1	AO3.1	ALLOW multiples $\text { e.g. }\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+1 / 2 \mathrm{Cl}_{2} \rightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{Cl}^{-}$ ALLOW $2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{Cl}_{2} \rightarrow 2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}+2 \mathrm{HCl}$ OR $2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{Cl}_{2} \rightarrow 2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]^{2+}+2 \mathrm{H}_{2} \mathrm{O}$ NOTE: equation MUST be balanced by charge and oxidation number IGNORE state symbols
		(iv)	$5 \mathrm{H}_{2} \mathrm{~S}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{~S}+8 \mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$ 1st mark ALL Correct species (SIX) OR Equation containing Mn and S species correctly balanced i.e. $5 \mathrm{H}_{2} \mathrm{~S}+2 \mathrm{MnO}_{4}^{-} \ldots \ldots . . \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{~S} \ldots \ldots$. 2nd mark Complete correct balanced equation	2	$\begin{gathered} \mathrm{AO} 3.1 \\ \times 2 \end{gathered}$	ALLOW multiples, e.g. $2^{11 / 2} \mathrm{H}_{2} \mathrm{~S}+\mathrm{MnO}_{4}^{-}+3 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+21 / 2 \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}$ ALLOW equation with S^{2-}, e.g. $5 \mathrm{~S}^{2-}+2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{~S}+8 \mathrm{H}_{2} \mathrm{O}$ IGNORE extra electrons for 1st mark

Quest	Answer	Marks	AO element	Guidance
(b)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Reaches a comprehensive conclusion to determine the correct formulae of almost all of C, D, E, F, G AND $\mathbf{9 H}_{\mathbf{2}} \mathbf{O}$ There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Reaches a sound conclusion to determine the correct formulae of at least half of C, D, E, F, G AND $\mathbf{9 H}_{\mathbf{2}} \mathbf{O}$. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Reaches a simple conclusion to determine the correct formulae of some of C, D, E, F, G AND $\mathbf{9} \mathbf{H}_{2} \mathbf{O}$. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{gathered} \hline \mathrm{AO} 1.2 \\ \times 2 \\ \\ \mathrm{AO} 3.1 \\ \times 2 \\ \\ \mathrm{AO} 3.2 \\ \times 2 \end{gathered}$	Indicative scientific points may include: Formula of C, D, E, F and G - C: $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{FeN}_{3} \mathrm{O}_{9} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ - D: $\mathrm{FeN}_{3} \mathrm{O}_{9} \mathrm{OR} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ - $\mathrm{E}: \mathrm{Fe}_{2} \mathrm{O}_{3}$ - $\mathrm{F}: \mathrm{NO}_{2}$ - $\mathbf{G}: \mathrm{O}_{2}$ - $9 \mathrm{H}_{2} \mathrm{O}$ Examples of evidence $\begin{aligned} & n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{0.486}{18.0}=0.027(\mathrm{~mol}) \\ & 0.027: 0.003=1: 9 \rightarrow 9 \mathrm{H}_{2} \mathrm{O} \\ & n(\mathrm{~F})=\frac{270-54}{24000}=\frac{216}{24000}=0.009(00)(\mathrm{mol}) \\ & M(\mathrm{E})=55.8 \times 2+16.0 \times 3=159.6 \\ & M(\mathrm{~F})=\frac{0.414}{0.009(00)}=46\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \end{aligned}$ G: oxygen linked to relighting glowing split NOTE: Equations could include evidence e.g $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+9 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{FeN}_{3} \mathrm{O}_{9} \cdot 9 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{FeN}_{3} \mathrm{O}_{9}+9 \mathrm{H}_{2} \mathrm{O}$ $2 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+6 \mathrm{NO}_{2}+11 / 2 \mathrm{O}_{2}$
	Total	12		

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

