

GCE

Chemistry A

H032/01: Breadth in chemistry

Advanced Subsidiary GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

1. Annotations

Annotation	Meaning
\checkmark	Correct response
×	Incorrect response
<u> </u>	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

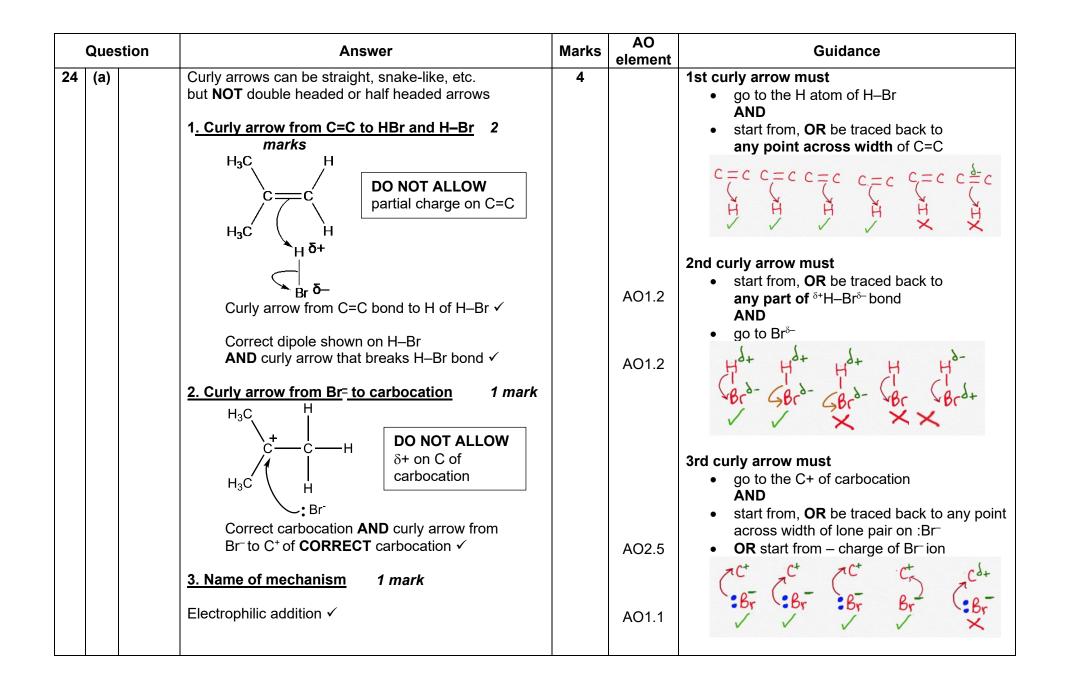
SECTION A

Question	Answer	Marks	AO element	Guidance
1	C	1	AO1.2	
2	Α	1	AO2.1	
3	D	1	AO1.1	
4	C	1	AO1.2	
5	C	1	AO2.2	
6	D	1	AO2.4	
7	В	1	AO2.3	
8	C	1	AO1.2	
9	D	1	AO1.2	
10	Α	1	AO2.6	
11	Α	1	AO1.1	
12	C	1	AO1.1	
13	В	1	AO2.5	ALLOW 4
14	В	1	AO1.1	
15	D	1	AO2.1	
16	В	1	AO1.2	
17	В	1	AO1.2	
18	C	1	AO2.2	
19	В	1	AO1.1	
20	Α	1	AO2.1	
	Total	20		

SECTION B

(Question			Ans	wer			Marks	AO element	Guidance
21	(a)	Shell	Total numb		S	Sub-sh	ell	2	AO1.1 ×2	
			electror	IS	S	р	d			ALLOW
		1st	2		2					(1)s ² (2)s ² (2)p ⁶
		2nd	8		2	6				$(3)s^2 (3)p^6 (3)d^{10}$
		3rd	18		2	6	10			DO NOT ALLOW extra numbers
			vs correct $\rightarrow 7$		~					
	(b)							1	AO1.2	
			Protons	Neutro	ns	Elect	rons			
		⁷⁶ Se	34	42		3	4			
		⁸² Se	34	48		3	4			
		ALL 6 entries correct for mark ✓								
	(c)	FIRST CHECK ANSWER ON THE ANSWER LII IF answer = 32.094 (to 3 DP) award 2 marks						2	AO1.2 ×2	
		<u>(32 × 94.</u>	<u>93) + (33 × 0</u> 100	.78) + (3	4 × 4	4.29)				 For 1 mark: ALLOW ECF → to 2 DP if: %s used with wrong isotopes ONCE
		OR 32.09								 OR transposed decimal places for ONE %
		= 32.094	(to 3 DP) ✓							

Question	Answer	Marks	AO element	Guidance	
(d) (i)	$\begin{array}{c c} CI & F \\ & \\ H - C - C - F \\ & \\ Br & F & \checkmark \end{array}$	1	AO2.5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous, e.g. CF ₃ CHClBr	
	FIRST, CHECK ANSWER IF answer = 7.224 × 10 ²² , award 2 marks $n(C_2HBrClF_3) = \frac{7.896}{197.4}$ OR 0.04(00) (mol) \checkmark F atoms = 3 × 0.0400 × 6.02 × 10 ²³ = 7.224 × 10 ²² \checkmark Minimum 3 SF required	2	AO2.2 ×2	Alternative approaches n(F atoms) = $\frac{7.896}{197.4} \times 3 = 0.12 \checkmark$ F atoms = 0.12 × 6.02 × 10 ²³ = 7.224 × 10 ²² ✓ OR 3 mol F atoms = 3 × 6.02 × 10 ²³ = 1.806 × 10 ²⁴ ✓ F atoms = 1.806 × 10 ²⁴ × 0.04 = 7.224 × 10 ²² ✓ OR Mass F in 7.896 g = $\frac{57}{197.4} \times 7.896 = 2.28 \text{ (g)} \checkmark$ F atoms = $\frac{2.28}{19} \times 6.02 \times 10^{23}$ = 7.224 × 10 ²² ✓ ALLOW ECF from incorrect n(C ₂ HBrClF ₃) ALLOW use of 6.022 × 10 ²³ OR 6.023 × 10 ²³ 	
	Total	8			


	Questic	on	Answer	Marks	AO element	Guidance
22	(a)	enthalpy <u>CH4(g)</u>	$+ H_2O(g)$	3	AO1.1 ×3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE state symbols.
		3H ₂ (g) + AND ∆ <i>H</i> labelle AND	progress of reaction ts above reactants 1 mark CO(g) on RHS IGNORE state symbols ed with product above reactant r upwards ✓			∆ <i>H</i> label ALLOW arrow even if it has a small gap at the top and bottom i.e. does not quite reach reactant or product line
		from reac → 1 TWO curv AND eac	curves2 markse shown with arrow labelled E_a OR E_c tants to top of curvemark \checkmark ves shown with E_c arrow lower than E_a n arrow from reactants to top of curvemarks \checkmark			E_a and E_c labelsALLOW no arrowhead(s) at both ends of activation energy lineALLOW double headed arrowsBUT DO NOT ALLOW arrowhead down E_a and E_c lines must point to maximum (or near to the maximum) on the curveOR span approximately 80% of the distance between reactants and maximum regardless of position

Question Answer	Marks	AO element	Guidance
Question Answer (b) Pressure: Right-hand side has more (gaseous) moles OR 2 (gaseous) moles form 4 (gaseous) mo Low pressure OR decrease pressure ✓ Temperature: (Forward) reaction is endothermic/△ <i>H</i> is posi OR (Forward) reaction takes in heat ✓ High temperature OR increase temperature	es ✓		Guidance FULL ANNOTATIONS MUST BE USED ALLOW suitable alternatives for right-hand side, e.g. towards H ₂ /products OR forward direction OR increases yield For moles, ALLOW molecules/particles ORA for reverse reaction, e.g. ALLOW reverse reaction is exothermic /ΔH is negative/gives out heat

Question	Answer	Marks	AO element	Guidance
Question (c)	AnswerFIRST, CHECK THE ANSWER ON ANSWER LINE IF bond enthalpy = (+)432 (kJ mol ⁻¹) award 3 marksEnergy for bonds broken ($4 \times C-H + 2 \times O-H$) $4 \times 413 + 2 \times 464$ OR 1652 + 928 OR 2580 (kJ) \checkmark H-H bond enthalpy correctly calculated $3 \times H-H$ bond enthalpy = 2580 - 1077 - 206 $= 1297$ (kJ mol ⁻¹) \checkmark H-H bond enthalpy = 2580 - 1077 - 206 	Marks 3	AO element AO2.6 ×3	Guidance FULL ANNOTATIONS MUST BE USED IGNORE sign IGNORE sign ALLOW ECF DO NOT ALLOW – sign COMMON ERRORS 570/569.66 (Allow 6 or 7 at end) → 2 marks
				2580 – 1077 + 206 = 1709 ✓ Wrong sign for 206 Then 1709/3 = 570 ✓
				1150/1150.3 → 2 marks 2580 + 1077 – 206 = 3451 ✓ <i>Wrong sign for 1077</i>
				3451/3 = 1150 ✓ 501 → 2 marks 2580 - 1077 = 1503 ✓
	Total	10		<i>Missing 206</i> 1503/3 = 501 ✓

	Question	Answer	Marks	AO element	Guidance
23	(a)	toxic/poisonous OR forms chlorinated hydrocarbons OR forms carcinogenic compounds / toxic compounds ✓	1	AO1.1	IGNORE 'harmful'/'dangerous' IGNORE chlorine is carcinogenic/causes cancer dangerous for health/causes breathing problems
	(b)	Element oxidised : Chlorine/C <i>l</i> Change from: –1 to 0 ✓ Element reduced : Manganese/Mn Change from +4 to +2 ✓	2	AO1.2 ×2	 MAX 1 mark if no '+' sign for oxidation number ALLOW Cl₂ for chlorine ALLOW 1– ALLOW 4+ AND 2+ ALLOW 1 mark for all oxidation numbers correct, but oxidised and reduced the wrong way around IGNORE numbers around equation i.e. treat as rough working
	(c)	$3KClO_4 + 8Al \rightarrow 3KCl + 4Al_2O_3 \checkmark$	1	AO2.6	ALLOW multiples

Question	Answer	Marks	AO element	Guidance
(d)	Plan Mix (solution of) halogen and (solution of) halide ✓	5 max	AO3.3	IGNORE additions of halogen to same halide e.g. Chlorine to chloride. ALLOW within text if it is clear that halogen is added to halide
	Observation with chlorine bromide → orange/yellow ✓		AO2.7	Check observations in a presented table.
	Observation with bromine iodide \rightarrow violet/purple/pink \checkmark		AO2.7	
	Observation with iodine No colour change/no reaction ✓		AO2.7	
	Equation $Cl_2 + 2Br^- \rightarrow Br_2 + 2Ct^-$ OR $Cl_2 + 2I^- \rightarrow I_2 + 2Ct^-$ OR			ALLOW multiples, e.g. $\frac{1}{2}Cl_2 + Br \rightarrow \frac{1}{2}Br_2 + Ct$
	$Br_2 + 2I^- \to I_2 + 2Br^- \checkmark$		AO2.6	
	Reactivity trend $Cl_2 > Br_2 > I_2$ /decreases down the group \checkmark		AO1.1	
	Total	9		

Que	stion	Answer	Marks	AO element	Guidance	
					(Lone pair NOT needed if curly arrow shown from – charge of Br^- ion) IF Br_2 is used instead of HBr contact your Team Leader DO NOT ALLOW incorrect carbocation, i.e. $H_3C \xrightarrow{CH_3}_H \xrightarrow{H}_H$ $H_3C \xrightarrow{CH_3}_H \xrightarrow{H}_H$ $H_3C \xrightarrow{CH_3}_H \xrightarrow{H}_H$ $H_3C \xrightarrow{CH_3}_H \xrightarrow{H}_H$	
(b)	(i)	Same molecular formula AND Different structural formulae ✓	1	AO1.1	Same formula is not sufficient (<i>no reference to molecular</i>) Different arrangement of atoms is not sufficient (<i>no reference to structure/structural</i>) For structural formulae, ALLOW structure/displayed/skeletal formulae	
(b)	(ii)	$ \begin{array}{cccccccccc} CH_3 & H \\ H_3C & \hline C & \hline C & - C \\ H & Br & \checkmark \end{array} $	1	AO2.5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous	

Question	Answer	Marks	AO element	Guidance
(c) (i)	Alcohol CReagent AND product CH_3 HNaOH H_3C C C GR C C H_3C	2	AO2.5 ×2	ALLOW Reagent: H ₂ O/water AND Product: HBr
(C) (ii)	Water out Ist mark: Labelled condenser above a flask ✓ 2nd mark: Only available if 1st mark has been awarded Flask AND flask Heat	2	AO3.3 ×2	For condenser label, ALLOW 'condenser' OR water in AND water out (May be implied by connection to tap and sink).
	Total	10		

	Question		Answer	Marks	AO element	Guidance
25	(a)	(i)	Moles Sc OR moles O $n(Sc) = \frac{0.27}{45} = 6 \times 10^{-3} \text{ (mol)}$ OR $n(O) = \frac{0.144}{16.0} = 9 \times 10^{-3} \text{ (mol)} \checkmark$ Empirical formula $Sc_2O_3 \checkmark$	2	AO2.8 ×2	NO ECF
	(a)	(ii)	Heat to constant mass ✓	1	AO3.4	ALLOW response that implies heating to constant mass, e.g. Heat again until mass does not change IGNORE 'heat for longer' <i>No link to constant mass</i>
	(b)		Rearranging ideal gas equation $n = \frac{pV}{RT} \checkmark$ Unit conversion AND substitution into $n = \frac{pV}{RT}$: • $R = 8.314$ OR 8.31 • $V = 9.39 \times 10^{-3} \text{ m}^3$ • $T \text{ in } K$: 293 K e.g. $n = \frac{1.37 \times 10^7 \times 9.39 \times 10^{-3}}{8.314 \times 293} \checkmark$ Calculation of n $n = 52.80906994 \text{ (mol)} \checkmark$ Calculation of M $M = \frac{1.69 \times 10^3}{52.80906994} = 32.00207847 \checkmark$ ALLOW 2 SF or more	5	AO1.2 AO2.4 ×3	ALLOW ECF throughout IF $n = \frac{pV}{RT}$ is omitted, ALLOW when values are substituted into rearranged ideal gas equation. ALLOW ECF from incorrectly rearranged ideal gas equation, e.g. $n = \frac{RT}{pV} \rightarrow 0.0189361411$ $M \rightarrow 89247$ (<i>Likely to be 3/5 max</i>) ALLOW use of 8.31 for <i>R</i> , which gives: n = 52.83448947 M = 31.98668175 ALLOW 3 SF or more, e.g. 52.8 Using 52.8, $M = 32.00757576$ ALLOW ECF for a 'reasonable gas' that matches
			Gas O₂ OR oxygen ✓		AO3.2	calculated molar mass

Question	Answer	Marks	AO element	Guidance
26	Mass spectrum: $M = 88 \checkmark$ IR: Peak at 1630-1820 (cm ⁻¹) is C=O \checkmark	5	AO3.1 ×3	ALLOW stated values within stated ranges
	Peak at 1630-1620 (cm ⁻¹) is C=O ↓ Peak at 2500–3500 (cm ⁻¹) is O–H AND carboxylic acid ✓ Structures			ALLOW stated values within stated ranges ALLOW 'acid O–H IGNORE references to C–O peaks
	$H \xrightarrow{H} H \xrightarrow{H} H \xrightarrow{H} H \xrightarrow{H} H \xrightarrow{O} H \xrightarrow{H} \xrightarrow{CH_3} O \xrightarrow{O} H \xrightarrow{H} H \xrightarrow{C} H \xrightarrow{C} O \xrightarrow{O} H \xrightarrow{O} H \xrightarrow{C} O \xrightarrow{O} H \xrightarrow{O} H \xrightarrow{C} O \xrightarrow{O} H $		AO3.2 ×2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
	Total	13		

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

