

GCE

Chemistry A

H432/01: Periodic table, elements and physical chemistry

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

Tuesday 5 October 2021 –Afternoon

A Level Chemistry A

H432/01 Periodic table, elements and physical chemistry

MARK SCHEME

Duration: 2 hours 15 minutes

MAXIMUM MARK 100

Last updated: 17/10/2021 Post-standardisation

This document consists of 27 pages

1. Annotations

Annotation	Meaning
✓	Correct response
×	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
ш	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
I	alternative and acceptable answers for the same marking point
✓	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Question	Answer	Marks	AO element	Guidance
1	С	1	AO1.1	
2	В	1	AO1.2	
3	D	1	AO2.6	
4	В	1	AO2.2	
5	D	1	AO2.6	
6	С	1	AO2.6	
7	Α	1	AO1.1	
8	В	1	AO2.2	
9	В	1	AO2.2	
10	Α	1	AO2.6	
11	Α	1	AO1.2	
12	С	1	AO1.2	
13	D	1	AO1.1	Accept 1
14	В	1	AO2.1	
15	С	1	AO2.3	
	Total	15		

C	uestic	on	Answer	Marks	AO element	Guidance
16	(a)		- (2+) - (2+) - (2+) - Magnesium ion	3		Regular arrangement must have at least two rows of correctly charged ions and a minimum of two ions per row
						ALLOW as label: +2 ions OR + 2 cations OR +2/2+ seen within circle
			(delocalised) electrons Diagram with regular arrangement of labelled 'Mg ²⁺ ions' OR '2+ ions'			ALLOW e ⁻ or 'e' as a label for electron
			AND attempt to show electrons ✓			IGNORE "-" for electron label
			Labelled electrons between other species AND statement anywhere of delocalised electrons (can			
			be in text or in diagram)			ALLOW mobile/flow for move
			Electrons move ✓			IGNORE 'carry charge'
	(b)	(i)	$Mg^{3+}(g) \rightarrow Mg^{4+}(g) + e^- \checkmark$	1	AO1.2	State symbols required (ignore states on electrons) ALLOW $Mg^{3+}(g) - e^- \rightarrow Mg^{4+}(g)$ ALLOW $Mg^{+3}(g)$ ALLOW e for e^-
	(b)	(ii)	Big jump/larger difference between 2 and 3 ✓	1	AO1.2	IGNORE big jump between 10 and 11 DO NOT ALLOW other combinations.
	(b)	(iii)	1st AND 3rd AND 4th AND 5th AND 9th AND 11th ✓ i.e. 1 2 3 4 5 6 7 8 9 10 11 12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	1	AO2.1	20 1101 PLEOTE GUIOI GOINBINGUIONO.

Questic	on	Answer	Marks	AO element	Guidance
(c)	(i)	(enthalpy change for) 1 mole of a compound/substance/solid/solute dissolving ✓	1	AO1.1	IGNORE 'energy released' OR 'energy required' For dissolving, ALLOW forms aqueous/hydrated ions IGNORE ionic OR covalent DO NOT ALLOW dissolving elements DO NOT ALLOW response that implies formation of 1 mole of aqueous ions
(c)	(ii)	Mg ²⁺ (aq) + 2F=(g) ✓ Mg ²⁺ (aq) + 2F=(aq)✓	2	AO2.2 ×2	ALLOW $Mg^{2+}(g) + 2F^{-}(aq)$ ALLOW $MgF_2(aq)$
(c)	(iii)	$-6 \text{ (kJ mol}^{-1})$ ✓ $\Delta_{sol}H \text{ (MgF}_2) = -(-2926) + (2 \times -506) + (-1920)$	1	AO2.2	1 mark ONLY
(c)	(iv)	Ionic radius Halide ion gets larger down the group ✓ Lattice enthalpy Lattice enthalpy is less exothermic down group OR halide ion has less attraction for Mg²+ ✓ Hydration enthalpy Hydration enthalpy is less exothermic down group OR halide ion has less attraction for H₂O ✓ Enthalpy of solution Difficult to predict whether lattice enthalpy or hydration enthalpy has bigger effect ✓	4	AO1.2 ×3	ALLOW ORA throughout ALLOW ions closer together in MgF ₂ OR further apart in MgI ₂ DO NOT ALLOW atomic radius ALLOW MgI ₂ is less exothermic than MgF ₂ for LE and hydration enthalpy -as trend 'down the group'. ALLOW less negative/more positive BUT IGNORE is smaller/less
		Total	14		

(Question	Answer	Marks	AO element	Guidance
17	(a)	Transition element: Has an ion with an incomplete/partially-filled d subshell/d-orbital ✓ d-block d sub-shell/d-orbital is being filled/has highest energy OR Electron configurations shown for Sc: 1s²2s²2p⁶3s²3p⁶3d¹4s² AND Zn:1s²2s²2p⁶3s²3p⁶3d¹04s² ✓ Electron configurations of ions Sc³+: 1s²2s²2p⁶3s²3p⁶ AND d sub-shell empty / d orbital(s) empty ✓ Zn²+: 1s²2s²2p⁶3s²3p⁶3d¹0 AND d sub-shell full / d-orbitals full ✓	4	AO1.1 ×4	DO NOT ALLOW d shell IGNORE d block IGNORE outer electron electron configurations ALLOW 4s ⁰ ALLOW 4s ² before 3d, i.e4s ² 3d ¹ ; 4s ² 3d ¹⁰ IGNORE other Sc and Zn ions ALLOW ECF for short hand notation. For Sc ³⁺ , ALLOW Sc ⁺³ OR Sc forms a 3+ ion; For Zn ²⁺ , ALLOW Zn ⁺² OR Zn forms a 2+ ion;
	(b) (i)	Donates two electron pairs (to a metal ion) AND forms two coordinate bonds (to a metal ion) ✓	1	AO1.1 x1	ALLOW lone pairs for electron pairs ALLOW dative (covalent) bonds for coordinate bonds TWO is only needed once if bonds are plural, e.g. Donates 2 electron pairs to form coordinate bonds Donates electron pairs to form 2 coordinate bonds

Question	Answer	Marks	AO element	Guidance
(ii)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Reaches a comprehensive conclusion with most detail and few errors to obtain: the formulae of A and B AND ionic equation for ligand substitution AND the 3D structures of B stereoisomers There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Reaches a sound conclusion with some detail and some errors for the formula of A OR B AND ionic equation for ligand substitution OR the 3D structures of B stereoisomers There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Obtains the correct formula of A OR B OR 3D structures of B stereoisomers which are mostly correct. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit.	6	AO2.2 ×2 AO2.6 ×2 AO3.1 ×2	Indicative scientific points: 1. Formula of the hydrated salt A Formula of A: $Cr_2H_{24}O_{24}S_3$ Example of working $Cr : H : O : S$ $\frac{17.10}{52.0} \cdot \frac{3.94}{1.0} \cdot \frac{63.13}{16.0} \cdot \frac{15.83}{32.1}$ There may be other methods Detail Hydrated salt = $Cr_2(SO_4)_3 \cdot 12H_2O$ 2. Formula of B and ionic equation Formula of B: $[Cr(H_2O)_2(C_2O_4)_2]^-$ Ionic equation $[Cr(H_2O)_6]^{3+} + 2C_2O_4^{2-} \rightarrow [Cr(H_2O)_2(C_2O_4)_2]^- + 4H_2O$ ALLOW ligands in any order, e.g. $[Cr(C_2O_4)_2(H_2O)_2]^-$ Detail Use of charges and brackets 3. 3D structures of B stereoisomers

Question	Answer	Marks	AO element	Guidance
			eiement	Consistent use of 2 'out wedges', 2 'in wedges', 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge' ALLOW following orientations Detail Most bonding shown from Cr to O of H ₂ O and O-C ₂ O ₄ ²⁻
	Total	11		

Q	uestion	Answer	Marks	AO element	Guidance	
18	(a)	Formula: $CuCO_3 \checkmark$ $CuCO_3 + 2HNO_3 \rightarrow Cu(NO_3)_2 + CO_2 + H_2O \checkmark$	2	AO1.2 AO2.6	IGNORE state symbols ALLOW formula within equation. ALLOW other copper(II) compounds which can react with nitric acid to form a gas e.g. CuS, CuSO₃ for mark 1, with correct equation for mark 2. e.g.CuSO₃ + 2HNO₃ → Cu(NO₃)₂ + SO₂ + H₂O	
	(b)	$2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_2(aq) \checkmark$	1	AO2.6	ALLOW multiples State symbols are required	
	(c)	starch (solution) AND blue-black to colourless ✓	1	AO1.2	ALLOW blue OR black OR purple for colour of mixture ALLOW blue colour disappears (to colourless) IGNORE 'clear' IGNORE 'colorimetry	
	(d)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 1.35 award 4 marks $n(S_2O_3^{2-}) = 0.0200 \times \frac{26.55}{1000}$ $= 5.31 \times 10^{-4} \text{ (mol)} \checkmark$ $n(I_2) = 2.655 \times 10^{-4} \text{ OR}$ $n(Cu^{2+}) = 5.31 \times 10^{-4} \text{ (mol)} \checkmark$ $m(Cu/Cu^{2+}) \text{ in ore} = 63.5 \times 5.31 \times 10^{-4}$ $= 0.0337 \text{ (g)} \checkmark$ $\text{percentage} = \frac{0.0337}{2.50} \times 100$ $= 1.35 \text{ (%)} \checkmark \text{ (3SF required)}$	4	AO2.8 ×5	FULL ANNOTATIONS MUST BE USED ALLOW ECF throughout If 1:2 ratio for I ₂ :Cu ²⁺ not used check ratio in b) and allow ECF IGNORE rounding errors after 3 SF Calculator: 0.0337185 ALLOW 3 SF (0.0337) up to calculator value ECF dependent on the use of a calculated mass of Cu/Cu ²⁺	

Quest	tion	ion Answer		AO element	Guidance	
(e)	(i)	Lower AND smaller titre ✓	1	AO3.4	ALLOW less I ₂ produced / less Cu ²⁺ reacts	
	(ii)	The same AND burette measures by difference ✓	1	AO3.4	ALLOW AW	
(f)		Any two of the following: Make up a (standard solution) from Step 2 to a stated volume (e.g. 250 cm^3) OR Repeat titrations AND Take mean of concordant/closest titres/ identify anomalies OR lower $[S_2O_3]^{2-}$ to increase titre volume (to reduce the percentage error). OR higher $[S_2O_3]^{2-}$ so not to refill the burette. OR Use a 3 dec place balance (to reduce the percentage error).	2	AO3.4 x 2		
		Total	12			

Qı	uestion	1	Answer	Marks	AO element	Guidance
19	(a)	(i)	Complete circuit with voltmeter AND labelled salt bridge linking two half-cells ✓ Cr Salt Bridge MnO ₄ MnO ₄ (aq) + Mn ²⁺ (aq) + H ⁺ (aq) Pt electrode in MnO ₄ AND H ⁺ AND Mn ²⁺ ✓	3	AO1.2 ×3	Half cells can be drawn in either order Half cells must show electrodes dipping into solutions ALLOW small gaps in circuit IGNORE any stated concentrations IGNORE state symbols In salt bridge, ALLOW any stated ion that may be present, e.g. Cr ³⁺ , MnO ₄ ⁻ , Mn ²⁺ , H ⁺
	(a)	(ii)	$5\text{Cr} + 3\text{MnO}_4^- + 24\text{H}^+ \rightarrow 5\text{Cr}^{3+} + 3\text{Mn}^{2+} + 12\text{H}_2\text{O} \checkmark$	1	AO2.6	IGNORE state symbols ALLOW multiples
	(b)	(i)	Mn is oxidised from +6 (in MnO ₄ ²⁻) to +7 (in MnO ₄ ⁻) \checkmark Mn is reduced from +6 (in MnO ₄ ²⁻) to +4 (in MnO ₂) \checkmark	2	AO2.1 ×2	IGNORE '6' (signs required) ALLOW after number, e.g. 5+ ALLOW 1 mark for correct oxidation numbers but not linked to oxidation/reduction. IGNORE any reference to electron loss/gain (even if wrong)

Qu	Question		Answer	Marks	AO element	Guidance
	(b)	(ii)	Explanation using E° values (E° of) system 3 (MnO₄⁻/MnO₄²⁻) is less positive / more negative than system 5 (MnO₄²⁻/MnO₂)✓	2	AO3.1 ×2	IGNORE 'lower/higher' ALLOW reverse argument: System 5 more positive than system 3, etc Must be comparative ALLOW response in terms of E_{cell} $E = (+)1.14 \text{ V for system 5 - system 3}$
			Equilibrium shift related to E° values system 3 (MnO₄⁻/MnO₄²⁻) shifts left AND system 5 (MnO₄²⁻/MnO₂) shifts right ✓			Shift dependent on systems 3 and 5 correctly identified
	(c)	(i)	$H_2 + 2OH^- \rightarrow 2H_2O + 2e^- \checkmark$	1	AO2.6	ALLOW multiples ALLOW H ₂ + 2OH⁻ - 2e⁻→ 2H ₂ O ALLOW equation with equilibrium sign
	(c)	(ii)	(0.40 − 1.23 =) −0.83 (V) ✓	1	AO1.2	
	(c)	(iii)	Fuel reacts with oxygen/oxidant to give electrical energy/voltage ✓	1	AO1.1	ALLOW named fuel. e.g. hydrogen/H ₂ ; ethanol; methanol, etc ALLOW fuel cell requires continuous supply of fuel AND oxygen/an oxidant OR fuel cell operates continuously as long as a fuel AND oxygen/an oxidant are added IGNORE 'reactants' 'products' and comments about pollution and efficiency
			Total	11		

Q	uesti	on	Answer	Marks	AO element	Guidance
20	(a)		rate of forwards reaction = rate of backwards reaction OR concentrations/pressure/temperature are constant /do not change ✓	1	AO1.1	DO NOT ALLOW "are the same"
	(b)	(i)	$\Delta G = \Delta H - T\Delta S = -114 - (298 \times -0.147) \checkmark$ = -70.194 (kJ mol ⁻¹) AND statement of $\Delta G < 0$ OR ΔG is -ve OR $\Delta H < T\Delta S \checkmark$	2	AO2.2 ×2	ALLOW $-114000 - (298 \times -147)$ ALLOW -70 up to calculator value of -70.194 correctly rounded, i.e. -70 OR -70.2 OR -70.19 ALLOW -70000 up to -70194 (J mol ⁻¹) ALLOW ECF for an incorrectly calculated negative value of ΔG linked to feasibility statement IGNORE rounding after 3 SF ORA for comment about $-$ sign required for feasibility
	(b)	(ii)	i.e. Maximum temperature = $\frac{\Delta H}{\Delta S} = \frac{-114}{-0.147} = 776$ (K) 3 SF required (appropriate from supplied data)	1	AO2.2	

Questi	on	Answer	Marks	AO element	Guidance
(c)	(i)	FIRST, CHECK FOR VALUE OF K_p . IF answer = 20.7 (MPa ⁻¹), award 4 marks	4	AO2.4 ×4	FULL ANNOTATIONS MUST BE USED ALLOW ECF throughout ALLOW 20.6 from 3 SF partial pressures, 0.194, 0.436 and 0.581 IF there is an alternative answer, check to see if there is any ECF credit possible using working below Look for values to 3 SF here: 0.194, 0.436 and 0.581 ALLOW 25.0 as ECF (from omission of partial pressures for 3 marks)

Q	Question		Answer			Marks	AO element	Guidance	
	(c)	(ii)			F., 19.		3	AO1.2	
			Change	Kρ	Equilibrium amount of NO₂	Initial rate		×3	Mark by COLUMN
			Temperature increased	smaller	smaller	greater			
			Pressure increase	same	greater	greater			ALLOW obvious alternatives for
			Catalyst added	same	same	greater			greater/smaller/same, e.g. increases/decreases/
				✓	✓	✓			more/less
					Total		11		

Que	estior	1	Answer	nswer Marks AO element		Guidance
21	(a)	(i)	(Expt 1 and 2) [S ₂ O ₃ ²⁻] halves, ([H ⁺] constant), AND rate halves AND first order (with respect to [S ₂ O ₃ ²⁻])✓ (Expt 2 and 3) [S ₂ O ₃ ²⁻] quarter AND [H ⁺] halves, AND rate quarters AND zero order (with respect to [H ⁺])✓	2	AO3.1 ×2	ALLOW ORA i.e. (Expt 2 and 1) $[S_2O_3^{2-}]$ doubles, ([H ⁺] constant), AND rate doubles AND first order with respect to $[S_2O_3^{2-}]$ ALLOW comparison of Expt 1 and 3: $[S_2O_3^{2-}] \times 1/8$ AND [H ⁺] halves, AND rate $\times 1/8$ AND zero order with respect to [H ⁺]
	(a)	(ii)	S ₂ O ₃ ^{2−} as only reactant species in step 1 ✓ Rest of mechanism correct ✓	2	AO3.2 ×2	Step 1: $S_2O_3^{2-} \rightarrow S + SO_3^{2-}$ Step 2 $SO_3^{2-} + 2H^+ \rightarrow SO_2 + H_2O$ OR Step 1 $S_2O_3^{2-} \rightarrow SO_2 + SO^{2-}$ Step 2 $SO^{2-} + 2H^+ \rightarrow S + H_2O$ Check with Team Leader for other equations
	(b)	(i)	Gradient gradient in range of –5700 to –6100 ✓ E_a calculation $E_a = (-)$ gradient × 8.314 e.g. from –5900, $E_a = (+)$ 49052.6 (J mol ⁻¹) ✓ E_a to 3SF and in kJ mol ⁻¹ ✓ e.g. 49.1 (kJ mol ⁻¹)	3	AO2.8 ×3	FULL ANNOTATIONS MUST BE USED Marks are for intermediate calculations ALLOW ECF from an incorrect gradient ALLOW ECF on missing \times 10 ⁻³ , e.g. ALLOW 2 marks for: gradient = -5.9, leading to $E_a = 49.0526$ (J mol ⁻¹) AND 0.0491 (kJ mol ⁻¹) DO NOT ALLOW a negative E_a

Qı	Question		Answer		AO element	Guidance	
	(b)	(ii)	In A is intercept at 0 when 1/T OR x axis is 0 ✓	1	AO3.2		
		(iii)	In k In $k = -2.59 \checkmark$ Temperature $1/T = 3.10 \times 10^{-3} (s^{-1})$ $T = 49.6 ^{\circ}\text{C} \checkmark$	2	AO3.1	Correct T scores 2 marks ALLOW ECF for 1/T from incorrect InK shown on the graph ALLOW in the range $1/T = 3.09 - 3.11 \times 10^{-3} \text{ s}^{-1}$ T = 48.5 to 50.6 °C ALLOW $T = 50 \text{ °C}$	
			Total	10			

	Questi	ion	Answer	Marks	AO element	Guidance
22	(a)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 13.15 award 2 marks $[H+] = \frac{1.00 \times 10^{-14}}{0.140} = 7.14 \times 10^{-14} \text{ (mol)} \checkmark$ $pH = -\log (7.14 \times 10^{-14}) = 13.15 \checkmark$ 2 DP required	2	AO2.2 ×2	ALLOW ECF providing pH>7 Calculator: 7.142857143 × 10 ⁻¹⁴ ALLOW pOH method pOH = −log(0.14) = 0.85 ✓ pH = 14.00 − (0.85) = 13.15 ✓
	(b)	(i)	$n(H_2SO_4) = 1.60 \times \frac{25.0}{1000} = 0.04(00) \text{ (mol)}$ AND $n(NaOH) = 1.50 \times \frac{55.0}{1000} = 0.0825 \text{ (mol)} \checkmark$ $0.04(00) \text{ mol } H_2SO_4 \text{ reacts with } 0.08(00) \text{ mol NaOH}$ OR 1 mol H ₂ SO ₄ reacts with 2 mol NaOH \checkmark	2	AO2.2 ×2	ALLOW 0.0825>0.08

Que	stic	on	Answer	Marks	AO element	Guidance
(b)	(ii)	$q = mc\Delta T = 80.0 \times 4.18 \times 13.0$ = 4347.2 (J) OR 4.3472 (kJ) \checkmark	4	AO2.4 ×4	FULL ANNOTATIONS MUST BE USED
			4 2470			ALLOW 3 SF up to calculated answer throughout
			$\Delta H_1 = (-)\frac{4.3472}{0.0400} = (-)108.68 \text{ kJ mol}^{-1} \checkmark$			ALLOW ECF from q DO NOT ALLOW division by n(NaOH)
			$\Delta_{\text{neut}} \mathbf{H} = (-) \frac{108.68}{2} = (-)54.34 \text{ kJ mol}^{-1} \checkmark$			ALLOW $\Delta_{neut}H$ from $\Delta H_1/2$
			– sign for ΔH value(s) ✓			ALLOW alternative methods
(b)	(iii)	The same OR 13°C ✓	2	AO3.1 ×2	
			(Double the moles so) double the energy is spread over double the volume			ALLOW explanation that uses a calculation based on moles, volumes
						ALLOW mass for volume
	(b	Questic (b)		(b) (ii) $q = mc\Delta T = 80.0 \times 4.18 \times 13.0$ = 4347.2 (J) OR 4.3472 (kJ) \checkmark $\Delta H_1 = (-)\frac{4.3472}{0.0400} = (-)108.68 \text{ kJ mol}^{-1} \checkmark$ $\Delta_{\text{neut}} H = (-)\frac{108.68}{2} = (-)54.34 \text{ kJ mol}^{-1} \checkmark$ $- \text{ sign for } \Delta H \text{ value}(s) \checkmark$ (Double the moles so) double the energy is spread	(b) (ii) $q = mc\Delta T = 80.0 \times 4.18 \times 13.0$ $= 4347.2$ (J) OR 4.3472 (kJ) \checkmark $\Delta H_1 = (-)\frac{4.3472}{0.0400} = (-)108.68 \text{ kJ mol}^{-1} \checkmark$ $\Delta_{\text{neut}} H = (-)\frac{108.68}{2} = (-)54.34 \text{ kJ mol}^{-1} \checkmark$ $- \text{sign for } \Delta H \text{ value}(s) \checkmark$ (b) (iii) The same OR 13° C \checkmark 2 (Double the moles so) double the energy is spread	(b) (ii) $q = mc\Delta T = 80.0 \times 4.18 \times 13.0$ 4×4 $AO2.4$ $AO2.4$ $AO2.4$ $AO2.4$ $AO2.4$ $AO2.4$ $AO3.4$ $AO3.$

Question	Answer	Marks	AO element	Guidance
(c)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Reaches a comprehensive conclusion with most detail and few errors for the formation of the buffer AND Calculation of the correct buffer pH AND Correct mass of N ₂ O ₃ . There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Reaches a sound conclusion with some detail and some errors for Formation of buffer AND Calculation of the buffer pH OR Formation of buffer AND Mass of N ₂ O ₃ . OR Calculation of the buffer pH AND Mass of N ₂ O ₃ . OR Partial explanations of formation of the buffer AND buffer pH AND Mass of N ₂ O ₃ . There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Attempts, with some success, to: Describe formation of buffer OR Calculate buffer pH OR Obtain mass of N ₂ O ₃ . There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	AO1.2 ×2 AO2.6 ×2 AO3.1 ×2	Indicative scientific points may include: 1. Formation of buffer Acid / HNO₂ is in excess HNO₂ + NaOH → NaNO₂ + H₂O Partial neutralisation of HNO₂ → formation of NO₂⁻/ NaNO₂ Buffer contains HNO₂ AND NO₂⁻/NaNO₂ Calculation of buffer pH n(HNO₂) added = 0.0500 (mol) n(NaOH) added = 0.0150 (mol) n(HNO₂⁻) formed = 0.0150 (mol) n(HNO₂⁻) remaining = 0.0500 − 0.0150 = 0.0350 (mol) Ka = 10⁻³.³⁴ = 4.57 × 10⁻⁴ (mol dm⁻³) Concentrations = mol (volume 1 dm³) Concentrations = mol (volume 1 dm³) H⁺] = 4.57 × 10⁻⁴ × 0.0350 0.0150 = 1.0665 × 10⁻³ (mol dm⁻³) pH = 2.97 pH to 2 dec places Calculation of mass of N₂O₃ 1 mol N₂O₃ → 2 mol HNO₂ OR N₂O₃ + H₂O → 2HNO₂ n(HNO₂) = 0.0500 (mol) n(N₂O₃) = 0.0500/2 = 0.0250 (mol) n(N₂O₃) = 0.0250 × 76 = 1.9(0) g
	Total	16		

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

